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Abstract

In this paper, we apply orthogonally equivariant spatial sign covariance ma-
trices as well as their affine equivariant counterparts in principal compo-
nent analysis. The influence functions and asymptotic covariance matrices
of eigenvectors based on robust covariance estimators are derived to com-
pare the robustness and efficiency properties. We show that especially the
estimators that use pairwise differences of the observed data have very good
efficiency properties providing practical robust alternatives to classical sam-
ple covariance matrix based methods.
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1. Introduction

Principal component analysis (PCA) is widely used for finding lower di-
mensional structure in data, and is commonly applied to high-dimensional
data. PCA represents data by a smaller number of components that ac-
count for the variability in the data. This dimension reduction step can
be followed by other multivariate methods, such as regression, discriminant
analysis, cluster analysis, etc.

In classical PCA the sample mean and the sample covariance matrix are
used to derive the principal components. These two estimators are highly sen-
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sitive to outlying observations, and classical PCA becomes unreliable, when
outliers are encountered. Several robust competitors to classical PCA estima-
tors have been proposed in the literature. A natural way to robustify PCA is
to use robust location and scatter estimators instead of the sample mean and
sample covariance matrix when estimating the eigenvalues and eigenvectors
of the population covariance matrix. See e.g. Devlin et al. (1981).

Locantore et al. (1999) and Marden (1999) proposed a simple robust
alternative to PCA. In spherical PCA, the data are first transformed to
multivariate spatial sign vectors. These are simply defined to be the vectors
of unit length that point into the direction of original data points. The sample
covariance matrix of spatial sign vectors, that is, the spatial sign covariance
matrix (Visuri et al., 2000), is then used to obtain the eigenvectors of interest.
As spherical PCA uses only information on directions of the data points, its
efficiency properties are poor especially under the multinormal model. To
obtain a more efficient estimator, the symmetrised spatial sign covariance
matrix (Visuri et al., 2000) can be used. This estimator is defined as the
spatial sign covariance matrix based on pairwise differences of the observed
data. The use of symmetrised spatial sign covariance matrix for PCA was
discussed in Visuri et al. (2000), but its theoretical properties have not yet
been studied.

In this paper, we compare different spatial sign covariance matrices as
well as their affine equivariant counterparts, namely, the Tyler’s shape ma-
trix (Tyler, 1987) and the Dümbgen’s shape matrix (Dümbgen, 1998) in a
PCA framework. We assume that the number of observations in data is
greater than the number of variables, so n > p. As shown by Tyler (2010),
the estimation of robust affine equivariant scatter matrices in case p > n is
meaningless as resulting scatter matrices will be proportional to the sample
covariance matrix. Notice that the spatial sign covariance matrices are not
affine equivariant, and can be easily computed for data with more variables
than observations. Applications are given for example in Locantore et al.
(1999) and Gervini (2008). The paper is organised as follows. In Section
2, PCA based on different spatial sign covariance matrices is considered. In
Section 3, influence functions and asymptotic efficiencies are studied. We
show that symmetrised estimators, in particular, have very good efficiency
properties thereby providing practical and robust alternatives to classical
sample covariance matrix based methods. The paper concludes with some
final remarks in Section 4.
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2. PCA based on sign covariance matrices

2.1. Notation

Let x be a random vector from a p-variate distribution with symmetry
center µ and positive definite and symmetric p × p (PDS(p)) covariance
matrix Σ. The spectral decomposition of the population covariance matrix
will be denoted by Σ = ΓΛΓT , where Γ is an orthogonal matrix containing
the eigenvectors γ1, . . . ,γp of Σ as columns and Λ is a diagonal matrix with
corresponding eigenvalues λ1 > · · · > λp > 0 as diagonal values. We may
also write

Σ = [Det(Σ)]1/p ΓΛΣΓT ,

where Det(Σ) is the Wilks’ generalized variance, and ΛΣ is a diagonal matrix
of standardized eigenvalues

λΣ,i =
λi

(λ1 · · ·λp)1/p
. (1)

The geometric mean of the standardized eigenvalues thus equals one. The
parameters [Det(Σ)]1/p, ΛΣ and Γ define the scale, shape and orientation of
the data cloud. See for example Paindaveine (2008) and Frahm (2009).

Let Fx be the cumulative distribution function of x. Then C(Fx) is a
scatter matrix functional if it is PDS(p) and affine equivariant in the sense
that

C(FAx+b) = AC(Fx) AT , (2)

where A is any nonsingular p×p matrix and b is any p-vector. We then write

C(Fx) = PCΛCP T
C (3)

for the spectral decomposition of C(Fx), where PC = PC(Fx) is an orthogonal
matrix that contains the eigenvectors pC,1, . . . ,pC,p of C(Fx) as columns, and
ΛC = ΛC(Fx) is a diagonal matrix of the corresponding eigenvalues arranged
in decreasing order λC,1 > · · · > λC,p.

We call V (Fx) a shape matrix functional if it is PDS(p) with Det(V ) = 1
and affine equivariant in the sense that

V (FAx+b) = {Det[A(V (Fx))A
T ]}−1/p AV (Fx) AT . (4)
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The spectral decomposition of V (Fx) can be written in a similar fashion to
that of C(Fx). For a detailed discussion of scatter matrix and shape matrix
functionals, see Oja (2010) and references therein.

Finally, notice that in robustness and efficiency studies we assume the
elliptical model F , that is, the density function of a random vector x ∼ F is
of the form

f(x) = |Σ|−1/2f0(Σ
−1/2(x − µ)), (5)

where f0(z
′) = exp{−ρ(||z′||)} and function ρ defines the distribution of the

standardised variable z′ = Σ−1/2(x−µ) (in this paper, the square root matri-
ces Σ−1/2 and Σ1/2 are taken to be symmetric). To fix Σ, we assume that ρ is
such that E[||z′||2] = p. Notice also that under the elliptical model, different
shape matrices estimate the same population quantity V = [det(Σ)]−1/p Σ.
The orthogonal transformation z = ΓT (x − µ) defines variables from a cen-
tered distribution with covariance matrix Λ. Throughout the paper this
distribution is denoted by FΛ.

2.2. PCA based on spatial sign covariance matrices

Locantore et al. (1999) and Marden (1999) introduced a simple robust
alternative to classical principal component analysis based on spatial sign
vectors. Write the spatial sign function as

S(x) =

{

‖x‖−1x, x 6= 0

0, x = 0,

where ||x|| denotes the Euclidean norm of x. The spatial sign function thus
projects data points onto the unit sphere making resulting estimators highly
robust. The population spatial sign covariance matrix is defined as

SCov(Fx) = E
[

S(x − µ(Fx))S
T (x − µ(Fx))

]

, (6)

where µ(Fx) is the population spatial median that solves E[S(x−µ(Fx))] =
0. Recall that the spatial median is a higly robust rotation equivariant esti-
mator of symmetry center µ. It has a 50% breakdown point and a bounded
influence function. A fast algorithm for computing spatial medians is given
in Vardi and Zhang (2001).

In spherical principal component analysis, the matrix of eigenvectors,
PS = PS(Fx), and the diagonal matrix ΛS = ΛS(Fx) of the eigenvalues of
SCov(Fx) are computed as in (3). The robust principal component scores
are then given by z = PS

T (x − µ(Fx)).
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Croux et al. (2002) examined efficiency properties of the eigenvectors
based on the spatial sign covariance matrix, and showed that especially for
multivariate normal models, the efficiencies are very low. This is due to the
fact that the spatial sign covariance matrix only uses information on the
directions of the data points. Motivated by these results, in the following
we consider principal component analysis based on more efficient covariance
estimators.

Define the population symmetrised spatial sign covariance matrix as

SSCov(Fx) = E
[

S(x1 − x2)S(x1 − x2)
T
]

(7)

(Visuri et al., 2000). Since SSCov(Fx) is based on pairwise differences, it
is computed without the need for the location functional. Via pairwise dif-
ferences one also uses information on distances of the data points from the
center of data. This feature makes the symmetrised spatial sign covariance
matrix more efficient than the spatial sign covariance matrix. The eigen-
vectors and eigenvalues are now obtained from the spectral decomposition
of SSCov(Fx) and denoted by PSS = PSS(Fx) and ΛSS = ΛSS(Fx). The
principal component scores can be computed as before using e.g. spatial
median.

The next theorem summarizes the relationship between the eigenvectors
and eigenvalues of the population covariance matrices (6) and (7) with those
of Σ. A proof is given in the Appendix.

Theorem 1. Let F be an elliptical distribution with location center µ and
covariance matrix Σ = ΓΛΓT . Then

SCov(Fx) = ΓΛSΓT and SSCov(Fx) = ΓΛSΓT ,

where

ΛS = E

[

Λ1/2uuT Λ1/2

uT Λu

]

= diag(λS,1, . . . , λS,p), (8)

λS,i = E

[

λΣ,iu
2
i

λΣ,1u2
1 + · · · + λΣ,pu2

p

]

, (9)

u = (u1, . . . , up)
T is uniformly distributed on the unit sphere, and λΣ,is are

the standardised eigenvalues of Σ as defined in (1).
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Under the elliptical model, the eigenvectors of the population spatial sign
covariance matrices therefore coincide with those of Σ and the eigenvalues
are related via (9). The relationship between the eigenvalues implies that it
is possible to obtain an algorithm for computing estimates for ΛΣ starting
from ΛS: Let Λ

(0)
Σ be some initial value for ΛΣ, e.g. Λ

(0)
Σ = Ip. Then the

iteration step suggested by (8) is

Λ
(k+1)
Σ ←

[

E

(

uuT

uT Λ
(k)
Σ u

)]−1

ΛS.

The result is scaled so that det(Λ
(k+1)
Σ ) = 1. In practice, an estimate for ΛΣ

is obtained by replacing the above expectation by the sample average.
In Visuri et al. (2000) statistical properties of spatial sign covariance ma-

trices were studied. Corresponding matrices are not genuine scatter matrices
as they satisfy (2) only when A is an orthogonal p×p matrix. However, in the
context of PCA, this orthogonal equivariance property suffices, since it yields
principal component scores that are invariant under orthogonal and location
transformations. The main advantage of spatial sign covariance matrices is
that they are very easy and fast to compute in practice.

2.3. PCA based on affine equivariant spatial sign covariance matrices

Hettmansperger and Randles (2002) proposed affine equivariant counter-
parts of spatial median and spatial sign covariance matrix. In their approach,
the original data points are first transformed to y = V (Fx)

−1/2(x − µ(Fx)),
where µ(Fx) is a p-vector and V (Fx) is a shape matrix. Then the affine
equivariant counterparts of the spatial median and spatial sign covariance
matrix are those µ(Fx) and V (Fx) that are found as the solutions of the
following M-estimation equations

E[S(y)] = 0 and p E[S(y)S(y)T ] = Ip. (10)

The resulting functional V (Fx) is known as Tyler’s (1987) shape matrix and
the location functional µ(Fx) is the transformation retransformation spatial
median using Tyler’s shape matrix (Hettmansperger and Randles, 2002). In
the following we will denote V (Fx) = SCov2(Fx).

The affine equivariant counterpart of the symmetrised spatial sign covari-
ance matrix is obtained similarly to the above: this time we use pairwise
differences of transformed observations, that is, V (Fx) is chosen to satisfy

p E[S(y1 − y2)S(y1 − y2)
T ] = Ip. (11)
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The resulting functional V (Fx) is known as Dümbgen’s (1998) shape matrix,
which we denote by SSCov2(Fx). Note that, since Dümbgen’s estimator uses
differences of transformed observations, it avoids estimation of the location
parameter.

As in (3), the spectral decomposition of V (Fx) can be used to compute
the eigenvectors and eigenvalues of different shape matrices, and the robust
principal component scores. It then follows from (4) that under the elliptical
model,

SCov2(Fx) = ΓΛΣΓT

and similarly for SSCov2(Fx). The eigenvectors and eigenvalues of SCov2(Fx)
and SSCov2(Fx) therefore coincide with the eigenvectors and standardised
eigenvalues of Σ as defined in (1).

Robustness and asymptotic properties of affine equivariant spatial sign co-
variance matrices were studied in Tyler (1987), Dümbgen (1998), Dümbgen
and Tyler (2005) and Sirkiä et al. (2007) among others. Corresponding esti-
mates can be computed using simple iterative algorithms based on estimating
equations (Hettmansperger and Randles, 2002; Oja and Randles, 2004). In
the next section we compare different spatial covariance matrices in a PCA
framework.

3. Robustness and efficiency properties of eigevectors

3.1. Influence functions

The influence function measures the robustness of a functional T against
a single outlier x (Hampel et al., 1986). Let Fǫ = (1−ǫ)F +ǫ∆x denote a con-
taminated distribution, where ∆x is the cdf of a distribution with probability
one at point x. The influence function of T is defined by

IF (x; T, F ) = lim
ǫ→0

(T (Fǫ) − T (F ))/ǫ.

A continuous and bounded influence function indicates good local robustness
properties of an estimator.

Write C(Fx) for a scatter matrix functional decomposed as in (3). Croux
and Haesbroeck (2000) showed that under an elliptical distribution F with
distinct eigenvalues of the covariance matrix Σ, the influence function of the
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eigenvector functional pC,j is

IF (x; pC,j, F ) =

p
∑

k=1
k 6=j

1

λj − λk

[

γT
k IF (x; C,F )γj

]

γk, (12)

where γk is the k-th eigenvector of Σ as defined in Section 2.1. Influence
functions in case of multiple multiple roots are studied in Tanaka (1988).

To derive influence functions for eigenvectors based on orthogonally equiv-
ariant SCov(Fx) and SSCov(Fx), we proceed as in the proof of Theorem 1
and use the orthogonal transformation z = ΓT (x − µ).

Theorem 2. Let x be a random vector from an elliptical distribution F
with parameters µ and Σ. Then the influence function of j-th eigenvector
functional pS,j based on SCov(Fx) is given by

IF (x; pS,j, F ) =

p
∑

k=1
k 6=j

1

λS,j − λS,k

zkzj

||z||2 γk,

and the influence function of pSS,j based on SSCov(Fx) is

IF (x; pSS,j, F ) =

p
∑

k=1
k 6=j

2

λS,j − λS,k

Ez2

[

(z1k − z2k)(z1j − z2j)

||z1 − z2||2
]

γk,

where z, z1 and z2 are independent observations from FΛ and λS,js are de-
fined in (9).

To compare the influence functions of the theorem, we plot the norm of
the influence function of the first eigenvector for different spatial covariance
matrices and for the usual sample covariance matrix using a simple bivari-
ate normal model with covariance matrix Σ = diag(2, 1). The influence
function of the first eigenvector based on the sample covariance matrix is
computed using (14) below. Figure 1 shows that the eigenvector based on
SSCov(Fx) (right plot) has some very desirable properties: At the centre
of the distribution, the shape of the influence function is similar to that of
the sample covariance matrix (left plot), but points far away from the centre
have no influence on the estimator. In comparison, SCov(Fx) (middle plot)
downweights the outliers, but at the centre of the distribution the shape of
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Figure 1: Norm of the influence function of the first eigenvector for the sample covariance
matrix (left), the spatial sign covariance matrix (middle) and the symmetrised spatial sign
covariance matrix (right) with F = N(0, diag(2, 1)).

the influence function is different from that of the sample covariance matrix
indicating poor efficiency properties.

We next derive the influence functions of eigenvector estimators based
on SCov2(Fx) and SSCov2(Fx). Due to affine equivariance, the correspond-
ing influence functions are easily obtained using the transformation z′ =
Λ−1/2ΓT (x − µ) = ru, where r = ||z′|| and u = r−1z′, and r and u are
independent. At elliptical F , the influence functions of all shape matrices
V (Fx) are of the form

IF (x; V, F ) = αV (r) [Det(Σ)]−1/p Σ1/2

[

uuT − 1

p
Ip

]

Σ1/2, (13)

where αV (r) is a real-valued weight function that depends on V (Fx) and the
underlying spherical distribution (Taskinen et al., 2006). Combining (12)
and (13), the influence function of the eigenvector functional pV,j based on
any affine equivariant estimator V (Fx) is thus

IF (x; pV,j, F ) = αV (r)

p
∑

k=1
k 6=j

√

λjλk

λj − λk

ukuj γk, (14)

and comparisons between different estimators may be based on αV (r) func-
tions only. For SCov2(Fx) and SSCov2(Fx) these functions are derived in
Tyler (1987) and Sirkiä et al. (2007). We denote them as

αS2
(r) = p + 2 and αSS2

(r) = 2(p + 2)(1 − pg(r)), (15)
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where g(r) = E
z
′

1
(z

′2
12/||z′

1 − re1||2), with e1 = (1, 0, . . . , 0)T . Note that
αS2

(r) is constant in r, thus making the estimates based on SCov2(Fx)
highly robust, but not very efficient. As shown in Sirkiä et al. (2007),
αSS2

(r) is continuous and bounded, whereas for the sample covariance ma-
trix, αCov(r) = r2, which makes the corresponding estimates highly sensitive
to outliers.

3.2. Asymptotic distributions and efficiencies

Let X = (x1, . . . ,xn)T be n×p data matrix. We denote by Ĉ the estima-
tor associated with the functional C(F ), that is, Ĉ = C(Fn), where Fn is the
empirical distribution function based on X. The asymptotic behaviour of
the eigenvector estimators based on different sign covariance matrices can be
derived as in Anderson (1984) using the asymptotic normality of the corre-
sponding covariance matrix estimators. As before, in the following theorem
we assume that Σ has no multiple roots. For the limiting distribution of a Σ
with multiple roots, see Anderson (1963). The vec-operator below vectorizes
a matrix by stacking the columns of the matrix on top of each other.

Theorem 3. Let Ĉ be any positive definite symmetric p × p matrix such
that at FΛ the limiting distribution of

√
n vec(Ĉ − Λ) is a p2-variate (sin-

gular) normal distribution with mean zero. Write the spectral decomposition
of Ĉ as Ĉ = P̂ Λ̂P̂ T . Then the limiting distributions of

√
n vec(P̂ − Ip) and√

n vec(Λ̂ − Λ) are multivariate (singular) normal and

√
n vec(Ĉ−Λ) = ((Λ ⊗ Ip) − (Ip ⊗ Λ))

√
n vec(P̂−Ip)+

√
n vec(Λ̂−Λ)+oP (1).

Note that the theorem does not yield the limiting distribution of
√

n (p̂ii−
1), where p̂ii is the diagonal element of P̂ . In fact,

√
n (p̂ii − 1) = oP (1), as

the limiting distribution of

n(1 − p̂2
ii) = n

∑

j 6=i

p̂2
ji

is that of a weighted sum of independent chi-square random variables each
with one degree of freedom.

Since ŜCov and ŜSCov are asymptotically normal under an elliptical F
(see eg. Visuri et al. (2000)), the limiting normality of the corresponding
eigenvector estimators follows from Theorem 3.
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Corollary 1. Let F be an elliptical distribution with parameters µ and Σ.
Then

√
n(p̂S,j − γj) and

√
n(p̂SS,j − γj) have limiting normal distributions

with zero mean and asymptotic variances (ASV)

ASV (p̂S,j; F ) =

p
∑

k=1
k 6=j

1

(λS,j − λS,k)2
E





(

√

λΣ,jλΣ,kujuk

λΣ,1u2
1 + · · · + λΣ,pu2

p

)2


γkγ
T
k

and

ASV (p̂SS,j; F ) =

p
∑

k=1
k 6=j

4

(λS,j − λS,k)2
E

[

(

Ez2

[

(z1k − z2k)(z1j − z2j)

||z1 − z2||2
])2

]

γkγ
T
k ,

where z1 and z2 are independent observations from FΛ, u = (u1, . . . , up)
T is

uniformly distributed on the unit sphere and the λS,j’s are defined in (9).

The asymptotic distributions of ŜCov2 and ̂SSCov2 under an elliptical F
are derived for example by Tyler (1987) and Dümbgen (1998). The limiting
normality of the corresponding eigenvector estimators thus follows.

Corollary 2. Let F be an elliptical distribution with parameters µ and Σ,
and write p̂V,j for the eigenvector estimate based on any shape matrix esti-

mator V̂ . Then
√

n(p̂V,j − γj) has a limiting normal distribution with zero
mean and asymptotic variance

ASV (p̂V,j; F ) =
E[α2

V (r)]

p(p + 2)

p
∑

k=1
k 6=j

λjλk

(λj − λk)2
γkγ

T
k .

The αV (r) functions for SCov2(Fx) and SSCov2(Fx) are given in (15).

To compare efficiency properties of estimators, we proceed as in Croux et
al., (2002). The asymptotic relative efficiencies (ARE) of eigenvector estima-
tors based on the scatter (or shape) estimator Ĉ1 relative to the eigenvector
estimators based on Ĉ2 are then computed using

ARE(p̂C1,j, p̂C2,j; F ) =
Trace(ASV (p̂C2,j; F ))

Trace(ASV (p̂C1,j; F ))
. (16)
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In Table 1, we list the asymptotic relative efficiencies for the first eigen-
vector estimates based on different spatial sign covariance matrices with re-
spect to estimates based on sample covariance matrix. The efficiencies for

ŜCov and ŜSCov are computed at different p-variate t-distribution cases
with Σ = diag(p, p − 1, . . . , 1) and selected values of degrees of freedom ν
with ν = ∞ referring to the multivariate normal case.

Notice that when efficiencies of eigenvector estimators based on two affine
equivariant shape estimates, V̂1 and V̂2, are compared, (16) reduces to

ARE(p̂V1,j, p̂V2,j; F ) =
E[α2

V2
(r)]

E[α2
V1

(r)]
,

where functions αVi
, given in (13), depend only on corresponding shape ma-

trices as well as the underlying spherical distribution. The efficiencies of
eigenvector estimators are therefore given by the efficiencies of correspond-

ing shape matrices. When computing the efficiencies for ŜCov2 and ̂SSCov2,
we thus use spherical p-variate t-distributions with Σ = Ip. The results are
listed in Table 1.

As seen in the table, the eigenvectors based on the symmetrised spatial

sign covariance matrix ŜSCov and Dümbgen’s ̂SSCov2 are almost as effi-
cient as those based on the classical sample covariance matrix in the multi-
variate normal case. For heavy-tailed distributions, the efficiencies are much

higher. The eigenvectors based on the spatial sign covariance matrix ŜCov

and Tyler’s shape estimate ŜCov2 have much lower efficiencies than their
symmetrised counterparts, but for heavy-tailed distributions, these estima-
tors outperform the classical ones.

4. Conclusions

In this paper, orthogonally equivariant spatial sign covariance matrices as
well as their affine equivariant counterparts were compared in a PCA frame-
work. Robustness and efficiency studies showed that the eigenvectors based
on different covariance matrix estimators are highly resistant to outliers, and,
in particular, the eigenvectors based on symmetrised estimators have exellent
asymptotic efficiencies. Estimates based on spatial signs are easy and fast to
compute even for high-dimensional data thereby providing practical robust
alternatives to classical sample covariance matrix based methods. Programs
for computing estimators based on spatial sign vectors are available in the
R-packages SpatialNP and MNM (Nordhausen and Oja, 2011).
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Table 1: AREs of first eigenvector estimates based on (a) ŜSCov and ŜCov (between

parenthesis) and (b) ̂SSCov2 and ŜCov2 (between parenthesis) as compared to eigen-
vector estimates based on sample covariance matrix. The underlying distribution is the
multivariate t-distribution with (a) Σ = diag(p, p− 1, . . . , 1) and (b) Σ = Ip, and selected
values of p and ν.

(a) (b)
p ν = 5 ν = 6 ν = 8 ν = 15 ν = ∞ ν = 5 ν = 6 ν = 8 ν = 15 ν = ∞
2 2.32 1.58 1.23 1.01 0.91 2.33 1.58 1.22 1.01 0.91

(1.46) (0.97) (0.73) (0.57) (0.49) (1.50) (1.00) (0.75) (0.59) (0.50)
4 2.41 1.66 1.27 1.05 0.93 2.45 1.66 1.28 1.05 0.93

(1.95) (1.29) (0.97) (0.76) (0.64) (2.00) (1.33) (1.00) (0.79) (0.67)
6 2.50 1.71 1.31 1.06 0.95 2.52 1.71 1.31 1.07 0.95

(2.17) (1.45) (1.08) (0.86) (0.73) (2.25) (1.50) (1.13) (0.89) (0.75)
8 2.52 1.72 1.34 1.07 0.95 2.57 1.74 1.33 1.09 0.96

(2.32) (1.54) (1.16) (0.91) (0.77) (2.40) (1.60) (1.20) (0.95) (0.80)
10 2.57 1.73 1.35 1.09 0.97 2.60 1.76 1.34 1.09 0.97

(2.43) (1.61) (1.21) (0.95) (0.81) (2.50) (1.67) (1.25) (0.98) (0.83)

Acknowledgements

The authors wish to thank the referee and the associate editor for their
comments on the manuscript. The work of Sara Taskinen and Hannu Oja
was supported by grants from the Academy of Finland.

References

Anderson, T.W., 1963. Asymptotic theory for principal component analysis.
Ann. Math. Statist. 34, 122–148.

Anderson, T.W., 1984. An Introduction to Multivariate Statistical Analysis,
Second edition. Wiley, New York.

Brown, B.M., 1983. Statistical uses of the spatial median. J. Roy. Statist.
Soc. Ser. B. 45, 25–30.

Croux, C., and Haesbroeck, G., 2000. Principal Component Analysis based
on Robust Estimators of the Covariance or Correlation Matrix: Influence
Functions and Efficiencies. Biometrika 87, 603–618.

Croux, C., Ollila, E., and Oja, H., 2002. Sign and rank covariance matrices:
statistical properties and application to principal components analysis, In:

13



Y. Dodge (Eds.), Statistical Data Analysis Based on the L1-Norm and
Related Methods, Birkhauser, Basel, pp. 257–271.

Devlin, S.J., Gnanadesikan, R. and Kettenring, J.R., 1981. Robust estimation
of dispersion matrices and principal components. J. Am. Statist. Assoc. 76,
354–362.
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Appendix: proofs of the results

Proof of Theorem 1. Croux et al. (2002) noted that the transformed
observation z = ΓT (x − µ) can be written as z = rΛ1/2u, where r =
||Λ−1/2z|| and u = Λ−1/2z/r. Then r and u are independent, u is uniformly
distributed on the unit sphere, and SCov(Fx) = ΓΛSΓT , where ΛS is defined
in (8). Since the pairwise differences z1−z2 = ΓT (x1−x2) follow a centered
distribution with diagonal covariance matrix 2Λ, we may write z1 − z2 =

r
√

2Λ1/2u, where r = ||
√

2
−1

Λ−1/2(z1 −z2)|| and u =
√

2
−1

Λ−1/2(z1 −z2)/r
are independent with u uniformly distributed on the unit sphere. Then

SSCov(Fx) = E

[

(x1 − x2)(x1 − x2)
T

||x1 − x2||2
]

= ΓE

[

(z1 − z2)(z1 − z2)
T

||z1 − z2||2
]

ΓT

= ΓE

[

Λ1/2uuT Λ1/2

uT Λu

]

ΓT = ΓΛSΓT .

15



Proof of Theorem 2. For an elliptical distribution F , the influence function
of SCov(Fx) given in (6) is

IF (x; SCov, F ) =
(x − µ)(x − µ)T

||x − µ||2 − SCov(F )

(Croux et al., 2002). Then the influence function of pS,j based on SCov(Fx)
can be easily derived using (12) and the fact that SCov(Fx) = ΓΛSΓT .

The influence function of SSCov(Fx) may be derived by applying func-
tional (7) to Fǫ = (1 − ǫ)F + ǫ∆x and taking the derivative with respect to
ǫ at ǫ = 0. This yields

IF (x; SSCov, F ) = 2 Ex2

[

(x1 − x2)(x1 − x2)
T

||x1 − x2||2
]

− 2 SSCov(Fx).

Then using the above result and SSCov(Fx) = ΓΛSSΓT we have that

γT
k IF (x; SSCov, F ) γj = γT

k

[

Ex2

[

(x1 − x2)(x1 − x2)
T

||x1 − x2||2
]

− SSCov(Fx)

]

γj

= Ex2

[

γT
k (x1 − x2)(x1 − x2)

T γj

||x1 − x2||2
]

− λS,jγ
T
k γj = Ez2

[

(z1k − z2k)(z1k − z2k)

||z1 − z2||2
]

.

The result then follows from (12).

Proof of Theorem 3. Let Ĉ be any positive definite symmetric matrix
such that the limiting distribution of

√
n vec(Ĉ−Λ) is p2-variate normal with

mean zero, and decompose Ĉ = P̂ Λ̂P̂ T . As the transformation Ĉ → (Λ̂, P̂ )
is continuously differentiable in a neighborhood of (Λ, Ip), P̂ and Λ̂ are

√
n-

consistent estimators of Ip and Λ, see e.g Theorem 13.5.1 in Anderson (1984).

Further, since ĈP̂ = P̂ Λ̂, we may write

√
n vec(ĈP̂ − Λ) =

√
n vec((Ĉ − Λ)P̂ + Λ(P̂ − Ip))√

n vec(P̂ Λ̂ − Λ) =
√

n vec((P̂ − Ip)Λ̂ + (Λ̂ − Λ)).

Thus

√
n vec

(

(Ĉ − Λ)P̂ + Λ(P̂ − Ip)
)

=
√

n vec
(

(P̂ − Ip)Λ̂ + (Λ̂ − Λ)
)

,

and by Slutsky’s Theorem and the properties of vec-operator, we have that

√
n vec(Ĉ−Λ) = ((Λ ⊗ Ip) − (Ip ⊗ Λ))

√
n vec(P̂−Ip)+

√
n vec(Λ̂−Λ)+oP (1).
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As Λ̂−Λ is diagonal and (Λ⊗Ip)−(Ip⊗Λ) picks only the off-diagonal elements

of P̂ −Ip, the limiting normality of
√

n vec(P̂ −Ip) and
√

n vec(Λ̂−Λ) follows.

Proof of Corollary 1. Consider first the eigenvector estimators based on

ŜCov. For simplicity, write Ŝ = ŜCov. The central limit theorem implies
that √

n vec(Ŝ − ΛS)
d−→ N(0, ASV (Ŝ, FΛ)),

where ΛS is given in (6) and

ASV (Ŝ, FΛ) = E

[

vec

(

zzT

||z||2 − ΛS

)

vecT

(

zzT

||z||2 − ΛS

)]

= E

[

vec

(

Λ1/2uuT Λ1/2

uT Λu
− ΛS

)

vecT

(

Λ1/2uuT Λ1/2

uT Λu
− ΛS

)]

.

In particular, the asymptotic variance of the off-diagonal element of Ŝ sim-
plifies to

ASV (Ŝjk, FΛ) = E





(

√

λΣ,jλΣ,kujuk

λΣ,1u2
1 + · · · + λΣ,pu2

p

)2


 . (17)

Next decompose Ŝ = P̂SΛ̂SP̂ T
S and note that at FΛ, P̂S and Λ̂S are

√
n-

consistent estimators of Ip and ΛS. The limiting normality of eigenvector
estimators then follows from Theorem 3 and for the off-diagonal elements of
P̂S, we have that

√
n p̂jk = (λS,j − λS,k)

−1
√

n Ŝjk, j 6= k.

The asymptotic variance at elliptical F follows from the orthogonal equiv-
ariance property of P̂S. Note first that,

√
n(p̂′

S,j − γj) =
√

n Γ (p̂S,j − ej) =

p
∑

k=1
k 6=j

γj

√
n p̂jk + γj

√
n (p̂jj − 1),

where p̂′
S,j denotes the eigenvector estimator computed at an elliptical F

and ej is the j-th column of Ip. Since
√

n (p̂jj − 1) = oP (1), the asymptotic
variance reduces to

ASV (p̂′
S,j; F ) =

p
∑

k=1
k 6=j

(λS,j − λS,k)
−2ASV (Ŝjk, FΛ)γkγ

T
k ,
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where ASV (Ŝjk, FΛ) is given in (17).

The limiting normality of eigenvector estimatestimators based on ŜSCov

can be proved as above. The limiting normality of ŜSCov follows from the

U-statistics theory. Write Ŝ = ŜSCov. Then vec(Ŝ) = ave {h(zi,zj)} with
the kernel function

h(z1,z2) = vec {S(z1 − z2)S(z1 − z2)
T}.

The limiting distribution is then given by

√
n vec(Ŝ − θ)

d−→ N(0, ASV (Ŝ, FΛ)),

where θ = E[h(z1,z2)] = vec(ΛSS) and ASV (Ŝ, FΛ) = 4E[h1(z1)h
T
1 (z1)],

where h1(z1) = Ez2
[h(z1,z2)] − θ. The asymptotic variance of the off-

diagonal element of Ŝ is then given by

ASV (Ŝij, FΛ) = 4 E

[

(

Ez2

[

(z1i − z2i)(z1j − z2j)

||z1 − z2||2
])2

]

.

Proof of Corollary 2. Write first V̂ ′ for the affine equivariant spatial sign
covariance matrix estimate computed on spherical F0. Then

√
n vec(V̂ ′ − Ip)

d−→ N(0, ASV (V̂ ′, F0)),

with

ASV (V̂ ′, F0) = ASV (V̂ ′
jk, F0)

(

Ip2 + Kp,p − 2p−1vec(Ip)vecT (Ip)
)

,

where Kp,p denotes a commutation matrix, that is, a p2 × p2 block matrix
with (i, j)-block being equal to a p × p matrix that has 1 at entry (j, i) and
zero elsewhere. The asymptotic variances of any off-diagonal element satisfy

ASV (V̂ ′
jk, F0) =

E[α2
C(r)]

p(p + 2)
.

Then due to affine equivariance of V̂ ′ we have that at FΛ,

√
n vec(V̂ − ΛΣ) = (Λ

1/2
Σ ⊗ Λ

1/2
Σ )

√
n vec(V̂ ′ − Ip).
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The limiting normality at FΛ therefore follows and

ASV (V̂jk, FΛ) = λΣ,jλΣ,kASV (V̂ ′
jk, F0).

Next decompose V̂ = P̂V Λ̂V P̂ T
V and note that at FΛ, P̂V and Λ̂V are

√
n-

consistent estimators of Ip and ΛΣ. The limiting normality of eigenvector
estimators then follows from Theorem 3 and the asymptotic variance may be
computed as in the proof of Corollary 1 and it reduces to

ASV (p̂V,j; F ) =

p
∑

k=1
k 6=j

(λΣ,j − λΣ,k)
−2ASV (V̂jk, FΛ)γkγ

T
k .
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