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Abstract. We give a new estimate for the ratio of s-dimensional
Hausdorff measure Hs and (radius-based) packing measure Ps of a set
in any metric space. This estimate is

inf
E

Ps(E)

Hs(E)
≥ 1 +

(

2− 3

21/s

)s

,

where 0 < s < 1/2 and the infimum is taken over all metric spaces X
and sets E ⊂ X with 0 < Hs(E) < ∞. As an immediate consequence
we improve the upper bound for the lower s-density of such sets in R

n.

1. Introduction

This paper investigates the dependence between Hausdorff and packing
measures. Let us first recall how they are defined and fix some notation.
Let X be a metric space with a metric d. We denote an open ball by
B(x, r) = {y ∈ X : d(x, y) < r}. A δ-packing of a set E ⊂ X is a
countable collection of disjoint balls of radii at most δ and with centers in
E. With s ≥ 0 we let

P s
δ (E) = sup







∑

B(x,r)∈B

(2r)s : B is a δ-packing of E







.

From this the s-dimensional (radius-based) packing premeasure is defined
to be

P s
0 (E) = lim

δ↓0
P s
δ (E).

Finally the s-dimensional (radius-based) packing measure of E is defined
as

Ps(E) = inf

{

∞
∑

i=1

P s
0 (Ei) : E ⊂

∞
⋃

i=1

Ei

}

.
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Given a set E ⊂ X and s > 0 the s-dimensional Hausdorff measure of
the set E is defined as

Hs(E) = lim
δ↓0

Hs
δ(E),

where

Hs
δ(E) = inf

{

∞
∑

i=1

|Ei|s : E ⊂
∞
⋃

i=1

Ei and |Ei| ≤ δ

}

and |E| denotes the diameter of E. For more information on these mea-
sures, see for example [11].

There is also a diameter-based definition for the packing measure, where
in the definition we replace 2r by |B(x, r)|. In any normed space the diam-
eter of a ball B(x, r) is exactly 2r, and so the radius-based and diameter-
based packing measures coincide. However, in general metric spaces these
two definitions do not always agree. The proofs in this paper only work
for the radius-based packing measure. Note that the radius-based packing
measure has many nice properties in metric spaces which the diameter-
based packing measure is lacking (see [7, 8, 4, 9]).

We would like to understand how the Hausdorff and packing measures
relate to each other. From [13, 14] we know that we always have Hs(E) ≤
Ps(E) in Euclidean spaces. For almost every dimension this inequality is
also strict. In fact, if it happens that 0 < Hs(E) = Ps(E) < ∞, then
the dimension s must be an integer and E has to be s-rectifiable. This
fact gives rise to the natural question: how close to equality can we get if
s is not an integer? We will prove an estimate for this for small s. This
estimate holds in any metric space.

In the other direction there is no hope to obtain any bounds as it is
possible to construct sets with Hs(E) = 0 and Ps(E) = ∞. With s > 0
let us denote

c(s,X) = inf
E

Ps(E)

Hs(E)
,

where the infimum is taken over all sets E ⊂ X with 0 < Hs(E) < ∞. We
prove the following.

Theorem 1.1. For any metric space X and 0 < s < 1
2
we have

c(s,X) ≥ l2(s) = 1 +

(

2− 3

21/s

)s

.

The previous non-trivial estimates for c(s,R) are due to D.-J. Feng. He
proved in [5] that

c(s,R) ≥ l1(s) = 2s
(

1 + min{16−(1−s)−1

, 8−(1−s)−2}
)s
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Figure 1. Here are the graphs of the bounds for c(s,R). The
upper-bound u(s) and lower-bound l1(s) are due to Feng. In
this paper we prove the lower-bound l2(s).

for 0 < s < 1 and using his exact calculations for the packing measure of
Cantor sets [6] he also gave the upper bound

c(s,Rn) ≤ u(s) = 2s
(

21/s − 1
)s

for 0 < s < 1.
Our Theorem 1.1 improves the lower bound significantly for 0 < s < 1/2.

In addition, it holds in every metric space. See Figure 1 for an illustration
of the bounds. Our proof for the new lower bound in metric spaces works
only for dimensions s with 0 < s < 1/2. However, with similar methods
the lower bound could be improved for 1/2 ≤ s < 1 as well. As the exact
value for c(s,X) still remains open even for 0 < s < 1/2, we will not pursue
the possible improvements for the higher dimensions.

The Cantor sets on the real line which give the upper bound for c(s,Rn)
can not be constructed in general metric spaces X . In fact, we have the
following result concerning the upper bound.

Proposition 1.2. For every 0 < s < 1 and every c > 0 there exists a
metric space X with c(s,X) > c.

Proof. Take an integer k ≥ 2. Define the space X to be a Cantor set given
as the limit of the iterated function system {fi}ki=1 with

fi(x) = k−1/sx+
i− 1

k
.
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This means that X is the unique compact set in R with

X =
k
⋃

i=1

fi(X).

Now take any E ⊂ X with Hs(E) > 0. Let δ > 0 so that Hs
δ(E) >

Hs(E)/2. For any m ∈ N so large that k−(m−1)/s < δ the set E must
meet at least Hs

δ(E)km construction pieces of the form fi1 ◦ · · · ◦ fi1([0, 1]).
On the other hand, each two of these construction pieces have distance
k−(m−1)/s − k−m/s between them. So,

P s
δ (E) ≥ Hs

δ(E)km(k−(m−1)/s − k−m/s)s ≥ k2−s−1Hs(E).

Hence the ratio P s(E)/Hs(E) can be made as large as we wish by choosing
a large enough k. � �

Feng asked in [5] if it is true that c(s,R) = u(s). Although we are not
yet able to answer this question, we believe that this should be the case,
see Remark 2.3.

Similarly as Feng proved a lower density theorem for Hausdorff measures
from his estimate, we can prove the following corollary to Theorem 1.1 for
sets in R

n. See [5] for the proof.

Corollary 1.3. Let 0 < s < 1
2
and F ⊂ R

n a Borel set with Hs(F ) < ∞.
Then

lim inf
r↓0

Hs(F ∩ B(x, r))

(2r)s
≤ 1

l2(s)
<

1

2

for Hs-almost all x ∈ F .

The first estimate for the lower density of Hausdorff measures on the real
line was already proved by A. S. Besicovitch in [2]. He proved that for a
set E ⊂ R, with 0 < Hs(E) < ∞, at Hs-almost every point x ∈ E we have

2

(21+1/s − 2)s
≤ lim sup

r↓0

Hs(E ∩ B(x, r))

(2r)s
≤ 1

and

lim inf
r↓0

Hs(F ∩B(x, r))

(2r)s
≤ 2−s lim sup

r↓0

Hs(F ∩ B(x, r))

(2r)s
.

Combining these two gives

lim inf
r↓0

Hs(F ∩B(x, r))

(2r)s
≤ 2−s.

More general estimates on the real line have been obtained in [10].
For an integer k it is clear that c(k,Rn) = 1. In this case a more inter-

esting question is the value of the constant when the infimum is taken over
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all purely k-unrectifiable sets. (See [11] for the definition and characteriza-
tions of rectifiability.) On the plane this question is the famous Besicovitch
1/2-problem [1, 3]: If a set E ⊂ R

2 with 0 < H1(E) < ∞ has

lim inf
r↓0

H1(F ∩ B(x, r))

2r
>

1

2

at H1-almost every point x ∈ E, is it then 1-rectifiable? Currently the best
known result is by D. Preiss and J. Tǐser [12]. It says that this is the case
when we replace 1/2 by (2 +

√
46)/12.

2. Proof of the theorem

We prove Theorem 1.1 with the help of the following two geometric
lemmas. The first lemma tells us that most of the balls in a nearly optimal
packing must have certain empty annular regions.

Lemma 2.1. Let 0 < s < 1
2
. There exists a constant 0 < ǫs < ∞ depending

only on s so that for every set E ⊂ X, radius r > 0 and point x ∈ E, and
for every 0 < ǫ < ǫs the following holds. If

E ∩ (B(x, r − ǫr) \B(x, r/2)) 6= ∅
then there exist two disjoint balls B(x1, r1), B(x2, r2) ⊂ B(x, r) so that
x1, x2 ∈ E and

(2r1)
s + (2r2)

s > (1 + ǫ)(2r)s.

Proof. Without loss of generality we may assume that r = 1. Assume first
that there is a point y ∈ E∩(B(x, 1−ǫ)\B(x, 2/3)). Denote t = 1−|x−y|.
Now

B(x, 1− 2t) ∩B(y, t) = ∅
and

B(x, 1− 2t), B(y, t) ⊂ B(x, 1).

Write fs(t) = (2− 4t)s + (2t)s. Observe that

f ′′
s (t) = 4s(s− 1)((2t)s−2 + 4(2− 4t)s−2) < 0

for every t ∈ [0, 1/3] and hence fs is concave on that interval. Next notice
that fs(0) = 2s and fs(1/3) = 2(2/3)s. Therefore because limt↓0 f

′
s(t) = ∞

there exists ǫ1 > 0 so that fs(t)− fs(0) > 2t for every 0 < t < ǫ1.
Next we assume that there is a point z ∈ E ∩ (B(x, 2/3) \ B(x, 1/2)).

Now let h = |x− z|. Clearly
B(x, h/2) ∩B(z, h/2) = ∅

and
B(x, h/2), B(z, h/2) ⊂ B(x, 1).

Furthermore,
2(h)s ≥ 21−s > (1 + ǫ)2s
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when ǫ < 21−2s − 1. Taking ǫs = min{ǫ1, 21−2s − 1} finishes the proof. �

�

In our second lemma we show that if the Hausdorff content inside a
ball B(x, r) is large enough, then there exists a large δ-packing inside the
ball B(x, 2r). The idea is to first find three points in the ball which are
far enough from each other. Then around the two points, who have the
shortest distance between them, we find balls with radius equal to half the
distance. The last point will be given the largest possible ball around it.

Lemma 2.2. Let δ > 0. Suppose we are given an exponent s ∈ (0, 1/2), a
set E ⊂ X, a radius r ∈ (0, δ/2) and a point x ∈ E. If Hs

δ(E∩B(x, r)) > c
then there exists a packing {B(x1, r1), B(x2, r2), B(x3, r3)} of E ∩ B(x, r)
inside the ball B(x, 2r) so that

(2r1)
s + (2r2)

s + (2r3)
s ≥

(

1 +

(

2− 3

21/s

)s)

c. (1)

Proof. Our aim is to find the centers x1, x2, x3 ∈ E ∩ B(x, r) which have
the following properties: the distances between the points are in the order

d(x1, x2) ≥ d(x1, x3) ≥ d(x2, x3) >
( c

2

)1/s

(2)

and either
d(x1, x2) > c1/s (3)

or

d(x1, x3) > c1/s −
(c

2

)1/s

. (4)

Let us now find these centers. Because Hs
δ(E ∩ B(x, r)) > c there exist

points y1, y2 ∈ B(x, r) ∩ E so that d(y1, y2) > c1/s. Assume first that

min{d(y1, x), d(y2, x)} > (c/2)1/s. (5)

Now selecting the points x1, x2 and x3 among the points x, y1 and y2 so
that (2) holds is enough, since then automatically inequality (3) holds.

In the case the inequality (5) is not true we have to choose the points
x1, x2 and x3 differently. We may assume that

Hs
δ({z ∈ E ∩ B(x, r) : d(z, y1) ≤ d(z, y2)}) >

c

2
is true. Then there are points z1, z2 ∈ {z ∈ E∩B(x, r) : d(z, y1) ≤ d(z, y2)}
so that d(z1, z2) > (c/2)1/s. By changing z1 or z2 to be y1 if necessary, we
can assume that either z1 = y1 or max{d(y1, z1), d(y1, z2)} ≤ (c/2)1/s. Now
choose the points x1, x2 and x3 from the points y2, z1 and z2 so that (2)
holds. If it happens that z1 = y1 then (3) is true. If not then (4) holds.

Now that the centers of our balls have been found, we define the radii
to be r2 = r3 = d(x2, x3)/2 and r1 = max{c1/s − 3r2, r2}. Because of
conditions (2), (3) and (4) the balls B(xi, ri) are pairwise disjoint.
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Let us check next that B(xi, ri) ⊂ B(x, 2r) for each i. Since r2 = r3 ≤ r,
this clearly holds for i = 2, 3 and for i = 1 when r1 = r2. If (5) is true,
then x1, x2 and x3 are chosen from the points x, y1 and y2. Therefore one
of them is x. As x1 ∈ B(x, r), we must then have r1 < r. (If this were not
the case, then the balls would not be disjoint.) Thus B(x1, r1) ⊂ B(x, 2r).

The only case left to check is when r1 = c1/s−3r2 and (5) does not hold.
But then

r1 = c1/s − 3r2 < d(y1, y2)− 3r2 ≤ d(y1, x) + d(y2, x)− 3r2

≤ r +
(c

2

)1/s

− 3

2

( c

2

)1/s

< r.

Next we confirm (1). Let us do this first in the case r1 = r2. Then

r2 ≥ c1/s − 3r2 from which we get r2 ≥ c1/s

4
and consequently

(2r1)
s + (2r2)

s + (2r3)
s ≥ 3

(

c1/s

2

)s

≥
(

1 +

(

2− 3

21/s

)s)

c.

Now we deal with the case r1 = c1/s − 3r2. From the inequalities (2)

and r2 ≤ c1/s

4
we get 2−1/s ≤ d(x2,x3)

c1/s
≤ 2−1. Finally we confirm (1) by

calculating

(2r1)
s + (2r2)

s + (2r3)
s =2d(x2, x3)

s + (2c1/s − 3d(x2, x3))
s

=

(

2
d(x2, x3)

s

c
+

(

2− 3
d(x2, x3)

c1/s

)s)

c

≥
(

1 +

(

2− 3

21/s

)s)

c,

where the last inequality follows by investigating the function

fs(t) = (2ts + (2− 3t)s)c.

Simply by noticing that f ′′
s (t) < 0 for every 2−1/s < t < 2−1 and fs(2

−1/s) ≤
fs(2

−1) we obtain fs(t) ≥ fs(2
−1/s) for every 0 < s < 1/2 and every

2−1/s < t < 2−1. � �

We are now ready to prove Theorem 1.1. The strategy is to take a δ-
packing which is supposed to be nearly optimal. If the Hausdorff measure
is large inside a ball which is used in the packing, by the previous lemmas
we are able to replace the ball with a slightly better packing. Because the
δ-packing was nearly optimal, this can not happen to too many balls.

of Theorem 1.1. We show that for every E ⊂ X and δ > 0

l2(s)Hs
δ(E) ≤ P s

δ (E).

We may assume that P s
δ (E) < ∞. Let c and ǫ0 be the constants from

Lemma 2.1. Take 0 < ǫ < ǫs and let {B(xi, ri)}, i ∈ I, be a finite δ-packing
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of E so that
∑

i∈I

(2ri)
s ≥ P s

δ (E)− ǫ2.

First we estimate

Hs
δ

(

E \
⋃

i∈I

B(xi, (1− ǫ)ri)
)

from above. To do this we define for each

x ∈ E \
⋃

i∈I

B(xi, (1− ǫ)ri)

a radius

rx = min

{

δ/5, dist
(

{x},
⋃

i∈I

B(xi, (1− 2ǫ)ri)
)

}

,

where dist(·, ·) denotes the distance between the sets. Then using 5r-
covering theorem we find a collection {yj}j∈J of points so that the balls
{B(yj, ryj )}j∈J are pairwise disjoint and

E \
⋃

i∈I

B(xi, (1− ǫ)ri) ⊂
⋃

j∈J

B(yj , 5ryj).

From P s
δ (E) < ∞ it follows that {yj}j∈J must be countable. Then

Hs
δ

(

E \
⋃

i∈I

B(xi, (1− ǫ)ri)
)

≤5s
∑

j∈J

(2ryj )
s ≤ 5s

(

P s
δ (E)−

∑

i∈I

(2(1− 2ǫ)ri)
s
)

≤5s
(

ǫ2 + (1− (1− 2ǫ)s)P s
δ (E)

)

.

Now divide I into three sets,

I1 ={i ∈ I : Hs
δ(E ∩ B(xi, (1− ǫ)ri)) ≤ (l2(s)

−1 + ǫ)(2ri)
s},

I2 ={i ∈ I \ I1 : E ∩ (B(xi, (1− ǫ)ri) \B(x, ri/2)) 6= ∅} and

I3 =I \ (I1 ∪ I2).

For every i ∈ I2 we can use Lemma 2.1 to obtain two disjoint balls
B(xi,1, ri,1), B(xi,2, ri,2) ⊂ B(xi, ri) so that xi,1, xi,2 ∈ E and

(2ri,1)
s + (2ri,2)

s > (1 + ǫ)(2ri)
s.

Let i ∈ I3. Then Hs
δ(E∩B(xi, ri/2)) >

(

l2(s)
−1+ǫ

)

(2ri)
s. Lemma 2.2 then

gives pairwise disjoint balls B(xi,1, ri,1), B(xi,2, ri,2), B(xi,3, ri,3) ⊂ B(xi, ri)
with xi,1, xi,2, xi,3 ∈ E and

(2ri,1)
s + (2ri,2)

s + (2ri,3)
s ≥ l2(s)(l2(s)

−1 + ǫ)(2ri)
s > (1 + ǫ)(2ri)

s.
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Now

P s
δ (E) ≥

∑

i∈I1

(2ri)
s +

∑

i∈I2

2
∑

k=1

(2ri,k)
s +

∑

i∈I3

3
∑

k=1

(2ri,k)
s

>
∑

i∈I1

(2ri)
s + (1 + ǫ)

∑

i∈I2∪I3

(2ri)
s ≥ P s

δ (E)− ǫ2 + ǫ
∑

i∈I2∪I3

(2ri)
s

and so
∑

i∈I2∪I3

(2ri)
s < ǫ.

We finish the proof by calculating

Hs
δ(E) ≤Hs

δ

(

E \
⋃

i∈I

B(xi, (1− ǫ)ri)
)

+
∑

i∈I

Hs
δ

(

E ∩B(xi, (1− ǫ)ri)
)

≤Hs
δ

(

E \
⋃

i∈I

B(xi, (1− ǫ)ri)
)

+
∑

i∈I1

(

l2(s)
−1 + ǫ

)

(2ri)
s +

∑

i∈I2∪I3

(2ri)
s

≤5s
(

ǫ2 + (1− (1− 2ǫ)s)P s
δ (E)

)

+
(

l2(s)
−1 + ǫ

)

P s
δ (E) + ǫ.

� �

Remark 2.3. In Lemma 2.2 we could use two balls instead of three. This
would give l2(s) = 2. The point of using three balls was to give an estimate
which shows that c(s,X) > 2.

The method of the Lemma 2.2 of dividing a set into two subsets and
choosing the one with larger Hausdorff content could be probably pushed
further by dividing infinitely many times and comparing possible packings
to a packing of a Cantor set. However, as we disregard at each step the set
with smaller Hausdorff content, this method should only be able to give a

geometric sequence of balls and thus an estimate c(s,X) ≥ 2s+1
(

21/s−1
21/s+1

)s

.

This would still not solve the exact value of c(s,R) even for small s. How-
ever, a more sophisticated treatment carried out using both parts of the
set might be able to do so.

Acknowledgments. We thank De-Jun Feng for the valuable comments he
made on an earlier version of this paper.
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