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Abstract

In allometry, the study of how size variables scale against each other, it is
often of interest to fit lines to bivariate data and test hypotheses about slope
and elevation about one or several lines. The nature of the problem suggests
that bivariate techniques related to principal component analysis are more
appropriate than linear regression. Inference methods have been developed
for this problem and are in widespread use, however, we demonstrate that
such methods are not robust to bivariate contamination, and propose alter-
native approaches which are. The new approaches use Huber’s M -estimator
via a plug-in approach, where robust test procedures have the same form
as classical ones, but where we plug in robust estimators of parameters and
standard errors in place of classical estimators. Simulations demonstrate
that these new procedures are robust against bivariate contamination, and
can make accurate inferences even from small samples.

Keywords: Analysis of covariance, common slope tests, Huber’s
M -estimator, major axis, robust statistics, standardised major axis.

1. Introduction

As a field, allometry is sufficiently advanced that textbooks have been
written on the subject (Reiss, 1989; Niklas, 1994). Recent examples of al-
lometric research include exploring how leaf venation patterns change with
leaf size (Price et al., 2012), and studying how bone tissue and geometry of
felid skulls relates to biting force (Chamoli and Wroe, 2011).

It is commonly the case that the relationship between two size variables,
possibly after transformation, approximates a straight line. However often
the purpose of estimating such allometric lines is not prediction of one vari-
able from the other, rather it is to summarize the relationship between the
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two variables in a manner that is symmetric with respect to the X and Y
variables (Smith, 2009). As such techniques related to principal components
analysis are commonly recommended in preference to linear regression (e.g.
Warton et al., 2006), most commonly the major axis (MA) and standardised
(or reduced) major axis (SMA), which are respectively the first principal com-
ponent vector of the variance matrix and of the correlation matrix (rescaled
to the original axes), fitted through the centroid of the data. While these
methods have occasionally been motivated via errors-in-variables arguments
(e.g. McArdle, 2003), it is helpful to regard these methods as a form of data
reduction (reducing two dimensions to one), an application for which princi-
pal components analysis has long been used.

A number of extensions to the classical approach to allometric line-fitting
have been suggested over the years, including amongst others bent-cable re-
gression (Chappell, 1989), non-linear fitting (Ebert and Russell, 1994), meth-
ods of comparing several lines (Warton and Weber, 2002; Warton et al., 2006),
and Bayesian hierarchical approaches (Price et al., 2009).

One issue that has not been addressed adequately in the literature is
robustness of allometric line-fitting methods against outlying observations.
Outliers sometimes arise as data entry errors or through measurement er-
ror, and these can be relatively easily handled (via correction or repeated
measurement). However, it is not unusual for outliers to arise in a more bio-
logically meaningful way – representing observations that should be included
in the analyses, while not exerting undue influence (Hampel et al., 1986).
An example studied in Taskinen and Warton (2011) was the allometry of
offspring mass and body size of mammals – bears were outliers in that they
were both unusually large in size and had unusually small offspring per unit
body mass. This tendency to be unusual in both the X and Y directions we
refer to as bivariate contamination. Another example (Fig. 1a, left-most ob-
servation) is a plant that is an outlier in the sense that it has both short-lived
leaves and unusually small leaf mass per area.

Popular approaches to allometric line-fitting are based on the sample
covariance matrix, and as such they lack robustness to outliers (Taskinen and
Warton, 2011), potentially leading not only to inefficiency but at times to
failure of methods of inference. Classical allometric line-fitting methods have
been shown to be robust to non-normality of errors from the line (Warton,
2007), but not to bivariate contamination, under which point estimators can
be inefficient and interval estimators inconsistent (Taskinen and Warton,
2011).

In this paper, we will develop robust hypothesis testing approaches for
three contexts, illustrated in Fig. 1. In the example of Fig. 1 we consider
how leaf lifespan (or leaf longevity) relates to leaf mass per area (LMA),
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for plant species sampled at two different sites (Wright and Westoby, 2002).
This relationship is an example of the “leaf economics spectrum” (Wright
et al., 2004), where leaves with higher LMA are more expensive for the plant
to construct, but they tend to live longer and hence yield a higher lifetime
return.

One problem of interest in this paper is one-sample tests of the slope of
an allometric line. In Fig. 1a we are interested in whether leaf longevity is
directly proportional to leaf mass per area (a slope of one on log-transformed
variables), which would imply no lifetime advantage (in light capture per
unit mass of leaf investment) at either end of the leaf economics spectrum.

A second type of inference method of interest in this paper is multi-sample
tests of slope – or testing for common slope across several allometric lines. If
the slope of the relationship between leaf longevity and LMA changes across
different sites (Fig. 1b), then across sites, there are different implications for
lifetime gains when moving along the leaf economics spectrum.

A third type of inference method of interest in this paper is multi-sample
tests of elevation – is there a shift in elevation across different sites (Fig. 1c)?
If so, then leaves in different communities have different opportunities for
total lifetime light capture.
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Figure 1: An illustration of the different types of tests considered in this paper using
data from Wright and Westoby (2002). Each point represents a different plant species,
and points are classified according to whether they were sampled at a site with low soil
nutrients (open circles) or high soil nutrients (closed circles). Dashed and solid lines are
classical major axis lines computed using samples from these two sites, respectively. We
consider (a) one-sample testing of the slope (a slope of one is indicated with a dash-dotted
line), (b) common slope testing and (c) testing for common elevation.

“Classical” hypothesis testing methods for each of the three problems,
based on the usual sample mean and sample covariance estimators, are re-
viewed in Warton et al. (2006). Robust alternatives are scarce for these three
problems, although some relevant work is available in the literature that will
be built upon in this paper.
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The problem of robust major axis slope estimation and inference has been
considered indirectly in both the principal components (Devlin et al., 1981;
Croux and Haesbroeck, 2000) and the errors-in-variables literatures (Zamar,
1989; Cheng and Van Ness, 1992; Fekri and Ruiz-Gazen, 2004). Taskinen
and Warton (2011) proposed robust estimators and confidence intervals for
slopes of allometric lines, including standardised major axis and major axis.
All of the above research focussed on point and interval estimation for the
slope coefficient of a single line – none addressed the important problems of
deriving robust hypothesis testing procedures for a single allometric line, or
for comparing several allometric lines, as depicted in Fig 1a-c. One exception
is Boente et al. (2009), who derived a common slopes test applicable in
the major axis case (Figure 1b), but whose results are not applicable to
standardized major axes, nor to other tests under consideration here.

In this paper, we develop robust approaches to testing hypotheses about
parameters in an allometric line, and robust approaches to comparing pa-
rameters across several allometric lines – methods that can remain valid in
the presence of outliers. We evaluate the accuracy of inferences using each
approach, as compared to current approaches in the literature. We pro-
pose using Huber’s M -estimators (Huber, 1981) for estimation and inference
about allometric lines in the presence of outliers, and show that when such
estimators are plugged into classical test procedures (Warton et al., 2006),
we can achieve quite accurate inferences in small samples.

2. Bivariate line-fitting in allometry

Consider a sample xi = (x1i, x2i)
′, i = 1, . . . , n, from a bivariate dis-

tribution F with finite second moments. We assume that each bivariate
observation is independent and identically distributed, and has location vec-
tor µ = (µ1, µ2)

′ and covariance matrix Σ. In the following we will assume
that the xi are elliptically distributed, that is, the density function is of the
form

f(x) = |Σ|−1/2f0

(
‖Σ−1/2(x− µ)‖

)
,

where Σ is a positive definite symmetric 2×2 matrix (PDS(2)) and f0(‖z‖) is
the density of a spherically distributed random variable z, i.e. z is a variable
whose density is a function of its Euclidean norm ‖z‖ only.

As done elsewhere (Warton and Weber, 2002; Warton et al., 2006), the
major axis (MA) and standardised major axis (SMA) lines are defined to
have slope −∞ < β <∞ such that

Λ = P (β)′ΣP (β), (1)
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where Λ is a diagonal matrix with λ1 > λ2 as diagonal values, and P (β)
is defined differently for the major axis and the standardised major axis, as
PMA(β) and P SMA(β) below.

For MA, we assume that PMA(β) is orthonormal:

PMA(βMA) =
1√

1 + β2
MA

(
1 −βMA

βMA 1

)
. (2)

Hence MA applies a rotation to the original data such that transformed
variables are uncorrelated, and most of the variation in the data is along the
MA. The columns of PMA(βMA) are the two eigenvectors of Σ. The MA
slope can then be written as

βMA =
1

2σ12

(
σ22 − σ11 +

√
(σ22 − σ11)2 + 4σ12

)
, (3)

where σ12 6= 0 and σij denotes the (i, j)th element of Σ. By definition, the
MA slope is rotation equivariant, but not scale equivariant. The axis orthog-
onal to the major axis is called the minor axis, which has slope −1/βMA.

The standardised major axis slope, in contrast, is defined to be scale
equivariant, being the major axis fitted to standardised data, then back-
transformed to the original scale. Hence, for σ12 6= 0, the SMA slope βSMA

can be shown to satisfy

βSMA = sign(σ12)

√
σ22

σ11

(4)

and the standardised minor axis slope is −βSMA.
The SMA slope βSMA can be written as a solution to the problem given

in equation (1) where

P SMA(βSMA) =
1√
|2βSMA|

(
βSMA −βSMA

1 1

)
=

(√
|βSMA| 0

0 1√
|βSMA|

)
1√
2

(
1 −1
1 1

)
. (5)

Equation (5) re-expresses P SMA to emphasise the rescaling of data prior to
axis fitting. The method of SMA estimation is especially common in biology
at the moment, citation statistics suggesting it is used in at least 100 papers
per year – the main attraction being its ability to fit a scale equivariant
line which is also symmetric (in the sense that the slope of the SMA axis of
x1i against x2i is 1/βSMA, Smith, 2009). For both MA and SMA lines, the
elevation is defined so that the axis passes through the center, that is,

α(S)MA = µ2 − β(S)MAµ1. (6)
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2.1. Classical estimation of slope and elevation

The MA and SMA slope and elevation estimators are obtained by replac-
ing Σ in (1) with the usual sample covariance matrix Σ̂S and µ = (µ1, µ2)

′

in (6) by the vector of marginal means x̄ = (x̄1, x̄2)
′. We denote the corre-

sponding slope estimators as β̂MA,S and β̂SMA,S, and elevation estimators as
α̂MA,S and α̂SMA,S. These estimates can all be derived via maximum likeli-
hood, assuming that the xi are bivariate normal (Warton et al., 2006). We
refer to this throughout as the “classical” approach to estimation, in the
sense that estimation makes use of classical estimators of the sample mean
and covariance matrix.

2.2. Robust estimation of slope and elevation

The classical (standardised) major axis slope and elevation estimators
lack robustness to outliers (Taskinen and Warton, 2011) as they are based
on the sample mean and the sample covariance matrix. Robust estimators
for MA and SMA slopes and elevations are simply obtained by replacing
µ and Σ in (1) and (6) with any affine equivariant robust location vector
and covariance matrix estimators µC and ΣC (Fekri and Ruiz-Gazen, 2004;
Taskinen and Warton, 2011). By affine equivariance we mean that for any
nonsingular 2×2 matrix A and bivariate vector b, (AµC +b,AΣCA

′) is the
estimator of (µ,Σ) based on Ax+b whenever (µC ,ΣC) is the corresponding
estimator based on x.

Many choices of robust estimators µ̂C and Σ̂C are available. As in Task-
inen and Warton (2011), we will use Huber’s M -estimators (Huber, 1981)
in applications because in the bivariate setting this approach is simple, effi-
cient and robust. Huber’s M -estimators of the location vector and covariance
matrix are implicitly defined as

µ̂M = [
∑
i

w1(zi)]
−1[
∑
i

w1(zi)xi]

Σ̂M = n−1
∑
i

w2(zi)(xi − µ̂M)(xi − µ̂M)′,
(7)

where zi = ‖Σ̂
−1/2

M (xi − µ̂M)‖ and the weight functions are given by

w1(z) = min(c/z, 1) and w2(z) = σ2min(c2/z2, 1). (8)

In the bivariate case, the cut-off point c is determined by a tuning pa-
rameter 0 ≤ q ≤ 1 via the relation q = Fχ2

2
(c2), and the scaling factor σ2

is such that σ2 = Fχ2
4
(c2) + c2(1 − q)/2. This choice of σ2 ensures consis-

tency of the estimator of Σ for multivariate normal data (Maronna, 1976).
The influence functions of Huber’s M-estimators are derived in Huber (1981)
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and reviewed in the Appendix. The asymptotic breakdown point is at most
1/3 (Maronna, 1976). This value depends on the tuning parameter q and is
obtained by selecting q = Fχ2

2
(3).

3. Robust hypothesis testing for allometric lines

In this section we will review classical approaches to testing hypotheses
about slope and elevation, in the one-sample and multi-sample cases, and pro-
pose robust alternatives. The classical approaches were reviewed in Warton
et al. (2006) and verified to perform quite well in small samples when assump-
tions are satisfied (Warton et al., 2006). The question of their performance
when assumptions are not satisfied will be considered in section 4.

3.1. One-sample tests for slope

Consider a test of whether the true major axis slope is equal to some
value b, that is, H0 : βMA = b or H0 : βSMA = b. In the classical case,
“exact” one-sample tests of H0 can be derived under the assumption that
observations xi are bivariate normal. The approach is well-known, and the
derivation in the major axis case is generally attributed to Creasy (1957),
and in the standardised major axis case to Pitman (1939).

The major and minor axis scores (fi and ri respectively) satisfy

(fi, ri)
′ = P ′MA(b)xi. (9)

Standardised major and minor axis scores are defined similarly, via P ′SMA(b).
Under H0, from equation (1), (standardised) major and minor axes will be
uncorrelated. The classical method of one-sample inference about slope ex-
ploits this lack of correlation – we test H0 by testing for independence of fi
and ri using classical approaches.

It is well known that when testing for independence between fi and ri,
i = 1, . . . , n, one may use a linear regression formulation and base the test
statistic on β̂r|f,S, the linear regression coefficient when ri is regressed against
fi. The resulting test statistic is then given by

T =

√
n− 2 β̂r|f,S√
V̂ ar(β̂r|f,S)

,

and under the null hypothesis, T ∼ tn−2 exactly when data are bivariate
normal (e.g. Anderson, 2003). It can be shown that a corresponding two-
sided test T 2 can be written as

F =
(n− 2)R2

rf,S(b)

1−R2
rf,S(b)

, (10)
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where Rrf,S(b) denotes the sample correlation coefficient between ri and fi.
Under the null hypothesis, F ∼ F1,n−2 exactly for bivariate normal data.

Let us next consider a robust competitor to the classical F test under
the assumption of elliptically distributed data. We show in the Appendix
that such a test can be derived using the linear regression formulation as
described above. This yields to following test statistic

X2
C =

nR2
rf,C(b)

τ̂C(1−R2
rf,C(b))

, (11)

where Rrf,C(b) denotes the correlation coefficient between ri and fi com-

puted using the robust covariance matrix Σ̂C , and τ̂C is an estimate of
τC = 8−1EF [γ2

C(z)], with z = ‖Σ−1/2(x − µ)‖ and γC is a weight function
in the influence function for ΣC , as in Taskinen and Warton (2011). The
term τC can be understood as a correction factor for violations of bivariate
normality and for use of a different covariance estimator to the classical one.
If classical estimators are used, we write this correction factor as τS, and note
that it equals one exactly when data are bivariate normal, and that it tends
to be larger for longer-tailed distributions.

The following is proved in the Appendix.

Theorem 1. Assume that data are elliptically distributed. Then under the
null hypothesis, as n→∞, X2

C →d χ
2
1.

We also consider a small-sample modification of X2
C , motivated by the

form of equation (10):

FC =
(n− 2)R2

rf,C(b)

τ̂C(1−R2
rf,C(b))

, (12)

which under the null hypothesis we compare to a F1,n−2 distribution. This
test can be understood as a plug-in estimate of the exact test F , plugging
robust estimates in for their classical counterparts. The FC statistic simplifies
to F in the case when classical estimates are used and data are known to
be bivariate normal (since as before τS = 1 under bivariate normality). Also
note that under H0, FC converges to X2

C for large n when data come from
any elliptical distribution.

3.2. Tests for common slope

Consider now the multi-sample case, where we have g bivariate samples
of elliptically distributed data, xij where i = 1, . . . , g and j = 1, . . . , ni.
Each xij has density f(x) as given previously, with location vector µi and
covariance matrix Σi. We index the true slope and elevation by group (βMA,i,
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etc). Often we are interested in testing the hypothesis of common slope, that
is, H0 : βMA,i = b or H0 : βSMA,i = b for all i and for some unknown b. The
null hypothesis of common slope can equivalently be written as

H0 : Σi = P (b)ΛiP (b)′,

where P (b) is defined in the major axis case in (2) and in the standardised
major axis case in (5).

In the classical case, likelihood ratio tests have been developed for com-
mon slope testing (Warton and Weber, 2002) under the assumption of bivari-
ate normality. For major axis estimation, the common slope test is a special
case of common principal components analysis that was introduced in Flury
(1984). The extension of Flury’s likelihood ratio test to heterokurtic case
was given recently by Hallin et al. (2010).

Maximum likelihood results due to Flury (1984), when applied in the
bivariate case, suggest as a classical common major axis slope estimator
β̂com,S, the solution to:

P̂
′
MA,1

(
g∑
i=1

ni
λ̂i,1 − λ̂i,2
λ̂i,1λ̂i,2

Σ̂S,i

)
P̂MA,2 = 0, (13)

where we denote by P̂MA,j the jth column of PMA(β̂com,S) and λ̂i,j is the jth

diagonal element of Λ̂i = diag(PMA(β̂com,S)′Σ̂S,iPMA(β̂com,S))). Further, a
likelihood ratio test of H0 reduces to

−2 log Λ̂ = −
g∑
i=1

ni log

(
|Σ̂S,i|
λ̂i,1λ̂i,2

)
, (14)

and under the null hypothesis, −2 log Λ̂→d χ
2
g−1.

Warton and Weber (2002) extended the approach used in Flury (1984)
to the standardised major axis case. The maximum likelihood estimator of
β̂com,S then solves

P̂
′
SMA,1

(
g∑
i=1

ni
λ̂i,1 + λ̂i,2

λ̂i,1λ̂i,2
Σ̂S,i

)
P̂ SMA,2 = 0, (15)

where P̂ SMA,j is now the jth column of P SMA(β̂com,S). The likelihood ra-
tio test of the null hypothesis of common slope then equals to that given
in (14). Warton and Weber (2002) showed that Bartlett-type adjustment
for the likelihood ratio test ensures good performance in small sample sizes,
which results in replacement of ni with (ni − 2.5) in (14). They also noticed
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that for both the major and standardised major axis cases, using the affine
equivariant properties of Σ̂S,i, the (Bartlett-corrected) likelihood ratio test
statistic may equivalently be written as

−2 log Λ̂ =

g∑
i=1

(ni − 2.5) log

(
1 +

R2
rf,i(β̂com,S)

1−R2
rf,i(β̂com,S)

)
, (16)

where Rrf,i(β̂com,S) is again the correlation coefficient between scores in group
i constructed along the (standardised) major and minor axes under common
slope β̂com,S. Hence we have a connection between the form of the multi-
sample test of slope and the one-sample test of slope in equation (10).

Connection between the one-sample test and the multi-sample test of
slope motivates our approach to robustification of the latter. Robust esti-
mates and tests for common slope are simply obtained by plugging the robust
covariance matrix estimates Σ̂C,i into the estimating equations (13) and (15),
and the likelihood ratio test statistic (16). The resulting test statistic is then
given by

X2
com,C =

g∑
i=1

(ni − 2.5) log

(
1 +

R2
rf,C,i(β̂com,C)

τ̂C,i(1−R2
rf,C,i(β̂com,C))

)
, (17)

where for the ith group Rrf,C,i(β̂com,C) is the correlation coefficient based on

the robust covariance matrix estimate Σ̂C,i, and τ̂C,i is the estimate of τC,i =
8−1E[γ2

Ci
(z)]. The following theorem gives the null hypothesis distribution

of our test statistic.

Theorem 2. Assume that the data consists of g bivariate samples of ellipti-
cally distributed data. Then under H0, as each ni →∞, X2

com,C →d χ
2
g−1.

Robust tests for common principal components model were also consid-
ered recently in Boente et al. (2009). When testing the null hypothesis of
common slope they proceeded as we did above, that is, they replaced the
sample covariance matrix in (14) with some robust covariance matrix esti-
mate. The resulting test statistic is

X2
com,B =

1

τC

g∑
i=1

ni log

(
1 +

R2
rf,C,i(β̂com,C)

1−R2
rf,C,i(β̂com,C)

)
. (18)

The approach used in Boente et al. (2009) differs from ours primarily in
estimating a common correction factor τC across all samples.
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3.3. Robust one-sample test for elevation

Wald tests are typically used to test hypotheses about elevation, whether
one-sample or multi-sample, hence we will review asymptotic results for ele-
vation of allometric lines here.

In the Appendix, we use an influence approach (similar to Fekri and
Ruiz-Gazen, 2004; Taskinen and Warton, 2011) to show that the limiting
distributions of

√
n(α̂MA,C − αMA) and

√
n(α̂SMA,C − αSMA) can be derived

as normal with mean zero and variances

ASV(α̂MA,C) = τµ λ2 (1 + β2
MA) + µ2

1 ASV(β̂MA,C),

ASV(α̂SMA,C) = τµ λ2 2βSMA + µ2
1 ASV(β̂SMA,C),

(19)

where τµ = 2−1EF [γ2
µ(z)], z is as before and γµ is a weight function in the

influence function for µC . The asymptotic variance of the (standardised)
major axis slope was derived in Taskinen and Warton (2011) as:

ASV(β̂MA,C) = τC
λ1λ2

(λ1 − λ2)2
(1 + β2

MA)2

ASV(β̂SMA,C) = τC
λ1λ2

(λ1 + λ2)2
4β2

SMA.

(20)

Notice that the above results allow us to compute robust large-sample 100(1−
α)% confidence intervals for slope (Taskinen and Warton, 2011) and eleva-
tion parameters. However such an approach is better suited to inference
about elevation because slope estimators tend to converge slowly to a nor-
mal distribution (Taskinen and Warton, 2011), being a function of covariance
estimators only.

When testing the null hypothesis that the true (standardised) major axis
elevation is equal to some value a, that is, H0 : αMA = a or H0 : αSMA = a,
we may use as a test statistic

TC =

√
n(α̂(S)MA,C − a)√
ÂSV(α̂(S)MA,C)

, (21)

where ÂSV(α̂(S)MA,C) is the empirical version of ASV(α̂(S)MA,C) in (19). Un-
der the null hypothesis, TC →d N(0, 1). Notice that the asymptotic variance
ASV(α̂(S)MA,C) can be rewritten as

ASV(α̂(S)MA,C) = τµ
(
−β(S)MA 1

)
Σ

(
−β(S)MA

1

)
+ µ2

1 ASV(β̂(S)MA,C)

= τµ(Σfr)22 + µ2
1 ASV(β̂(S)MA,C),
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where τµ is defined below equations (19). The asymptotic variance thus
consists of two components. The first one equals the variance of the “resid-
ual” scores ri = x2i − β(S)MA x1i, and the second one takes into account the
uncertainty that relates to slope estimation.

3.4. Robust test for common elevation

As in Section 3.2, consider now g bivariate samples of elliptically dis-
tributed data. We collect the g location vectors into a g × 2 matrix M =(
µ1 µ2 · · · µg

)′
, where µi = (µ1i, µ2i)

′, and the true (standardised) ma-
jor axis elevations into a g-vector α(S)MA = (α(S)MA,i, . . . , α(S)MA,g)

′.
We use a similar approach to Warton et al. (2006) and derive Wald’s test

statistic under the ellipticity assumption. Let α̂(S)MA,C be the g-vector of

elevations based on robust covariance matrix estimates Σ̂C,i, and M̂C the
matrix consisting of robust location vectors. Then

α̂(S)MA,C = M̂C

(
−β̂com,C

1

)
,

where β̂com,C is the common slope estimate based on robust covariance ma-

trices Σ̂C,i as described in Section 3.2. The null hypothesis of common
elevation can now be written in the form H0 : Lα̂(S)MA,C = 0, where
L = [1(g−1)×1| − I(g−1)×(g−1)], and tested using a Wald statistic

WC = (Lα̂(S)MA,C)′(L ÂSC(α̂(S)MA,C)L′)−1(Lα̂(S)MA,C), (22)

where ÂSC(α̂(S)MA,C) is the empirical version of the asymptotic covariance
matrix ASC(α̂(S)MA,C). From the asymptotic normality of

√
nα̂(S)MA,C it

then follows that under the null hypothesis, WC →d χ
2
g−1.

The asymptotic covariance matrix ASC(α̂(S)MA,C) may be easily derived
(using e.g. partial influence function approach) and it simplifies to

ASC(α̂(S)MA,C) = diag

(
τµi

(
−βcom 1

)
Σi

(
−βcom

1

))
+ ASV(β̂com,C)M 1M

′
1

= diag(τµi
(Σfr,i)22) + ASV(β̂com,C)M 1M

′
1,

where diag(ai) is a diagonal matrix with diagonal elements ai, M 1 denotes
the first column of M and τµi

= 2−1E[γ2
µi

(r)]. Similarly to the one-sample
case, the first part in ASC(α̂(S)MA,C) equals the variance of residuals ri =
xi2 − βcomxi1, i = 1, . . . , g. The asymptotic variance of the common slope
estimate, ASV(β̂com,C), can be derived using the partial influence function
approach. In the major axis case

ASV(β̂com,C) =

[
g∑
i=1

ni τC,i
(λi,1 − λi,2)2

λi,1λi,2
(1 + βcom)2

][
g∑
i=1

ni
(λi,1 − λi,2)2

λi,1λi,2

]−2
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(Boente and Orellana, 2001; Boente et al., 2002), and in the standardised
major axis case

ASV(β̂com,C) =

[
g∑
i=1

ni τC,i
(λi,1 + λi,2)

2

λi,1λi,2
4β2

com

][
g∑
i=1

ni
(λi,1 + λi,2)

2

λi,1λi,2

]−2

.

Notice that by assuming that the correction factor τC,i = 8−1E[γ2
Ci

(r)] is the
same for each group, the following is true

[ASV(β̂com,C)]−1 =

g∑
i=1

[ASV(β̂com,Ci
)]−1,

where we denote by ASV(β̂com,Ci
) the asymptotic variance of the one-sample

estimate of slope as given in (20). A similar result was derived for the classical
approach in Warton et al. (2006).

4. Finite-sample behaviour of tests

In this section we use simple simulation studies to compare the Type I
errors (at the 5% significance level) of the robust tests derived in previous
sections to those of classical tests derived under normality assumptions. We
base our robust tests on Huber’s M -estimators of the location vector and
covariance matrix defined in Section 2.2. As mentioned before, the asymp-
totic results of Section 3 are valid for a broad class of robust estimators, but
we prefer using the Huber’s M -estimators due to their simplicity and good
robustness properties in bivariate cases.

4.1. Finite-sample behaviour of one-sample tests

When comparing one-sample tests for slope or elevation, bivariate samples
of sizes n = 20, 50, 100, 150 and 200 were generated from the contaminated
bivariate normal distribution, that is, the observations were generated from
N(µ,Σ) with probability (1 − ε) and from N(µ, c2Σ) with probability ε.
When testing for slope, the location vector µ was set to zero, whereas when
testing for elevation, the value of µ was varied. The level of contamination
was varied by selecting ε and c as follows

(a) bivariate normal model: ε = 0,

(b) moderately contaminated model: ε = 0.1 and c =
√

3,

(c) strongly contaminated model: ε = 0.1 and c = 3.
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The matrix Σ was generated according to the major axis model in equa-
tion (2) or the standardised major axis model in equation (5). In both cases
β(S)MA = 1 and the matrix Λ was chosen to be Λ = diag(1.5, 0.5). The
number of replications in all simulation studies was set to 20000, and in all
cases, we estimated Type I error at the 0.05 significance level.

Consider first one-sample tests for slope. The null hypothesis to be tested
was H0 : βMA = 1 or H0 : βSMA = 1, and the three test statistics to be
compared were the: (i) classical F test given in (10); (ii) robust X2

C test
given in (11); (iii) small-sample corrected robust FC test given in (12). The
simulation results in both the major and the standardised major axis case
are given in Table 1.

As seen in Table 1, in the bivariate normal case, the classical F test
statistic maintained close to nominal significance level and was more accurate
than the two robust tests. For strongly contaminated data, Type I errors of
F test were over four times the designated level, even in large samples. As
expected, robust X2

C test worked well for large sample sizes whereas small-
sample corrected FC test maintained close to nominal significance level also
when very small sample sizes were encountered.

Table 1: Type I errors (as a percentage, at the 0.05 level) of the classical F , robust X2
C

and robust FC one-sample tests of slope. The errors were computed for data from the
(a) bivariate normal distribution, (b) contaminated normal distribution with ε = 0.1 and
c =
√

3 and (c) contaminated normal distribution with ε = 0.1 and c = 3. In all cases
Λ = diag(1.5, 0.5) and β(S)MA = 1.

(a) (b) (c)
n F X2 FC F X2 FC F X2 FC

MA 20 5.1 9.6 6.3 6.7 9.6 6.3 16.7 9.5 6.3
50 5.0 6.7 5.5 7.4 6.6 5.5 20.6 6.6 5.5
100 4.9 5.8 5.2 7.7 5.9 5.3 22.4 5.8 5.3
150 5.0 5.4 5.1 7.9 5.5 5.2 22.8 5.5 5.2
200 4.9 5.3 5.0 7.8 5.4 5.1 23.0 5.4 5.1

SMA 20 4.9 9.7 6.3 6.9 9.8 6.4 16.7 9.8 6.5
50 5.0 6.6 5.7 7.4 6.7 5.5 20.6 6.7 5.6
100 5.1 5.7 5.2 7.8 5.9 5.3 22.2 5.6 5.1
150 4.9 5.3 5.3 7.7 5.5 5.2 23.1 5.5 5.1
200 4.9 5.1 5.1 8.0 5.3 5.1 23.6 5.4 5.1

Consider next one-sample tests for elevation. We generated our data sets
using similar bivariate models as in the previous simulation study. The only
difference was that the location vector was set to µ = (2, 2)′, and the null
hypothesis to be tested was thus H0 : αMA = 0 or H0 : αSMA = 0. The robust
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TC test given in (21) was compared to the classical T test

T =
α̂(S)MA,S − a√
ÂSV (α̂(S)MA,S)

,

which is derived under the assumption of bivariate normality. Under the null
hypothesis, T ∼ tn−2 approximately (Warton et al., 2006).

Table 2: Type I errors (as a percentage, at the 0.05 level) of the classical T and robust TC

one-sample tests of elevation. The errors were computed for data from the (a) bivariate
normal distribution, (b) contaminated normal distribution with ε = 0.1 and c =

√
3 and

(c) contaminated normal distribution with ε = 0.1 and c = 3. In all cases µ = (2, 2)′,
Λ = diag(1.5, 0.5) and β(S)MA = 1.

(a) (b) (c)
n T TC T TC T TC

MA 20 5.4 9.1 8.1 9.2 15.6 9.2
50 5.4 6.5 7.1 6.3 17.4 6.5
100 5.1 5.6 7.3 5.7 19.6 5.7
150 5.0 5.3 7.4 5.3 20.6 5.3
200 5.1 5.2 7.5 5.3 21.1 5.3

SMA 20 5.9 8.9 7.6 9.2 17.0 9.5
50 5.0 5.7 6.6 5.8 17.2 6.1
100 5.0 5.4 6.9 5.3 18.7 5.5
150 4.9 5.0 7.0 5.3 19.0 5.3
200 5.0 5.1 6.9 5.0 19.0 5.1

The simulation results are presented in Table 2. Again, the classical test
statistic maintained close to nominal significance levels only in the bivari-
ate normal case. Robust TC test converged quickly to the designated level,
but with very small sample sizes, this test failed to maintain the nominal
significance level.

4.2. Finite-sample behaviour of several-sample tests

When comparing tests for common slope and elevation, two independent
bivariate samples of sizes n = 20, 50, 100, 150 and 200 were generated from (a)
bivariate normal model, (b) moderately contaminated model and (c) strongly
contaminated model as described in Section 4.1.

When testing for common slope, the null hypothesis of interest was H0 :
βMA,i = b or H0 : βSMA,i = b for i = 1, 2 and for some unknown b. Three test

statistics were included in comparisons: (i) the likelihood ratio test −2 log Λ̂
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given in (16) and derived under bivariate normality, (ii) robust X2
com,C test

given in (17) and (iii) Boente’s robust X2
com,B test given in (18). The sim-

ulation results based on 20000 replications are given in major axis and in
standardised major axis cases in Table 3.

Table 3: Type I errors (as a percentage, at the 0.05 level) of the classical likelihood ratio
test −2 log Λ̂ for common slope as well as its robust counterparts denoted by X2

com,C =: X2
C

and X2
com,B =: X2

B . The errors are computed for two independent groups of data generated
from the (a) bivariate normal distribution, (b) contaminated normal distribution with
ε = 0.1 and c =

√
3 and (c) contaminated normal distribution with ε = 0.1 and c = 3. In

all cases Λ = diag(1.5, 0.5) and β(S)MA = 1.

(a) (b) (c)

n −2 log Λ̂ X2
C X2

B −2 log Λ̂ X2
C X2

B −2 log Λ̂ X2
C X2

B

MA 20 3.7 4.5 5.8 4.8 4.4 5.6 11.7 4.4 5.6
50 4.5 4.9 5.3 6.7 4.9 5.4 18.4 5.0 5.5
100 4.8 4.9 5.2 7.4 4.9 5.2 21.3 5.0 5.2
150 4.8 5.0 5.1 7.6 4.9 5.1 22.0 5.0 5.1
200 4.9 5.0 5.2 7.8 5.0 5.2 22.8 5.0 5.1

SMA 20 4.9 6.3 8.0 6.9 6.5 8.0 17.0 6.5 8.1
50 5.1 5.7 6.2 7.5 5.6 6.1 20.9 5.5 6.0
100 5.0 5.3 5.5 7.6 5.3 5.6 22.4 5.3 5.6
150 4.9 5.1 5.2 7.8 5.2 5.3 23.1 5.2 5.5
200 5.1 5.1 5.2 7.6 5.0 5.2 23.5 5.1 5.2

Again the likelihood ratio test −2 log Λ̂ utilizing the sample mean vectors
and sample covariance matrices worked well only in the bivariate normal case.
When outlying observations were encountered, this test was not valid. For
very large sample sizes, the Type I errors of the two robust tests, X2

com,C

and X2
com,B, were almost equivalent. In small sample cases, X2

com,C seemed
to slightly outperform X2

com,B.
Finally, the performances of the two test statistics for common elevation

was compared using the same covariance structures and µ1 = (0, 0)′ as before.
On this occasion however the location vector of the second sample was set
to µ2 = (2, 2)′ and the null hypothesis to be tested was H0 : αMA,i = a or
H0 : αSMA,i = a for i = 1, 2 and for some unknown a.

The test statistics to be compared were Wald statistics of the form (22).
In the classical Wald test W , sample mean vectors and sample covariance
matrices were used to estimate µi and Σi (Warton et al., 2006), whereas its
robust counterpart WC used Huber’s M-estimators.

Simulation results based on 20000 replications are listed in Table 4. In
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the major axis case, the classical test performed well only when data were
normal and sample sizes were large. When highly contaminated data were
encountered, the Type I errors exceeded the designated 5% level. The robust
Wald test performed poorly in the case of very small sample sizes, but the
Type I errors converged quickly to the designated level. Such undesirable
small-sample behaviour was not present when testing for common elevation
in the standardised major axis case.

Table 4: Type I errors (as a percentage, at the 0.05 level) of the classical W test and
robust WC test for common elevation. The errors were computed for two independent
groups of data generated from the (a) bivariate normal distribution, (b) contaminated
normal distribution with ε = 0.1 and c =

√
3 and (c) contaminated normal distribution

with ε = 0.1 and c = 3. In all cases µ1 = (0, 0)′, µ2 = (2, 2)′, Λ = diag(1.5, 0.5) and
β(S)MA = 1.

(a) (b) (c)
n W WC W WC W WC

MA 20 8.0 9.2 10.0 9.7 19.4 10.4
50 6.0 6.4 8.0 6.6 20.4 6.8
100 5.5 5.6 7.5 5.5 20.0 5.9
150 5.3 5.4 7.3 5.3 20.0 5.3
200 5.1 5.1 7.5 5.3 20.0 5.3

SMA 20 5.5 6.2 6.7 6.3 12.1 6.7
50 5.1 5.3 6.2 5.4 12.9 5.6
100 5.1 4.9 6.2 5.0 13.2 5.2
150 5.1 4.9 6.1 4.9 13.7 5.2
200 5.0 4.9 6.2 5.0 13.6 5.1

5. Examples

In this section we will compare the performances of robust tests proposed
in this paper with the classical tests, using the dataset illustrated previously
in Figure 1. We will only report the results for the major axis case, as the
results in the standardised major axis case were very similar. The data as
well as functions for performing these tests are available in the R-package
smatr (Warton et al., 2012).

In the first column of Figure 2, leaf longevity (in years) is plotted against
leaf mass area (kg m−2) for plant species sampled at a site with high level of
annual rainfall and a low level of soil nutrients. We wish to test whether leaf
longevity is directly proportional to leaf mass per area, that is, H0 : βMA = 1
against H1 : βMA 6= 1. In the first column of Figure 2, the classical major
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Figure 2: Classical major axis lines (first row) and robust major axis lines based on Huber’s
M-estimates (second row) as applied to leaf data from Wright and Westoby (2002). Each
point represents a different plant species, and points are classified according to whether
they were sampled at a site with low soil nutrients (open circles) or high soil nutrients
(closed circles). Dashed and solid lines are major axis lines computed using samples from
these two sites, respectively. We consider (a) one-sample testing of the slope (a slope of
one is indicated with a dash-dotted line), (b) common slope testing and (c) testing for
common elevation.

axis line (top row), robust major axis line (bottom row) and a line of slope
one (both rows) are plotted. We readily notice that the classical major axis
line is affected by one outlier in the lower left corner, and the estimated slope
is noticeably flatter than that of the robust line. The classical and robust
F test statistics, with corresponding p-values, are listed in Table 5. It is
seen that, with robust FC test, weak evidence against the null hypothesis is
detected. Due to the one outlying observation, the classical F test statistic
is very small and thus provides no evidence against the null hypothesis.

In the second column of Figure 2, leaf longevity and leaf mass per area
are plotted for plant species sampled from high-rainfall sites with low and
high nutrient contrasts, respectively. Let us now investigate whether the
relationship between variables changes across these two sites. We will thus
test for a common major axis slope, that is, the null hypothesis of interest
is H0 : βMA,i = b against H1 : βMA,i 6= b for i = 1, 2 for some unknown b. As
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Table 5: Classical and robust test statistics, with corresponding p-values, when testing
for (a) major axis slope equals one, (b) common major slope and (c) common major axis
elevation. The data are presented in Figure 2.

Classical test Robust test
(a) F = 0.609 FC = 3.486

p = 0.447 p = 0.082

(b) −2 log Λ̂ = 2.003 X2
com,C = 1.250

p = 0.157 p = 0.264
(c) W = 2.919 WC = 4.967

p = 0.088 p = 0.026

before, when comparing classical major axis lines given in the first row to
the robust major axis lines given in the second row, we see that one outlier
present in the low nutrient site affects the corresponding classical major axis
line. However, the outlier does not have much influence on the classical
likelihood ratio test and, similarly to the robust test, the null hypothesis of
interest is accepted.

Finally, let us investigate whether there is a shift in elevation when com-
paring plant species sampled from two different sites. The null hypothesis
to be tested is thus H0 : αMA,i = a against H1 : αMA,i 6= a for i = 1, 2 and
some unknown a. The sites to be compared are again those with low and
high nutrient contrasts, respectively. Corresponding data as well as classi-
cal and robust major axis lines sharing common slope are illustrated in the
third column of Figure 2. The corresponding major axis lines are relatively
similar. However, some difference is seen between classical and robust Wald
statistics reported in Table 5. The classical Wald test is unable to reject the
null hypothesis at the 0.05 significance level and based on that we cannot
state that there is a clear shift in elevation across these two sites of interest.
The p-value based on the robust test is clearly below 0.05, suggesting that
greater lifetime gains are available to leaves at higher nutrient sites – because
leaves of a given mass per area tend to be kept on the plant for longer.

6. Discussion

Allometric lines are commonly fitted using major and standardised major
axes, and biologists routinely wish to test one-sample hypotheses or multiple-
sample hypotheses about slope and elevation. We have demonstrated that the
methods currently used (Warton et al., 2006) can be quite sensitive to con-
tamination. Further, we have shown that these methods can be robustified in
a relatively simple way. Our simulations (Tables 1-4) indicate that the pro-
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posed tests have good performance across a range of conditions. They main-
tained near-exact coverage for contaminated data, although were slightly
liberal in small samples, more so when making inferences about elevation.
There is a case for continuing to use classical inference methods when their
assumptions are likely to be satisfied, due to more exact Type I error in small
samples, but in other settings there is a strong case for using robust methods
in their place.

The robust methods derived here relax the assumption of bivariate nor-
mality to an assumption that data are elliptically distributed. This latter
assumption is more biologically realistic, given that allometric data are of-
ten heavy-tailed in distribution (Robinson and Hamann, 2011, for example),
while the bivariate normal model is still available as a special case. Another
important special type of elliptical distribution is the contaminated normal
mixture model, a standard model for capturing outliers (Hampel et al., 1986)
such as the left-most observation in Fig. 1a.

Taskinen and Warton (2011) previously considered the problem of interval
estimation for the slope of a (standardised) major axis, using Wald-type
intervals. This problem is closely related to one-sample testing of slope, given
that one could construct a confidence interval via inversion of a one-sample
test statistic. Taskinen and Warton (2011) constructed confidence intervals
for slope by exploiting the asymptotic normality of β̂(S)MA,C , but this had
poor small-sample performance and required a bootstrap for remediation.
However, given the very good performance of FC in Table 1, it seems one can
achieve comparable coverage probabilities to the bootstrap much faster via
inversion of FC and use of critical values from the F1,n−2 distribution. This
approach to interval estimation is actually used in the classical case (Warton
et al., 2006), so what we suggest here is to take the classical approach, known
to have good small-sample performance when assumptions are satisfied, then
plug-in robust estimates as required, and use the same critical values from
small-sample distributions as motivated formally in the classical case.

The most successful method of robustification considered in this paper
was the approach just described – to take classical tests known to have good
small-sample performance, and replace classical estimators of mean, covari-
ance, and standard error with robust estimators. The plug-in strategy was
broadly successful and has the advantages of being simple and applicable
whenever small-sample methods are available in the classical case. It would
be interesting to see how effectively our robust plug-in approach works in
other contexts outside of allometry.
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Appendix: Proofs of the results

The asymptotic variance of
√
n(α̂(S)MA,C − α(S)MA). Write first

µC(F ) and ΣC(F ) for the functionals corresponding to any affine equivariant
estimators µC and ΣC . Corresponding influence functions at spherical F are
then given by

IF(x;µC , F ) = γµ(z)u and IF(x; ΣC , F ) = γC(z)uuT − δC(z)I, (23)

where z = ‖x‖, u = ‖x‖−1x, and weight functions γµ, γC and δC de-
pend on the distribution F and the functionals µC(F ) and ΣC(F ), re-
spectively (Hampel et al., 1986). For Huber’s M -estimators with weights
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given in (8), γµ(z) = η−1
1 w1(z)z, where η1 = 2−1EF [2w1(z) + rw′1(z)], and

γC(z) = η−1
2 w2(z)z2, where η2 = 8−1EF [4w2(z)z2 + w′2(z)z3]. Influence func-

tions in the elliptical case follow from the affine equivariance properties of
the estimators.

By (6), the influence function of the robust elevation functional α(S)MA,C(F )
at elliptical F with location µ and covariance matrix Σ is

IF(x;α(S)MA,C , F ) = (−β(S)MA, 1) IF(x;µC , F )− µ1 IF(x; β(S)MA,C , F ),

where

IF(x; βMA,C , F ) = γC(z)

√
λ1λ2

(λ1 − λ2)
(1 + β2

MA)u1u2

IF(x; βSMA,C , F ) = γC(z)

√
λ1λ2

λ1 + λ2

2βSMA u1u2,

with z = ‖Σ−1/2(x− µ)‖ and u = z−1(Σ−1/2(x− µ)) = (u1, u2)
′ uniformly

distributed on the unit sphere. The asymptotic variance then reduces to

ASV(α̂(S)MA,C) = EF [IF2(x;α(S)MA,C , F )]

= (−β(S)MA, 1) ASV(µ̂C) (−β(S)MA, 1)′ + µ2
1 ASV(β̂(S)MA),

as EF [IF(x;µC , F )IF(x; β(S)MA,C , F )] = 0 by symmetry. The result then
follows as ASV(µ̂C) = 2−1EF [γ2

µ(z)]Σ.

Proof of Theorem 1. As mentioned in Section 3.1, we may base our test
statistic on β̂r|f,C which is a robust regression coefficient obtained when ri is

regressed against fi, that is, β̂r|f,C is such that it satisfies(
1 0

−β̂r|f,C 1

)
Σ̂fr,C

(
1 −β̂r|f,C
0 1

)
=

(
λ̂1 0

0 λ̂2

)
, (24)

where Σ̂fr,C is the robust covariance matrix based on the scores fi and ri.

The limiting distribution of β̂r|f,C can be easily derived using the influence

function approach and the affine equivariance properties of Σ̂C . We then
replace β̂r|f,C and Σ̂fr,C in (24) with corresponding functionals and solve
βr|f,C(F ) as a function of ΣC(F ). Then (23) yields to

IF (x; βr|f,C , F ) = γC(z)

√
λ1λ2

λ1

u1u2,

where γC and u = (u1, u2)
′ are as given in Section 2.2. From the asymptotic

normality of Σ̂C it then follows that
√
nβ̂r|f,C is asymptotically normal with

24



mean zero (under H0) and its limiting variance can be written as

ASV(β̂r|fC
) = τC

λ1λ2

λ2
1

= τC
|Σfr,C |

(Σfr,C)2
11

where τC = 8−1E[γ2
C(z)]. By writing ÂSV(β̂r|f ) for the empirical version of

ASV(β̂r|f ), we finally notice that our test statistics can be rewritten as

X2
C =

n β̂2
r|f,C

ÂSV(β̂r|f,C)
=

nR2
rf,C(b)

τ̂C(1−R2
rf,C(b))

,

where Rrf,C(b) is the correlation coefficient between ri and fi computed using

Σ̂C , and τ̂C is the estimate of τC . Therefore, under the null hypothesis
X2
C →d χ

2
1.

Proof of Theorem 2. We will consider the distribution of the common
slopes statistic in both the cases when βcom,C is known and unknown, and

write these statistics as X2(βcom,C) and X2(β̂com,C), respectively.

Assume first that β̂com,C is fixed, and to shorten notation write Ri =
Rrf,C,i(βcom,C). Using a Taylor expansion of log(1 + x), X2(βcom,C) can be
written as:

X2(βcom,C) =

g∑
i=1

(
niR

2
i

τ̂C,i(1−R2
i )

+
1

2ni

(
niR

2
i

τ̂C,i(1−R2
i )

)2

+ . . .

)
Theorem 1 now implies that under H0, the leading term in the summation of
X2(βcom,C) independently follows a χ2

1 distribution for each i and the remain-
ing terms are ignorable, being Op(n

−1
i ) or smaller. Hence X2(βcom,C)→d χ

2
g.

Further, the difference between the test statistics X2(βcom,C)−X2(β̂com,C)
tests the hypothesis that the common slope equals βcom,C . Following argu-
ments similar to Theorem 1, we can deduce from the asymptotic normality
of β̂com,C that X2(βcom,C)−X2(β̂com,C)→d χ

2
1 independently of X2(β̂com,C),

hence X2(β̂com,C)→d χ
2
g−1.
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