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Abstract

Nonparametric procedures for testing and estimation of the shape matrix in the case
of multivariate elliptic distribution are considered. Testing for sphericity is an important
special case. The tests and estimates are based on the spatial sign and rank covariance
matrices. The estimates based on the spatial sign covariance matrix and symmetrized
spatial sign covariance matrix are Tyler’s (1987a) shape matrix and and Diimbgen’s (1998)
shape matrix, respectively. The test based on the spatial sign covariance matrix is the sign
test statistic in the class of nonparametric tests proposed by Hallin and Paindaveine (2006).
New tests and estimates based on the spatial rank covariance matrix are proposed. The
shape estimates introduced in the paper play an important role in the inner standardization
of the spatial sign and rank tests for multivariate location. Limiting distributions of the
tests and estimates are reviewed and derived, and asymptotic efficiencies as well as finite
sample efficiencies of the proposed tests are compared to those of the classical modified
John’s (1971,1972) test and the van der Waerden test (Hallin and Paindaveine, 2006).
The symmetrized spatial sign and rank based estimates and tests seem to have a very
high efficiency in the multivariate normal case and they are much better than classical
estimate (shape matrix based on the regular covariance matrix) and test (John’s test) for
distributions with heavy tails. Keywords: Affine invariance, Pitman efficiency, Robustness,

Spatial rank, Spatial sign, Spatial signed-rank
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1 Introduction

Let x4, ..., x,, be a random sample from a p-variate elliptical distribution with

a density function
det(2)"2g (|27 (z - 9)]])

where 6 is the symmetry centre of the distribution and ¥ is a positive definite
symmetric p X p scatter matrix parameter. If symmetry centre & = 0 and
scatter X oc I, then the distribution of x; is spherically symmetric around
the origin. Any random vector « can be decomposed into two parts, x = ru,
where 7 = ||z|| is the modulus and w = r~'x is the direction vector. If x is
spherically symmetric around the origin, its modulus r and direction u are
independent, w is uniformly distributed on the unit sphere and the density
of r is proportional to r?~!g(r).

The scatter parameter Y describing the covariation of the p variables can
be further divided into two components as ¥ = o-A where 0 = o(X) is a scale
parameter and A = 01X is a shape matrix. The scale parameter is assumed
to satisfy o(/,) = 1 and o(aX) = ac(X) for all @ > 0. In the literature, the
scale parameter o(X) has been defined as ¥;; or as an arithmetic or geometric
mean of the eigenvalues of X,

1
“tr(X) and det(X)V?,
p

for example. Paindaveine (2007) called the decomposition
o =det(X)Y? and A = det(2)7V/PY

canonical, as the Fisher information matrix for scale and shape is block-
diagonal for this decomposition only. For a thorough discussion of these
concepts and references, see Paindaveine (2007).

In this paper, we wish to test the null hypothesis of sphericity Hy : A = I,,.
Note that the hypothesis does not depend on the decomposition ¥ = oA. If
one wishes to test the hypothesis Hy : A =V, one can use the standardized
observations V~'/2z; instead of the original ones. Besides testing the shape,
we also wish to find an estimate for an unknown A.

Several approaches for testing the shape are found in the literature. In
the multivariate normal distribution case the likelihood ratio test for testing
the null hypotheses Hy : A = I, depends only on the sample covariance



matrix S and is given by

. {det(s)l/p }n/(2p)
~ Lp7itr(S) ’

a ratio of two scale functionals to the power n/(2p) (Mauchly, 1940). Un-
der the null hypotheses, the limiting distribution of —21log(L) is X%p +2)(p—1)/2"
Muirhead and Waternaux (1980) later showed that the adjusted test statistic
—2log(L)/(1 + k), where k is a kurtosis parameter, may be used to test for
sphericity under any elliptical distribution with finite fourth order moments
(with the same limiting null distribution as in the multivariate normal case).
The regular covariance matrix can be further replaced by any other (robust)
scatter matrix functional; under weak assumptions the limiting distribution
of properly adjusted —2log(L)/b will again be X%p+2)(p_1)/2- See Tyler (1982,
1983). Also John (1971,1972) considered the testing problem in the multi-
variate normal distribution case. He showed that the test

S
w(S)p

where S is again the sample covariance matrix, is the locally most powerful
invariant test for sphericity. Note that the test statistic now uses the shape
matrix pS/tr(S). The limiting distribution of Q; is again x7,,4), 1)/2- See
also Sugiura (1972) and Nagao (1973). Hallin and Paindaveine (2006) showed
that a modified version Q) = QQ;/(1+ k) is asymptotically equivalent to the
adjusted Mauchly test and therefore has the same limiting null distribution
under any elliptic distribution with finite fourth order moments.

Hallin and Paindaveine (2006) proposed a family of signed rank test statis-
tics which are based on the spatial sign vectors w; and ranks R; of the moduli
riy i =1,..,n. In (1), the sample covariance matrix is replaced by a signed
rank covariance matrix Sy = ave{ K (R;/(n + 1))u;u! } with a chosen score
function K. The tests of Hallin and Paindaveine (2006) appear to be valid
without any moment assumptions and can be made asymptotically optimal at
given target densities ¢g. Hallin et al. (2006) proposed optimal R-estimators
for the shape of an elliptical population.

In this paper the tests and estimates based on the spatial signs and spatial
ranks are considered. The spatial sign and rank vectors have been previously
used for multivariate one-sample and several samples location problems in
Méttonen and Oja (1995), Mottonen et al. (2003) and Oja and Randles
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(2004) among others. Tyler (1987a) introduced an affine equivariant shape
matrix estimator based on spatial sign vectors and showed that his estimator
is distribution-free under elliptical model. Tyler (1987b) considered the prob-
lem of testing the uniformity of the directional distribution and introduces a
sign test related to Tyler’s scatter matrix estimate. In Visuri et al. (2000),
the spatial sign covariance matrix and spatial rank covariance matrix were
introduced and their usefulness in scatter matrix estimation was discussed.

Our plan is as follows. In Section 2 the concepts of spatial sign and ranks
and their use is discussed, some useful matrix notations are also given. In sec-
tions 3, 4 and 5 the tests and estimates based on spatial signs, symmetrized
spatial signs and and spatial ranks are derived. The limiting distributions
are found for limiting power (tests) and efficiency (estimates) comparisons.
In section 6 the limiting efficiencies of the derived tests and estimates with
respect to classical ones are found. The finite sample efficiencies are com-
pared in a small simulation study. Last, in section 7 some final remarks are
discussed.

2 Definitions and notations

2.1 Spatial signs and ranks

The spatial sign function is defined as

z[| ', x#0
- {5 27

Y

where ||z|| = (x”x)'/? is the Euclidean length of the vector «. The spatial

rank function of distribution (cdf) F is
Rp(z) = Ey[U(z —y)],

where y is distributed according to F. (The notation E,[-| means that the
expectation is taken with respect to the random vector y.) If that distribu-
tion [ is spherical it holds that for a vector & = ru the spatial rank function
Rp(x) = qp(r)u for some bounded increasing function ¢ depending on the
distribution F' (Mottonen et al. 1997). The distribution dependent constant

cp = Eplqp(r)] (2)



is needed often in the calculations in this paper. The spatial signed-rank
function is closely related to the spatial rank function and is defined as

Qr(x) = (Ey[U(x—y) + Uz +y)])/2

If I is symmetric with respect to the origin it holds that Q () = Rp(x).
Applying spatial functions to the empirical distribution given by data
points xy, ..., x, produces the so called spatial sign vectors u; = U(x;),
the spatial rank vectors R; = ave;U(x; — ;) and the spatial signed-
rank vectors Q, = (ave,;U(x; — ;) + ave;U(x; + x;))/2. We write also

Lijj = Ly — &Ly and U5 = U(a:ij), Z,] = 1, o, n.
The spatial signs, ranks and signed-ranks have been used for testing and
estimation in the multivariate location problems. If x4, ..., «, is a random

sample from a distribution symmetric around @, then the sign and signed-
rank test statistics for testing Hy: 8 = 0 are

ave {u;} and ave{Q,},

respectively. In the two-sample location case with two independent random
samples 1, ..., x,, and ,,11,..., Ty, 1n,, the rank test statistic is

ni1+ns2

1
2 B

i=ni1+1

where the spatial ranks R,; are based on the combined sample

L1y Lngs Lpg4ls -« - Lpgtng-

The test are then conditionally (and asymptotically) distribution-free with
the covariance matrices proportional to sign, signed-rank and rank covariance
matrices

ave {ulu;f} , ave {QiQiT} and ave {RZ-RZ-T} ,

respectively. The squared versions of the test statistics (with "outer stan-
dardization") are not affine invariant, however; they are only orthogonally
invariant. The affine invariance is attained by an inner standardization: For
each test statistic, one can find a linear transformation ; — Ax;,i =1,...,n
such that the corresponding covariance matrix is proportional to an identity
matrix. For the location tests and estimates, see Mottonen and Oja (1995)
and Oja and Randles (2004).



The spatial sign and rank covariance matrices
T T T T
ave {uiui } , ?X? {uijuij} , ave {RZ-RZ- } and axi/e {QiQi }

have also been used in robust principal component analysis (Locantore et
al., 1999; Marden, 1999; Croux et al., 2002) and also applied in subspace
DOA estimation for wireless communication (Visuri et al., 2001). For sign
and rank covariances based on marginal signs and ranks and Oja signs and
ranks, see Visuri et al. (2000). Note that the spatial sign and rank covariance
matrices are only orthogonally equivariant.

2.2 Vector and matrix notations

Throughout the paper vec(A) means the vectorization of a matrix A obtained
by stacking the columns on top of each other. We will use notation K, , for
the commutation matrix, that is, a p*> x p* block matrix with (i, j)-block
being equal to a p X p matrix that has 1 at entry (j,4) and zero elsewhere,
and J,, for vec(I,)vec(I,)”. Note that matrices K,,, and .J,, satisfy

K, yvec(A) = vec(A") and J,,vec(A) = tr(A)vec (I,).

Finally, the projection matrix C),, is defined as

1 1
Cpp = 5(1132 + Kpp) — E'Jp,p'
Due to the properties of K, , and J, , this matrix projects a vectorized matrix
A on symmetric and centered — in the sense that the trace is zero — matrices.
We also write

Cpp(V) = %(IPQ + Kpp)(VeV) - %Uec(V)UBC(V)T. (3)

Then C, ,(1,) = Cpp-

Our tests and estimates in this paper are based on
S 2 p?
—— — L|| = ——==|C,,vec(S)|? 4
w5 | = GGl ()
which is proportional to the variance of eigenvalues of shape matrix pS/tr(S).
Among symmetric matrices the only ones with equal eigenvalues are those

als) =




proportional to the identity matrix. On the other hand, among symmetric
matrices those proportional to the identity matrix are the only ones that
are projected to the origin in the C), ,-projection. Thus it is apparent that
small values of () are connected to sphericity through a matrix that is nearly
proportional to the identity matrix.

We denote the symmetric square root matrix of A by A2 and its gener-
alized inverse by A~.

3 Inference based on sign covariance matrix

3.1 Testing for shape

Assume that X = (x; ... x,) is a random sample from an elliptically sym-
metric distribution with a symmetry centre & = 0 and a shape parameter
A. In the following we assume that the shape matrix is standardized so that
tr(A) = p. We wish to test the null hypothesis

Hy: AN=1,
In efficiency studies we consider the sequences of contiguous alternatives
H,: ANocI,+ n~ 2D,
where D is a symmetric matrix. The spatial sign test statistic is based
on the spatial sign covariance matrix given in the following
Definition 1 The spatial sign covariance matriz is defined as

S = ave {uiu;fp} .

See e.g. Marden (1999) and Visuri et al. (2000). Note that +S; is the null
covariance matrix of the sign test statistic

T, = ave {u;}
for the location problem H,: 6 = 0. The spatial sign covariance matrix 5}
is distribution-free under the null hypothesis with

2

E(vec(Sy)) = ptvec(l,) and Cov(vec(S)) = mq},p.

See Tyler (1987a).
The test statistic based on the spatial sign covariance matrix is given in

7



Definition 2 The spatial sign test statistic is defined as
Ql = Q(Sl)a
where Q(-) is as in (4).

The value of ); is equal to zero if and only if S; is proportional to the
identity matrix. As the trace of the sign covariance matrix S; is always 1,
the latter is true if and only if S; is equal to p~'1,, its expected value under
the null hypothesis A = I,. The following theorem gives the asymptotic
distribution of ();.

Theorem 1 Under the alternative sequence H,,

n 2 1 2
%Q1 7d X(p+2)(p—1)/2 <m“0p,pvecw)” ) .

where v1 = 2/ (p(p + 2)).

The limiting null distribution, a central chi-squared distribution, is natu-
rally obtained by setting D = 0. If the true value of 8 is unknown it can be
replaced by its /n -consistent estimate 6 without changing the limiting be-
havior of the test statistic under the mild assumption that E[|a;||~3/?] < oc.
This is true under the multivariate normal case, for example. See the proof
of Theorem 4.2 in Tyler (1987a).

Finally note that, in the general (even non-elliptic) case,

50\1](1166(51)) =n"" (ave {vec(uw;u; )Jvec(uw;u] )"} — vec(Si)vec(Sr)")

i i

is a consistent estimate of C'ov (vec(S;)) and, in the elliptic case, the statistic

(Cypvec(S1))" Cov(vec(Sy))™ (Cppvec(Sy))
is asymptotically equivalent to (n/v1)Q1.

3.2 Estimation of shape

Let S1(V) and @Q(V) be the spatial sign covariance matrix and the test
statistic computed on V~12g,, i = 1,...,n, the observations standardized
by a matrix V. The null hypothesis Hy : A = V is then rejected for large
values of (Q1(V'). Therefore, a natural shape estimate would be the one for
which the test statistic Q(V') is as small as possible:

8



Definition 3 Tyler’s shape estimate \71 based on spatial signs is the matriz
that minimizes Q1(V') and for which it holds that det(V;) = 1.

The estimate was given by Tyler (1987a). Here the absolute minimum
Q1(V) = Q(S1(V)) = 0 can in fact be reached under weak assumptions.
The solution to the estimating equation

1
ave (U(V"22)U(V )} = 6

was considered in Tyler (1987a); he only used the condition (V) = p instead
of det(V}) = 1. This estimating equation suggests an iterative algorithm
where the iteration step from Vj to Vi,

Vier = V2 Pave{U (VP2 U (V) T3, 2, (6)

is repeated until the sequence converges and then the result is scaled correctly.
The convergence of this algorithm is proven in Tyler (1987a). Note that the
estimate is affine equivariant in the sense that

Vi(AX) = Det(A)2P AV (X) AT,

where V(X)) means the estimate computed on observations X = (1, . .., @,).
Tyler (1987a) also proved

Theorem 2 At elliptical distribution with shape parameter V, the limiting
distribution of the shape estimate Vi is given by

Vavee(Vi = V) —y4 Np2 (0, (p +2)*1GCypp(V)) -

It is notable that in the elliptic case this estimate is distribution-free.

If the location centre @ # 0 is known then Tyler’s shape matrix is calcu-
lated using the centred observations x; — 0, ..., x,, — 0. The case of unknown
location @ was also considered in Tyler (1987a). If E[||x;||~*/?] < oc then
it is possible to replace @ with a /n-consistent estimate 0 without affect-
ing the asymptotic properties of 171 Hettmansperger and Randles (2002)
proposed a simultaneous estimation of the multivariate spatial median and
Tyler’s shape matrix. Unfortunately, there is no proof of the existence of
the solution for their estimating equations, but the algorithm they propose
works well in practice.



Finally note that, for known A, for the location sign test statistic
Ti(A) = ave {U (A%}

it holds that \/nT) —q4 N,(0, 1,). If A is replaced by Tyler’s estimate

171, then 7, = Tl(lA/l) (with inner standardization) is an affine invariant,
distribution-free test statistic for Hy : € = 0. See Randles (2000).

4 Inference based on symmetrised sign covari-
ance matrix

4.1 Testing for shape

For the same null hypothesis as in the previous section, the symmetrised
spatial sign test statistic is constructed in exactly the same way as the
sign test statistic but for the data set of all pairwise differences. The pairwise
differences and their signs are denoted by x;; = x; — x; and u;; = U(x;;).

Definition 4 The symmetrised sign covariance matriz is defined as
_ T
Sy = (ﬁ)ﬂc {uijuij} )
This matrix is introduced and studied in Visuri et al. (2000). Now

vec(Sy) = ave {h(x;, x;)},

1<j

is a U-statistic with kernel h(xy,xy) = vec(ujpul,). Clearly under the null
hypothesis Hy : A = I,

E(vec(Sy)) = p~tvec(l,).

If we write
h2(7“) =F [[U12U1T2]11 - [U12U1T2]22 ‘332 = 7”81)

then (based on the general U-statistic theory)

vn (52 — %Ip) = /n ave {2h2(n) (uiuiT — %Ip) } +op(1)

10
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where, as before, r; = ||x;|| and uw; = ||z;||'x;, i = 1,...,n. So, under the

null hypothesis

n

1
Cov(vec(Sy)) = ﬁCp,p +o0 (5) ,

where 7, = 4FE[h3(r)]. See Appendix A and Appendix B for more details and
alternative formulas. For the comparison, recall that
1 r 1
vn|S —=I,) = Vnaveuu;, —=1I,¢.
p p

The symmetrised sign test statistic is defined as follows.
Definition 5 The symmetrised sign test statistic is defined as
Q2 = Q(5),
where Q(+) is as in (4).

Again, it holds that ¢r(S2) = 1 and so Q2 = 0 only when Sy = p~'I,. Note
that since the test statistics is based on pairwise differences the location needs
not to be known. The asymptotic distribution is given by

Theorem 3 Under the alternative sequence H,,

n 1
%Cb —d X%p+2)(p71)/2 <m!\0pmvec(D)H2) :
In practice, the coefficient 5 is not known and has to be estimated. For
details see Appendix B.
In the general nonelliptic case, the covariance matrix of vec(Ss) may be
estimated by

— 4
Cov(vec(S2)) = — | ave {vec(u;ju];)vec(ugul)" } — vec(Sa)vec(Ss)”
n |i#sk J

- (7)
As n Cov(vec(S2)) — 720, in the spherical case, one may alternatively use
the statistic

(Cppvec(S2))" Cov(vee(S2))™ (Cppvec(Ss))

which is asymptotically equivalent to (n/72)Qs2.

11



4.2 Estimation of shape

Let again Q2(V) = Q(S2(V)) be a test statistic for testing Hy: A =V. A
similar argument as in the previous section leads to the following estimate of
shape.

Definition 6 The Diimbgen’s shape estimate \72 based on the symmetrised
spatial signs is the one that minimizes Q2(V') = Q(S2(V')) and for which it
holds that det(Vs) = 1.

The estimator was first introduced by Diimbgen (1998) and further studied
by Sirkié et al. (2006) as a member in a family of symmetrised M-estimators
of scatter. Also here the absolute minimum Q(S2(V)) = 0 can be reached.
The solution is given by an estimating equation is as (5) but uses pairwise
differences instead of the original observations. It can be found using a
similar iterative algorithm as (6). The breakdown properties of V; and V;
were considered in Diimbgen and Tyler (2005). The Diimbgen’s estimate is
affine equivariant in the sense that

Va(AX + b) = det(A) /P AV5(X) AT,

The limiting distribution in the elliptic case is also analogous to the limiting
distribution of the estimator based on the signs, as was the case with the test
statistics.

Theorem 4 At elliptical distribution with shape parameter V, the limiting
distribution of the shape estimate V5 is given by

Vnvec(Vy — V)=aNp2 (0, (p 4 2)*712C,,(V)) -

5 Inference based on rank covariance matrix

5.1 Testing for shape

The spatial rank covariance matrix is the covariance matrix calculated using
the spatial ranks:

Definition 7 The spatial rank covariance matrix is

S3 = ave {R;R;} = ave {u;u},} .
) 1,5,k

12



This matrix is considered in Marden (1999) and Visuri et al. (2000). Now
vec(Ss) is (up to a constant) asymptotically equivalent to a U-statistic

zgygk {h(wh Lj, wk)} )

with a symmetric kernel

1
h(iL‘l, o, CL’3) = —VvecC u12u1T3 + u13u1T2 + ’Lllgl’ulg:; + ’U,23'U,31 + U31U§2 + ugg'u,ng .
6

Again, based on the U-statistics theory,

2

1
vn (53 — C—Flp) = /n ave {Bhg(ri) (uiuiT — —Ip)} + op(1),
p p
where
h3(7”) =F [[ulguipg + 2'11@111%})]11 — [U12U{3 + 2u21ug3]22 ‘331 = 7"61] .

Then under the null hypothesis,
1
E(Cppvec(Ss)) =0 and Cov(Cyyvec(S3) = 22C,p + 0 <‘) :
n n

with v3 = 9E[h3(r)].

Definition 8 The spatial rank test statistic is defined as
Q3 = Q(53),

where Q(+) is as in (4).

Note that, unlike S; and S5, the trace of S3 is not fixed but varies from
sample to sample. Its expected value is E[tr(S3)] = pc%. Still, Q3 is naturally
equal to zero only when S; is proportional to the identity matrix. The
asymptotic distribution of ()5 is as follows.

Theorem 5 Under the alternative sequence H,,,

L Qu (G lchuect)I?)
73/(0%)2 (p+2)(p—1)/2 (p—|—2)2’yg PP

13



Again, the coefficients ¢% and 73 need to be estimated as the distribution
is unknown. A natural estimate of ¢% is tr(S3)/p. Alternative formulas for
estimation of 3 can be found in Appendix A and Appendix B. In the general
non-elliptic case the covariance matrix of vec(S3) may be estimated with

Cou(C, yec(Ss)) = %ave {h(@s, @5, @) (@, @1, @) ")

and one may use the statistic

(Cppvec(Ss))" Cov(Cyyvec(Ss))™ (Cppvec(Ss)) .

5.2 Estimation of shape

As in the previous sections, it is possible to define a shape estimate corre-
sponding to the above test. Let S3(V') be the spatial rank covariance matrix
calculated from V~=12x;, i =1,...,n. Then

Definition 9 The shape estimate 173 based on the spatial rank covariance
matriz is the one that minimizes Q3(V) = Q(S3(V)) and for which it holds

that det(Vs) = 1.

So far, there is no proof that there is a unique solution to the estimating
equation

CppS3(V) = 0.
However, the iterative algorithm with steps

Vier — Vi Pave(R(V; ) RV, ) '3, (8)

seems again to work in practice.
If we assume that there exists a consistent sequence of estimates V3 such
that

\/5173 = 0,(1) and \/ﬁCp,pS?)(‘A/?)) = op(1).
then, as before,
Vnvec(Vy — V)=alNyz (0, (p 4 2)%73(c5) T Cpp(V)) -

14



The small sample simulation studies considered in Chapter 6 seem to comply
with this result.

Starting with Tyler’s scatter matrix Vj, for example, and repeating steps
in (8) k times ("k step rank estimator") gives a practical estimate with known
asymptotical properties. With just a few steps one gets an estimate with an
asymptotical behavior almost identical to that of V. These estimates will
be considered in a future paper.

Multivariate spatial rank test statistics for location, e.g.,

1 ni+ng
2 B

1=n1+1

with n; + ne = n have a conditional aAnd limiting covariance matrix which
is proportional to S3(V). Therefore, V3 is a natural shape matrix for the
inner standardization of the spatial rank test statistic. Then the resulting
test statistic is affine invariant and has a simple covariance structure.

5.3 Use of the spatial signed-rank covariance matrix

It is also possible to base the test and the estimate on the spatial signed-
ranks instead of the ordinary spatial signs or the ordinary spatial ranks. We
then again assume that the symmetry centre & = 0 is known. Whether an
unknown 6 can be replaced by its estimate, remains an open question.

Definition 10 The signed-rank covariance matriz is defined as
Si= e {Q.QI}.
The test statistic for the null hypothesis A = I, is as before

Definition 11 The signed-rank test statistic is defined as
Q4 - Q(S4)7
where Q(+) is as in (4).

In the spherical case, the spatial signed-rank function and the rank function
converge to the same theoretical function. The asymptotic null distributions
of S, and S3 are then the same as well. Further,

15



Theorem 6 Under the alternative sequence H,,

RN (ﬁuo vec<D>||2).
73/(ck)? EEE=D2\ (p+2)205 7

The corresponding estimate of shape may also be defined as before.

Definition 12 The shape estimate 1721 based on the signed-rank covariance
matriz is the one that minimizes Q(S4(V')) and for which it holds that det(Vy) =
1.

There is, however, the same problem on the existence and uniqueness of
the estimate as with V3. Again a k-step estimate with comparable limiting
properties may be used in practice.

The main motivation for the use of the signed-rank covariance matrix is
that the shape estimate V} is a natural choice for the inner standardization
to obtain an affine invariant spatial signed-rank test for location. The spatial
rank based V3 on the other hand is genuinely location invariant.

6 Limiting and finite-sample efficiencies

In this section, we will compare the tests based on the spatial sign and rank
covariance matrices, 1, )2 and@s, to the classical John’s test (1971, 1972)
through limiting efficiencies and a simple simulation study. The modified
John’s test statistic is

2
n

2(1+ #)

S
wS)p

where S is the regular covariance matrix and 4 is the estimated kurtosis.
Also, for statistics () and ()3, the unknown coefficients v, and 3 have to
be estimated from the sample. See also Muirhead and Waternaux (1980)
and Tyler (1982, 1983). The limiting distribution of the modified John’s test
under the alternative sequence is as follows (Hallin and Paindaveine, 2006).

Qu =

Y

Theorem 7 Under the alternative sequence H,,

1
Qi = d X{p+2)(p-1)/2 (mHCmeGC(D)HQ) :
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Since the limiting distributions of different test statistics are of the same
type, the efficiency comparisons may be based on non-centrality parameters
only. The asymptotic relative efficiencies of spatial sign and rank tests as
compared to the modified John’s test reduce to

~_ p(1+k) _ 2(1+k)
ARE (Q1,Qy) = PT and ARE (Q2, Q) = m,
and 9o
ARE (Qs, Q) = 2 1L4 1)

(p+2)%y3

where 71, 72, 73 and % are as given before. Note that these efficiencies are
also relative efficiencies of the shape estimates (based on the spatial sign and
rank tests) with respect to the shape estimate based on the regular covariance
matrix.

In Table 1, the limiting efficiencies are given under ¢-distributions with
selected dimensions p and degrees of freedom v, with v = oo referring to the
multinormal case. Note that for multinormal distributions x = 0 and for
t-distributions x = 2/(v —4). Formulas for calculating the c% coefficients can
be found in Méttonen et al. (1997). A combination of numeric integration
and Monte Carlo simulation was used to find the needed values of 7, and
v3: in the considered cases the density function of the distribution of the
(squared) length of the observation is known and thus the outer part of the
two-part integral was computed with a simple application of Simpson’s rule
while the value of the inner integral for given values of r was found by a
straightforward simulation.

From this table it can be seen that the () and ()3 tests behave very
similarly and are highly efficient even in the normal case. ()1 is not as efficient
but still outperforms the John’s test in many considered cases. As the number
of dimensions increase the efficiencies increase as well.

We also considered the finite-sample efficiencies of tests using simulation
designs similar to those in Hallin and Paindaveine (2006). The tests included
in the comparisons were modified John’s test () ;-, spatial sign test ()1, sym-
metrized spatial sign test (o (with estimated ;) and the van der Waerden

ost 1 R R 1
v = — \Ifil g \Ijil —] T L
QdW 2”2 p (n+1) P (n+1) (’U;Z'U:J p)>

.3
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Table 1: Asymptotic relative efficiencies of tests Q1, Q2 and Q3 relative to
the modified John’s test at different t-distribution cases with selected values
of dimension p and degrees of freedom v.

p=2 p=3 p=4 p=>5
v G Q2 Q3 o Q2 Q3 (1 Q2 Q3 1 Q2 Q3
5 1.50 243 242 1.80 2.53 249 2.00 2.62 256 214 2.71 2.63
6 1.00 163 1.62 120 1.69 165 133 1.76 1.68 143 1.80 1.69
8§ 075 1.26 1.25 0.90 1.29 1.28 1.00 1.32 1.30 1.07 1.35 1.31
15 0.59 1.04 1.04 0.71 1.05 1.05 0.79 1.07 1.06 0.84 1.08 1.07
oo 0.50 0.93 0.95 0.60 094 095 0.67 095 097 0.71 095 0.99

where ¥, stands for the cdf of chi-square distribution function with p degrees
of freedom and R; is the rank of r; among the moduli 7y, ..., r, of the ob-
servations. This test was introduced in Hallin and Paindaveine (2006) and it
was shown to be asymptotically optimal (locally asymptotically maximin) in
the multivariate normal case. Its asymptotic relative efficiencies can also be
found in that paper, being slightly lower than for () and )5 for the consid-
ered t-distribution cases with bigger difference in higher dimension and lower
degrees of freedom. In the normal case the efficiency of the van der Waerden
test is naturally equal to that of the regular shape estimate, outperforming
(2 and Q3.

In our simulation study, 1500 samples of sizes n = 50, 200 were generated
from a spherical bivariate normal and spherical ¢g distributions and then
multiplied by a matrix of the form

1 1/2
(1 7z0)

where symmetric matrix D = 6[1,17 — I,)] has zero as diagonal elements and
d as the off-diagonal element (1, is a p-vector full of ones). We thus test the
hypothesis of sphericity (6 = 0) with a local alternative of compound symme-
try (6 > 0). (A similar setting in five dimensions was also considered but not
reported here: The results were similar in the considered case of compound
symmetry.) The spatial rank test statistic ()3 was not included in compar-
isons as it is computationally rather heavy and its asymptotic efficiency is
close to that of the (), test.
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Figure 1: Estimated power curves as a function of ¢ for modified John’s test
(solid line), spatial sign test (dashed), symmetrized spatial sign test (dotted)
and van der Waerden test (dot-dashed) in the normal and t¢¢ distribution
cases with sample sizes n = 50 and n = 200. Also the limiting power curve
(n = 00) is given. The horizontal dashed line shows the nominal 0.05 level.
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Figure 1 shows simulated power curves of the modified John’s test, spatial
sign test, symmetrized spatial sign test and van der Waerden test. Modified
John’s test is behaving surprisingly well also in the ¢4 distribution case. As
expected, the symmetrized spatial sign test is much more powerful than the
spatial sign test.

The power estimates were based on the critical values obtained from the
limiting chi square distribution. The observed sizes for the test statistics were
then often quite far away from the nominal size 0.05 which makes the power
comparison difficult. Table 2 lists the observed sizes for easier reference.
For example the high power of the John’s test reported above is at least
partly due to the incorrect size of the test. It is worth noting that the size
of the spatial sign test is practically correct even with sample size 50. The
symmetrized spatial sign test also behaves adequately well in both cases with
sample size 200. The observed sizes of John’s test and the van der Waerden
test are often far away from the nominal size.

Table 2: Observed sizes of the modified John’s test, the spatial sign test,
the symmetrized spatial sign test and van der Waerden test in the bivariate
normal and tg distribution cases and with sample sizes 50 and 200.

Qr @1 Q2 Qw
gaussian n=>50 .077 .052 .084 .037

n=200 .048 .047 .055 .037
173 n=>50 .084 .046 .063 .025
n=200 .069 .058 .059 .049

We have not included distributions with lighter than normal tails in the
comparisons since signs and ranks are particularly suited for heavy tailed
distributions. It is apparent that in such cases the proposed methods will
be less efficient while modified John’s test and the shape estimate based on
regular covariance matrix will perform better.

7 Final remarks

Throughout the paper we have assumed that the data are coming from an el-
liptically symmetric distribution. This is motivated by the fact that the shape
matrices considered are natural standardizing matrices for location tests in

20



the elliptic model. The spatial sign test which uses the inner standardiza-
tion based on Tyler’s shape matrix, for example, is strictly distribution-free
in the elliptic model. The asymptotic and other theoretical properties are
also fairly comfortably obtained, and the limiting behavior of the tests and
estimates can be characterized by one constant (v, 72 or 73) only.

However, shape matrices are meaningful also under more general models.
Consider the elliptic model as the collection of distributions of all affine
transformations of spherically symmetric (around the origin) random vectors,
that is

x; = Z’lmzi + i

where Oz; ~ z; for all orthogonal matrices O. Oz; ~ z; means that Oz;
and z; have the same distribution. The density functions of the generating
random vectors z; have contours that are concentric spheres, and the shape
matrix is an identity matrix I,. Now consider a wider model generated by
exchangeable and marginally symmetric random vectors, that is, those for
which it holds PJz; ~ z; for all permutation matrices P and sign-change
matrices J. (A permutation matrix P is obtained from an identity matrix
by permuting its rows and/or columns. A sign-change matrix J is a diagonal
matrix with diagonal elements +1.) The distributions of z; can be said to
have unit shape in this case as well, as all shape matrices then are equal to
identity matrix. The model includes distributions where z; has independent
and identically distributed components or a density of the general form

f(@) = exp (=p([|z[])),

where || - || is some permutation and sign change invariant metric. In the
family produced by affine transformations of such random vectors shape is
still a meaningful and well defined concept, as for any such transformation
all shape matrices will by definition be equal. Further, the spatial sign and
rank based tests of sphericity will still be valid in this family as long as the
test statistic is computed as given in 3.1 for the sign test statistic, and cor-
respondingly for the other tests. Testing via direct estimation of coefficients
i, © = 1,2, 3, as explained in the appendix, is valid only in the elliptic case.
The skew-elliptic model can be constructed as follows: Let y* = (yo,y)
be a (p + 1)-variate and spherical random vector around the origin. Write

z = sign(yo — a — By1)y.

Then
x=X""2z4y
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has a skew-elliptic distribution. For skew-elliptical distributions, see e.g. Liu
and Dey (2004). If 1 = 0 is known then any scatter matrix with respect to
the origin satisfying S(sx) = S(x) for all random signs s, possibly depending
on x, is proportional to . Under the skew elliptic model such shape matrices
thus estimate again the same population quantity.

For shape and scatter estimation the so called independent components or
IC-model is an interesting one. This is the family of affine transformations of
distributions that have independent marginals (or components). Naturally,
for a random vector z with independent components and for every scatter or
shape matrix S it still holds

S(Qz + p) = QAQT.

with A = S(z). We say that the shape or scatter matrix has independence
property if it is diagonal when ever marginals are independent. This means
that although in general shape and scatter estimators do not estimate the
same population quantity even up to a constant the estimators with the
independence property do have a similar structure, namely, matrix A in the
above situation is diagonal. Because of this, two such estimators can be
used to find an estimate of 2 or 27!, a solution for the so called independent
component analysis (ICA). For details see Oja et al. (2006). Of the estimates
considered in this paper the one based on pair-wise differences, 15, has the
independence property.

Appendix A: Proofs of the results
To prove Theorem 1, we need the following result.

Lemma 1 Under the alternative sequence

1 1
Vnvec (5'1 — ];Ip) —q N2 (p = 2vec(D), 7101747)

where v1 = 2/(p(p + 2)).

Proof of Lemma 1. The statistic S; is in the family of signed rank statistics
considered in Hallin and Paindaveine (2006), and the lemma follows from
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their results. However, we give a simple heuristic proof. We assume without
loss of generality that ¢r(D) = 0 for ease of notation.
Write A = I, + n~ /2D and @ = 0A2z. Let u = ||z||"'z. Then

x| 2xz” = vu” + ——(uu” D + Duu”) — —=(u" Du)uu” + o <_)

2vn v vn

uniformly in z. Let next zi,...z, be a random sample from a spherically
. . . . 1 .

symmetric distribution, w; = ||u;||'u; and ®; = oA2z;, i = 1,...,n. One

easily sees that (Tyler, 1987a)

1
vnvec (ave{uiuiT} — ];[p) —q N(0,71C, ).

As
2

p(p+2)

)

E [(u] Dujuu | =
the law of large numbers gives

1
vec (ave {é(uzuZTD + Dusul) — (uZTDuZ)uZuZT})

1
H
Pp+2

vec(D)

and the result follows.

Proof of Theorem 1. Using Lemma 1,

pb,p

_ _ n
n(Cppvec($1))" (17'C qu%d50%=%ﬂqw&ﬂ2

has a limiting noncentral chi square distribution with (p+2)(p—1)/2 degrees
of freedom and noncentrality parameter ||C,, ,D||*/(71(p+2)?), and the result
follows. See also Rao (1965, section 3b.4).

Proof of Theorem 2. Tyler (1987) showed that in the spherical case, the

limiting distribution of \/n vec(Vy — I,), where Vj is standardized using the
trace, is multivariate normal with mean zero and covariance matrix

(p + 2)2'71 CVp,p (9)
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It is straightforward to see that /mvec(V; — I,) (where the standardization
is done with the determinant) has the same limiting distribution. Let X =
(xy ... ,) be a random sample form a spherical distribution. Now, due to
affine equivariance of Vl, in the elliptical case V/2X with det(V) = 1 and
true shape V,

Vnvec(Vi(VY2X) = V) = vnvec (V2V(X)VY2 = V)
= (V2@ VY2 /nvec(Vi(X) — 1,)
Using (9) and the properties of vec-operator and Kronecker product given in

Magnus and Neudecker (1979), the limiting variance of \/nvec(V;(V/2X) —
V')) reduces to

1 1
(p+ 2)271(1/1/2 & V1/2) (§(Ip2 + K,,) — ]—Jvec(Ip)veCT([p)) (Vl/2 ® V1/2)

2 1 1 T
=(p+2)°n (é(Ipz + K,,)(VeV)— 5vec(V)vec(V) ) )

To prove Theorem 3, we need the following result.

Lemma 2 Under the null hypothesis

1
v/n vec (Sg — gfp) —a Np2 (0,72C;,)

Proof of Lemma 2. First note that vec(S;) is a U-statistic
o\ L
vec(Sz) = vec (aXG{UijuijT}) = (2) > h(wi ;).
) 1<i<j<n

where

h(@1, @) = vec (<“’1 G rw)T)

|21 — 2|2

is symmetric in its arguments. The limiting distribution of such a U-statistic
is (see e.g. the Appendix in Lehmann (1998) for the univariate result)

V(U — 0) —4 N(0,4E[hy(2s)hs(22)"]),
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where 8 = E[h(x, x,)] and he(x) = Ey, [h(xz,,x)] — 6.

Under the null hypothesis the expectation 6 is equal to p~'vec(,). We
next find a formula for the limiting covariance matrix. For the covariance
matrix under the assumption of sphericity (around origin, for ease of nota-
tion) write z; and z, instead of x; and x, for clarity, and consider first a
case where zo = re; = (r,0,...,0)T:

Ez1 |i(Zl — 7"61)(21 — rel)T}

|21 — req|?

((21)1 - 7“)2 T (21)3 T
—F, | B, |—2Y2 (1, -
Yz — re|? e + |z1 — req? (I, —erer)
(21)3 T (21)3
= (1-pE,, | —2Y2 B, |—2Y2 |,
( P l{uzl—relrw ‘et B | e

Here the first equation follows from the sphericity of z;, implying that all
off-diagonal elements are equal to zero, and the second from the fact that
the trace of the matrix in question is one. In the following an arbitrary z,
is decomposed as ru where 7 = ||z and w = r~'z,. Now, there exists an
orthogonal matrix A such that Ae; = u. Again because of the sphericity of
2z it holds that

E., {(zl — 2)(z1 = ZQ)T:| b {A(zl —re))(A(z — Tel))T}

|21 — 222 |A(z1 —req)||?

- (1 —pls, {%D wu’ + E, [%] L.

|21 — req]? |21 — req?

The covariance matrix can now be found using the matrix derived above and
the covariance matrix of vec(uu’). We obtain

1
Cov(vec(Sy)) = ﬁCp,p + O(E)’

n

where 7o = 4E[h3(r)] with

8 (21)3 DQ
= ° pl(1-pE, | —2Y2 1) |, 10
= et | (1 [ e 1)
where r = ||z|| and z and z; are independent observations from a null dis-

tribution with symmetry centre 0.

25



Proof of Theorem 3. As in Lemma 1 one can first show that

1 1
T
\Y V i — -1 —g N
\/ﬁ ec (?<?{’U,J’U/U p) d ( 9

eelD) Gy ) (1)
The proof is then similar to that of Theorem 1.

Proof of Theorem 4. The results in Diimbgen (1998) imply that, if V5
satisfies tr(V5) = p then, in the spherical case,

Vivee(Va — 1) —a N(0, (p +2)*72Cp,),
with 5 is as in Theorem 3. In the general elliptic case with shape matrix V'
the limiting distribution of V; satisfying det(1);) = 1 may be obtained as in
the proof of Theorem 2.

To prove Theorem 5, we use the following two lemmas.

Lemma 3 Under the null hypothesis

VnC, pvec(Ss) —4 Nyz (0,73C) ) -

Lemma 4 Under the alternative sequence

2
VnC, ,vec(S3) —4 N,z (ﬁvec(D),w,Op,p) )

Proof of Lemma 3. The proof is similar to that of Lemma 2. To see that
vec(S3) is asymptotically equivalent (up to a constant) to a U-statistic note
first that

() - (¢ (ope)

i ji ki i j#i
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(Note that 2n(n —1)+n terms of the full sum are in fact equal to zero.) The
second term is op(n~1). The first term can in turn be written as

n -1 n
9 () 5 o) - G
i<j<k
where
h(x1, s, T3) = vec (UipUls + WizUiy + Ui Uy + . .. + UspUS, )
A generalization of the result used in the proof of Lemma 2 states that
V(U = 0) —4 N(0,9Ehs(z)hs(x)"]),

where 0 = Elh(xy, @2, x3)] and hs(x) = Egy o, [h(x, 2, x3)] — 6. To find 6
under the null hypothesis (again assuming that the symmetry center is the
origin), note that due to the spherical symmetry E[u;oul;] is proportional
to I, and its trace is equal to F [’U;{Q’U;lg} = c%. The same holds for other five
permutations as well and so 6 = p~'6c%vec(l,).

We then find a formula for the covariance matrix under the null hypoth-
esis. Write again z, z, and z3 instead of x, x5 and x3 as in the proof of
Theorem 2, and denote first

(z — 2z9)(z — 23)T]

G =F, .
1(2) = Basy [uz mp TPy

and i}
(22 — 2)(z2 — 23)"

lz2 = 2[[llz2 — 25| |

GQ(Z) = EZ2723 |:

With this notation hj(z) = 2vec(G1(2z) + 2G2(2z)) — 0. Like in the proof of
Lemma 2 consider first the case of z; = re; and denote

a(r)=FE {(T_ (22)1)(r — (Z3)1)} L9 {((@)1 —T)(Z2—Z3)1]
o [re; — zo|||lre; — 23| = |22 — req|||z2 — 23] ’
(22)2(23)2 } (Z2)2(Z2 — 23)2
g2\1) = Ezz,z |: +2EZQ,Z .
2 = Eeoms | 2 " realires — 3] |\ Tea— rerlllz — 2]

Now
Gi(rei) +2Gy(rey) = gi(r)erel + go(r) (I, — eel)
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which reduces to (g1(r) — ga(r))(e1e] + g2(r)1,). As in the proof of Lemma 2
Gi(z) +2Ga(2)) = (91(r) — g2(r))un” + g2(r)1,,

for arbitrary z = ru. This leads to

8
p(p+2)

E [hs(2)hs(2)7] = E[(g1(r) = g2(r))*|Cpyp

1

and finally, since (3)/n® — 3

, as n — 00, it holds that

Vi (ec(5) — 0) = s (0,2 Fl010) ~ 02011 )
and further
VnC, vec(Ss) —q N2 (0, PR Q)E[(gl (r) — 92(7‘))2]017,19)

Proof of Lemma 4. Proceeding as in the proof of Lemma 1 one has that

T T .
XL L5 wijwzk: 1
Vnvec| ave I,

ik Uzglllzall Nzl p

1 1
= +/nvec | ave uwuﬁ, — uiTjuik—Ip + —vec| ave uijuﬁ,D -+ Duijug,;
irgyk D 2 irgyk
T T T T ~1/6,,T T T
— iUy - Wy Dwg — wijugy - ug; Dugg — p= (2w Duge + wwig - ug, Dugg

where u;; = U(z,—z;) and ¢;; = 0A(z; — z;), with z; being spherical. Now,
for any symmetric D, it holds that

2

E ui-uiT culDug,| = F 2D +tr(D)1 12
and
T T C%?
E [u”ulk . uikDuik] = ;tT(D). (13)
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These can be proved using

E |: Z1 — 22
|21 — 2o

21— 23 } _ 2 21— 23
|21 — 23| FHzl—Z:ﬁH’

which in turn can be proved as follows. The fact that
Elulv] = cv

where u = U(z; — 2z2) and v = U(z; — z3), for some ¢, follows from
spherical symmetry by first considering the case v = e; and a matrix D =
diag(1,+£1,...,41). It then holds that

Elulv = e;] = E[Du|Dv = e;] = E[Du|v = e;] = D E[u|v = e4]

and so Efu|v = e;] = cey for some c. The case of a general v is obtained
by considering an orthogonal matrix A such that Av = e; and noting that
Au ~ u. After this the fact that ¢ = ¢% is obtained by

ck T T T ¢

?Ip =E(uwv")=E [E [uv' |v]] =cE [vv'] = ];Ip.

Proof of Theorem 5. This may be proved using Lemma 4 and proceeding
as before.

Proof of Theorem 6. In the null hypothesis case, the limiting distribution
of C,,vec(Sy) is obtained as in the proof of Lemma 3. The kernel of the
equivalent U-statistic is more complicated as it includes terms with signs of
pairwise sums as well and also the ones including both sums and differences.
However, due to symmetry, the conditional expectation of that kernel is the
same as for the Spearman’s rho covariance matrix, therefore the limiting
distribution is the same. The limiting distribution under the alternative
sequence as well as the the distribution of the test statistic therefore follows.

Appendix B: Estimation of v and 73

The coefficient 7, can be estimated from the data in a straightforward manner
by taking the defining formula and replacing the expectations by averages:

2
R 8 1 p ( (z))3 )
o= ——my [1-
’ P(P+2)nz ( n— 1o\ ey — [

i
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However, this requires the location of x;’s to be the origin while the test
statistic itself does not. Also it is not affine invariant and is valid only in the
elliptic case.

Other possibility is to use the covariance matrix estimator given by (7)
and the approximation

n@)(vec(S’g)) ~ 72Cp p-

This could be done for example by summing up the elements of n 50\1](1166(52))
corresponding to non-zero elements of C, , and dividing by p(p — 1), the sum
of elements of C,,,,. This result then serves as 7,.

For ~5 the idea is the same. The estimate by averaging is

~_ 2 1 1 (ri = (@5)1)(ri — (Tp)1) — (2))2(Th)2
B+ 2)n 2 an Jz,; { |rier — x;|||rier — x|

(@) — (@, — s — ()l ~ “m

|x; — rieq||||x; — x|

)

+

where 7; stands for ||z;||. The estimation by covariance matrix is as with 7s.
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