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Abstract

A new affine invariant extension of the quadrant test statistic
(Blomqvist, 1950) based on spatial signs is proposed for testing the
hypothesis of independence. In the elliptic case, the new test statistic
is asymptotically equivalent to the interdirection test by Gieser and
Randles (1997), but is easier to compute in practice. Limiting Pit-
man efficiencies and simulations are used to compare the test to the
classical Wilks’ test.
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1 INTRODUCTION

In the paper, we consider the interrelations between two sets of variables, the
p-vector x(1) and q-vector x(2). Let
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be a random sample from an unknown k variate distribution (k = p + q).
The null hypothesis to be tested is H0: x(1) and x(2) are independent.

If the observations come from a k-variate normal distribution with parti-
tioned covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

the hypothesis of independence may be formulated as Σ12 = 0. If

S =

(
S11 S12

S21 S22

)
.

is the partitioned sample covariance matrix, then the likelihood ratio test
statistic (Wilks, 1935) is given by

Wn = |Iq − S−1
22 S21S

−1
11 S12|.

An asymptotically equivalent test statistic is the Pillai’s (1955) test statistic

Tn = Tr(S−1
11 S12S

−1
22 S21).

Note that Tn is affine invariant, that is, invariant under the group of trans-
formations (
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where A is nonsingular p × p matrix and B nonsingular q × q matrix. If
p = q = 1, the regular squared correlation coefficient is obtained, and Tn may
be seen as an extension of the multiple correlation coefficient. See Mardia et
al. (1997, Section 6.5.4), for a discussion on that. Note that statistic Tn can
be used to test the hypothesis of independence for nonnormal cases also as
independence implies that Σ12 = 0 (if it exists). Under H0 (and some general
assumptions), nTn →d χ2

pq.
For p = q = 1, nonparametric approaches to the independence problems

include classical quadrant test, Spearman’s rho and Kendall’s tau, see for
example Lehmann (1998, Section 7) and references therein. Puri and Sen
(1971) considered extensions where the test statistics, analogous to Tn, are
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obtained replacing the regular covariance matrix by the covariance matrix of
marginal (centered) signs or ranks (or scored ranks). Unfortunately, these
extensions of quadrant test and Spearman’s rho miss the desirable affine in-
variance property. Gieser and Randles (1997) introduced an invariant exten-
sion of the quadrant test. In their construction, they first centered separately
the x(1)-vectors and the x(2)-vectors (using affine equivariant Oja (1983) me-
dian). Next they calculated the interdirection proportions aij and bij between
pairs of centered x(1)-vectors and centered x(2)-vectors, respectively. Finally,
the test statistic is

Qn = pq avei,j {cos(πaij) cos(πbij)} ,

where the average is taken over all possible i, j = 1, . . . , n. Again, under
H0 and under some general assumptions (both x(1) and x(2) elliptically sym-
metric), nQn →d χ2

pq. Gieser and Randles also found asymptotic relative
efficiencies of the Qn test as compared to the classical Wilks’ test (or the
asymptotically equivalent Tn test). However, the computation of the inter-
direction proportions is time consuming, and may cause problems for large
sample sizes and in high dimensions.

In the paper, a new invariant test based on multivariate standardized spa-
tial signs is proposed. The standardized spatial signs described in Section 2
are based on the approach launched in Randles (2000) and Hettmansperger
and Randles (2002). The test statistic, based on the covariance matrix bet-
ween the standardized spatial signs of the x(1)- and x(2)-vectors and again
analogous to Tn, is introduced in Section 3. Also asymptotic theory is develo-
ped to provide approximations for the limiting distributions. In Section 4 the
limiting Pitman efficiencies are given in the multivariate normal distribution,
t distribution and contaminated normal distribution cases and simulations
are used to compare finite sample powers. In Section 5 the theory is il-
lustrated by an example and the paper is closed with some comments in
Section 6. The proofs are postponed to the Appendix.

2 STANDARDIZED SPATIAL SIGNS

To construct invariant test procedures for the independence problem, one
has to estimate (explicitly or implicitly) the location centres and covariance
structures of the marginal multivariate distributions of the x(1) and x(2).
Assume that the distribution of the x is p-variate and elliptic with symmetry
centre µ and covariance matrix Σ (if they exist). Matrix V = (k/Tr(Σ))Σ
is then the related shape matrix.

Hettmansperger and Randles (2002) introduced intuitively appealing lo-
cation vector and shape matrix estimates based on the spatial sign concept.
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The spatial sign of vector x is defined as

S(x) =

{
‖x‖−1x, x 6= 0

0, x = 0,

where ‖x‖ = (xT x)1/2 is the (Euclidean) length of the vector x. Note that
S(x) is a unit vector in the direction of x and therefore a natural multivariate
extension of the sign concept. Spatial signs S(xi), i = 1, . . . , n, are not affine
equivariant, however.

In Hettmansperger and Randles (2002) estimates µ̂ and V̂ are obtained

as follows. (V̂ −1/2 is here taken to be symmetric.)

Definition 1. The location vector estimate µ̂ and the shape matrix estimate
V̂ are choices such that the spatial signs of standardized observations

zi = V̂ −1/2(xi − µ̂), i = 1, . . . , n

satisfy

avei{S(zi)} = 0 and avei

{
S(zi)S

T (zi)
}

=
1

p
Ip.

The vectors
Si = S(zi), i = 1, . . . , n

are called the standardized signs.

The resulting shape matrix estimate V̂ is the so called Tyler’s M-estimate
(1987) and the location estimate vector µ̂ is a transformation-retransforma-
tion spatial median utilizing Tyler’s transformation matrix. The estimates
are naturally affine equivariant. For the transformation retransformation
technique, see also Chakraborty et al. (1998). For the properties of these
and related location vector and shape matrix estimates, see also Ollila,
Hettmansperger and Oja (2002).

We will use the standardized signs in the test constructions and then need
the following equivariance property.

Lemma 1. The standardized sign vectors Si are affine equivariant in the
sense that if the S∗

i are calculated from x∗

i = Axi + b, i = 1, . . . , n with a
nonsingular k × k matrix A and k-vector b, then S∗

i = PSi, i = 1, . . . , n,

where transformation matrix P = (AV̂ AT )−1/2AV̂ 1/2 is orthogonal.

3 NEW TEST STATISTIC AND ITS LIMI-

TING DISTRIBUTION

We are now ready to introduce our test statistic. As earlier, let
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be a random sample from an unknown k-variate distribution (k = p+ q) and
the null hypothesis to be tested is H0: x(1) and x(2) are independent.

First, we construct standardized spatial sign vectors separately for the
x(1)- and the x(2)-vectors and obtain
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The sign vectors S
(1)
i and S

(2)
i thus satisfy

avei{S(1)
i } = 0 and avei{S(1)

i S
(1)T

i } = p−1Ip

and
avei{S(2)

i } = 0 and avei{S(2)
i S

(2)T

i } = q−1Iq.

Next write
H = avei

{
S

(1)
i S

(2)T

i

}

for the covariance matrix between the marginal standardized signs. The new
test statistic is then given by the next

Definition 2. The standardized spatial sign test statistic for testing the hy-
pothesis of independence H0 is given by

Un = pq ||H||2

where ||H||2 = Tr(HTH) is the squared matrix norm (Frobenius norm).

As the standardized signs are affine equivariant, the invariance of the test
statistic easilly follows.

Lemma 2. Un is affine invariant.

The null distribution of the test statistic is given by

Theorem 1. Under H0 and for elliptic x(1) and x(2), the limiting distribution
of nUn is a chi-squared distribution with pq degrees of freedom.

Next we derive the limiting distribution of Un under alternative sequences.
As Un is affine invariant, we restrict to the spherical case only. Let thus x
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i

and x
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where ∆ = δ/
√

n. The sequence of alternatives is similar to that used in
Gieser and Randles (1997). If U ∗

n is calculated from these transformed ob-
servations in (1), we get
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Theorem 2. For max(p, q) > 1, the limiting distribution of nU ∗

n is a non-
central chi-squared distribution with pq degrees of freedom and noncentrality
parameter

δ2

pq
||c1M1 + c2M

T
2 ||2,

where

c1 = (p−1)E(||x(2)
i ||)E(||x(1)

i ||−1) and c2 = (q−1)E(||x(1)
i ||)E(||x(2)

i ||−1).

For the case p = q = 1, see Taskinen et al. (2003).

4 LIMITING AND FINITE-SAMPLE EFFI-

CIENCIES

We next compare Un to Wilks’ likelihood ratio test Wn and the test based on
interdirections Qn through limiting efficiencies and simple simulation studies.

As all the limiting distributions are of the same type, χ2
pq, the efficiency

comparisons (Pitman efficiencies) may be based on noncentrality parameters
only. First note that, for elliptic x(1) and x(2), Un is asymptotically equivalent
to the test based on interdirections. See (A.1) in Gieser and Randles (1997).
For the asymptotic efficiencies in the exponential power family, see then
Gieser and Randles (1997). Gieser (1993) considered also the t distribution
case in his unpublished dissertation thesis. The efficiency comparison is now
made in the multivariate normal distribution, t distribution and contami-
nated normal distribution cases. For simplicity, we assume that M1 = MT

2 .
Since Wn has a limiting noncentral chi-squared distribution with pq de-

grees of freedom and noncentrality parameter δ2||M1+MT
2 ||2, the asymptotic

efficiencies are simply

ARE(Un, Wn) =
(c1 + c2)

2

4pq
(2)

with c1 and c2 given in Theorem 2. For a k-dimensional standardized t dis-
tribution with ν degrees of freedom

Etν (||xi||) =

√
ν − 2Γ

(
ν−1
2

)
Γ
(
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2

)

Γ
(

ν
2

)
Γ
(
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2

) and Etν (||xi||−1) =
Γ
(

ν+1
2

)
Γ
(
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2

)
√

ν − 2Γ
(

ν
2

)
Γ
(

k
2

)

and the resulting limiting efficiencies for selected degrees of freedom and
selected dimensions are listed in Table 1. Note that since limiting multi-
normality of the regular covariance matrix holds if the forth moments of
underlying distribution are finite, Wn has a limiting distribution only when
ν ≥ 5. In multinormal cases the asymptotic efficiency of Un (and Qn) is
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Table 1: ARE(Un, Wn) at different p- and q-variate t distributions for selected
ν = ν1 = ν2.

p
q 2 3 5 8 10 ∞
2 0.790 0.854 0.911 0.945 0.957 1.006
3 0.923 0.984 1.022 1.034 1.087

ν = 5 5 1.050 1.090 1.103 1.160
8 1.131 1.145 1.203
10 1.159 1.219
∞ 1.281
2 0.689 0.745 0.795 0.824 0.835 0.877
3 0.805 0.859 0.891 0.902 0.948

ν = 10 5 0.916 0.950 0.962 1.012
8 0.986 0.999 1.050
10 1.011 1.063
∞ 1.117
2 0.617 0.667 0.711 0.738 0.747 0.785
3 0.721 0.769 0.798 0.807 0.849

ν = ∞ 5 0.820 0.851 0.861 0.905
8 0.883 0.894 0.940
10 0.905 0.951
∞ 1

low but gets higher as the dimensions p and q increase. For heavy-tailed
distributions the efficiencies are low in the case of small dimensions, but as
the dimensions increase, new test outperforms the Wn test.

We also consider the contaminated normal distribution and assume that
p = q and M1 = MT

2 . Then with probability (1 − ε) the x(1)-vectors (and
x(2)- vectors) are drawn from a standard normal distribution Np(0, Ip), and
with probability ε from Np(0, c2Ip). The cdf is thus F (x) = (1 − ε) Φp(x) +
ε Φp(x/c), where c > 0 and Φp is the cdf of Np(0, Ip). Now in (2)

c1 = c2 = (p − 1)(1 − ε + ε c)(1 − ε + ε/c)EΦp(||x(1)
i ||)EΦp(||x(1)

i ||−1).

Asymptotic relative efficiencies ARE(Un, Wn) are illustrated in Figure 1 as
a function of c, for p = 5 and for ε = 0.05, 0.10, 0.20. For heavy-tailed cases
(large ε and/or large c), the new test is much more efficient than the Wilks’
likelihood ratio test.

Finally, a simulation study was used to compare the finite sample powers
of three test statistics. The critical values used in test constructions were
based on the chi-square approximations to the null distributions. The em-
pirical powers were calculated for p = q = 3 (Figure 2) and for p = q = 5
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Figure 1: ARE(Un, Wn) as a function of c at the contaminated normal model
for p = q = 5 and for ε = 0.05, 0.10, 0.20.

(Figure 3). 1500 independent x(1)- and x(2)-samples of sizes n = 50 and
150 were generated from a multivariate standard normal distribution, from
a standardized t distribution with ν1 = ν2 = 5 and from a contaminated nor-
mal distribution with ε = 0.2 and c = 6. Finally, the transformation in (1)
with M1 = MT

2 = Ir, where r = p = q, was applied for chosen values of δ to
introduce dependence into the model.

In computations, test statistic Wn was multiplied by Bartlett’s correction
factor 1 − (2r + 3)/2n, and for Qn the data vectors were centered using
marginal transformation-retransformation spatial medians (Hettmansperger
and Randles, 2002). In most cases, with the exception of n = 50 and r = 3,
the interdirection proportions, needed for Qn, were estimated using a sample
of 1000 hyperplanes (instead of using all possible

(
n−2
p−1

)
hyperplanes).

Consider first the simulation results in the case r = 3 (Figure 2). In the
multinormal case Wn is clearly best, as one can expect. In the considered t
distribution case Wn is slightly better than the other tests, but Un and Qn

perform very well in the contaminated normal case. For small samples, Qn

seems to be a bit more powerful than Un. As r = 5 (Figure 3), the empirical
powers of Un and Qn increase as compared to the Wn. As n = 50, Qn does well
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also in the normal case, but again, as n increases, no significant differences
can be seen between Un and Qn. The size of the Un test is reasonably close
to the aimed size 0.05 in all cases whereas the Qn and especially the Wn test
levels often seem to exceed 0.05.

5 A REAL DATA EXAMPLE

The theory is now illustrated by a simple example. Consider the diabetes
data (see Rencher, 1998, p. 17 and references therein), that contains 76
5-variate observations, namely glucose intolerance, insulin response to oral
glucose, insulin resistance, relative weight and fasting plasma glucose. We
wish to test the hypothesis that the first three variables are independent of
the remaining two variables.

First, p-values given by Wn, Un and Qn were calculated for the original
data set using the chi-square approximation of the null distributions. Then,
to illustrate that the test statistics Un and Qn are robust against outliers,
the p-values were recalculated for a data set, where the first relative weight
measurement 0.81 was replaced by 8.1 (simulating a printing error). The
obtained p-values are listed in Table 2. Note that in the original case all
statistics produce very small p-values, but the contamination changes the
p-value given by Wn drastically; only small changes can be seen in the other
two cases.

Table 2: p-values for the original and contaminated data sets.

Original Contaminated
Statistic p-value p-value

Wn 0.0003 0.265
Un 0.021 0.037
Qn 0.020 0.037

6 FINAL REMARKS

In the paper we proposed a new robust and affine invariant extension of
the quadrant test statistic to test the hypothesis that two random vectors
are independent. If the marginal distributions of x(1) and x(2) are elliptic,
the new test is asymptotically equivalent with the interdirection quadrant
statistic (Gieser and Randles, 1997) but is much easier to compute. The
new test is not very efficient in the multinormal case but performs well for
heavy-tailed distributions. This is illustrated with limiting and finite sample
efficiency studies.
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A related testing problem is that of testing the null hypothesis H0 : Σ12 =
0, which says that all the canonical correlations between the x(1)- and x(2)-
variables are zero. For testing H0 in the elliptic case, any shape matrix V for
(x(1)T

, x(2)T
)T may be used in the test construction. If sample statistic V is

partitioned as

V =

(
V11 V12

V21 V22

)
,

then a test statistic, analogous to Pillai’s test statistic, may be defined as

Vn = Tr(V −1
11 V12V

−1
22 V21).

Again, Vn is affine invariant, and nVn has a central (noncentral) chi-squared
distribution with pq degrees of freedom under the null hypothesis (alternative
sequences of type (1)). In the multinormal case, H0 : Σ12 = 0 is of course a
hypothesis of independence also, and the tests based on shape matrices may
be used for testing independency.

If V is the Tyler’s M-estimate (Tyler, 1987; Hettmansperger and Randles,
2002) and M1 = MT

2 , the asymptotic efficiency of Vn relative to Un is simply

ARE(Vn, Un) =
4pq(p + q)

(c1 + c2)2(p + q + 2)
,

where c1 and c2 are given in Theorem 2. The Vn test then outperforms the
Un test in the multinormal case; see asymptotic relative efficiencies listed in
Table 3.

Table 3: ARE(Vn, Un) at different p- and q-variate normal distributions.

p
q 2 3 5 8 10 ∞
2 1.081 1.071 1.094 1.129 1.147 1.273
3 1.041 1.041 1.061 1.073 1.178
5 1.017 1.019 1.024 1.104
8 1.007 1.007 1.064
10 1.005 1.051
∞ 1
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Appendix: Proofs of the results

Proof of Lemma 1 Using V̂ ∗ = k [Tr(AV̂ AT )]−1AV̂ AT and µ̂
∗ = Aµ̂+b,

it is straightforward to show as in Randles (2000) that

S∗

i = S(V̂ ∗
−1/2

(x∗

i − µ̂
∗)) = (AV̂ AT )−1/2AV̂ 1/2Si =: PSi.

Transformation matrix P is clearly orthogonal.

Proof of Lemma 2 The proof follows from Lemma 1 and the fact that
Tr(P2H

T P T
1 P1HP T

2 ) = Tr(HTH) for any orthogonal matrices P1 and P2.

Proof of Theorem 1 In the proof, we use the general delta method.
As the test is affine invariant, it is enough to consider the spherical case with
µ1 = 0, V1 = Ip, µ2 = 0, V2 = Iq. Let us first show that under H0,

√
n

(
1

n

n∑

i=1

S
(1)
i S

(2)T

i − 1

n

n∑

i=1

x
(1)
i x

(2)T

i

||x(1)
i ||||x(2)

i ||

)
P−→ 0.

Write the standardized location and shape estimates for x(1) as

µ∗

1 =
√

nµ̂1 and V ∗

1 =
√

n(V̂1 − Ip).

Then

V̂
−1/2
1 (x

(1)
i − µ̂1) = x

(1)
i − 1

2
√

n
V ∗

1 x
(1)
i − 1√

n
µ∗

1 + oP (n−1/2)

and

S
(1)
i =

x
(1)
i

||x(1)
i ||

+
1√
n

x
(1)T

i µ∗

1

||x(1)
i ||2

x
(1)
i

||x(1)
i ||

+
1

2
√

n

x
(1)T

i V ∗

1 x
(1)
i

||x(1)
i ||2

x
(1)
i

||x(1)
i ||

− 1√
n

µ∗

1

||x(1)
i ||

− 1

2
√

n

V ∗

1 x
(1)
i

||x(1)
i ||

+ oP (n−1/2).

Similarly

S
(2)
i =

x
(2)
i

||x(2)
i ||

+
1√
n

x
(2)T

i µ∗

2

||x(2)
i ||2

x
(2)
i

||x(2)
i ||

+
1

2
√

n

x
(2)T

i V ∗

2 x
(2)
i

||x(2)
i ||2

x
(2)
i

||x(2)
i ||

− 1√
n

µ∗

2

||x(2)
i ||

− 1

2
√

n

V ∗

2 x
(2)
i

||x(2)
i ||

+ oP (n−1/2),

and it is easy to see, considering termwise sums of S
(1)
i S

(2)T

i , that

1√
n

n∑

i=1

S
(1)
i S

(2)T

i =
1√
n

n∑

i=1

x
(1)
i x

(2)T

i

||x(1)
i ||||x(2)

i ||
+ oP (1). (3)
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The next step is to note that as H = (hij),

n pq Tr(HTH) =

p∑

i=1

q∑

j=1

(√
nhij

1/
√

pq

)2

.

Finally (3) implies that the limiting distribution of
√

nvec(H) is Npq(0, 1
pq

Ipq),

where vec(H) is obtained by stacking the columns of H on top of each other,

and consequently nUn
d−→ χ2

pq.

Proof of Theorem 2 The sequence of alternatives for ∆ = δ/
√

n is
contiguous to the null hypothesis ∆ = 0. Therefore (see the proof of Theo-
rem 1) also

√
n

(
1

n

n∑

i=1

S̃
(1)

i S̃
(2)T

i − 1

n

n∑

i=1

y
(1)
i y

(2)T

i

||y(1)
i ||||y(2)

i ||

)
P−→ 0,

where S̃
(1)

i and S̃
(2)

i are the standardized spatial sign vectors of y
(1)
i and y

(2)
i .

As

y
(1)
i = x

(1)
i − δ√

n
x

(1)
i +

δ√
n

M1x
(2)
i and y

(2)
i = x

(2)
i − δ√

n
x

(2)
i +

δ√
n

M2x
(1)
i

we get
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i
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i ||
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x
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i
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i ||

− δ√
n

x
(1)
i

||x(1)
i ||

x
(1)T

i M1x
(2)
i

||x(1)
i ||2

+
δ√
n

M1x
(2)
i

||x(1)
i ||

+ oP (n−1/2)

and

y
(2)
i

||y(2)
i ||

=
x

(2)
i

||x(2)
i ||

− δ√
n

x
(2)
i

||x(2)
i ||

x
(2)T

i M2x
(1)
i

||x(2)
i ||2

+
δ√
n

M2x
(1)
i

||x(2)
i ||

+ oP (n−1/2).

But then in the spherical case,

1√
n

n∑

i=1

S̃
(1)

i S̃
(2)T

i =
1√
n

n∑

i=1

x
(1)
i x

(2)T

i

||x(1)
i ||||x(2)

i ||
− δ

n

n∑

i=1

x
(1)
i x

(1)T

i MT
2 x

(2)
i x

(2)T

i

||x(1)
i ||||x(2)

i ||3

+
δ

n

n∑

i=1

x
(1)
i x

(1)T

i MT
2

||x(1)
i ||||x(2)

i ||
− δ

n

n∑

i=1

x
(1)
i x

(1)T

i M1x
(2)
i x

(2)T

i

||x(2)
i ||||x(1)

i ||3
+

δ

n

n∑

i=1

M1x
(2)
i x

(2)T

i

||x(2)
i ||||x(1)

i ||

+ oP (1)
P−→ 1√

n

n∑

i=1

x
(1)
i x

(2)T

i

||x(1)
i ||||x(2)

i ||

+
δ

pq

(
(p − 1)E(||x(2)

i ||)E(||x(1)
i ||−1)M1 + (q − 1)E(||x(1)

i ||)E(||x(2)
i ||−1)MT

2

)
,

which completes the proof.
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Figure 2: Empirical powers for p = q = 3 using the multivariate normal dis-
tribution (first row), multivariate t distribution with five degrees of freedom
(second row) and contaminated normal distribution with ε = 0.2 and c = 6
(third row). The thick solid line denotes Wn, the thin solid line Un and the
dotted line Qn.
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Figure 3: Empirical powers for p = q = 5 using the multivariate normal dis-
tribution (first row), multivariate t distribution with five degrees of freedom
(second row) and contaminated normal distribution with ε = 0.2 and c = 6
(third row). The thick solid line denotes Wn, the thin solid line Un and the
dotted line Qn.
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