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Seija Sirkiä∗, Sara Taskinen∗ and Hannu Oja+

∗Dept. of Mathematics and Statistics, University of Jyväskylä
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Abstract

In this paper we introduce a family of symmetrised M-estimators of
multivariate scatter. These are defined to be M-estimators only com-
puted on pairwise differences of the observed multivariate data. Sym-
metrised Huber’s M-estimator and Dümbgen’s estimator serve as our
examples. The influence functions of the symmetrised M-functionals
are derived and the limiting distributions of the estimators are dis-
cussed in the multivariate elliptical case to consider the robustness and
efficiency properties of estimators. The symmetrised M-estimators
have the important independence property; they can therefore be used
to find the independent components in the independent component
analysis (ICA).

Keywords: Efficiency, elliptical distribution, influence function, M-
estimator, robustness, scatter matrix.

1 Introduction

A fundamental problem in multivariate analysis is to develop robust affine
equivariant alternatives to the sample mean vector and sample covariance
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matrix. The sample mean vector and sample covariance matrix are the max-
imum likelihood estimates of the symmetry center (location parameter) µ
and the covariance matrix (scatter parameter) Σ in the multivariate normal
model. The multivariate normal distribution is a member in a larger fam-
ily of elliptically symmetric distributions. A k-variate random vector x is
elliptically symmetric with location vector µ and symmetric scatter matrix
Σ > 0 if its density function is, for some function ρ, of the form

f(x) = |Σ|−1/2 exp{−ρ(||Σ−1/2x− µ||}. (1)

(Throughout the paper C1/2 means a symmetric square root of a positive
definite symmetric matrix C.) The distributions in this elliptical family are
denoted by E(µ, Σ, ρ). Scatter matrix Σ is proportional to the covariance
matrix (if it exists) and it determines the shape of its concentric elliptical
contours. Note that if x is a random variable having an elliptical distribution
E(µ, Σ, ρ), then the standardized variable z = Σ−1/2(x− µ) has a spherical
distribution with symmetry center 0, and z can be decomposed as z = ru,
where r = ||z|| and u = ||z||−1z are independent with u being uniformly
distributed on the unit sphere.

Assume first that x1, ...,xn is a random sample from an elliptical dis-
tribution E(µ, Σ, ρ). In this paper, we are interested in the scatter matrix
estimation only, and we therefore assume that the location center is known.
Without loss of generality, we assume that µ = 0. For any k×k matrix C > 0,
write zi(C) = C−1/2xi, ri(C) = ||zi(C)|| and ui(C) = ||zi(C)||−1zi(C),
i = 1, ..., n. Then the maximum likelihood (ML) estimator minimizes the
objective function

1

n

n∑

i=1

ρ(ri(C)) +
1

2
log |C| (2)

or solves the estimating equation

1

n

n∑

i=1

w(ri(C))ui(C)uT
i (C) = Ik (3)

where w(r) = ρ′(r)r. Huber [6] proved the consistency and asymptotic nor-
mality of the estimators (2) and (3) under weaker conditions: the obser-
vations were no more assumed to come from the specific elliptical target
population E(µ, Σ, ρ). Huber [7] later called this estimator the maximum
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likelihood type estimator, or M-estimator, either based on the criterion func-
tion (2) or on the estimating equation (3). Maronna [13], Huber [7] and Kent
and Tyler [9], for example, considered the existence and uniqueness of the
estimate.

Maronna [13] defined a more general class of M-estimators for an elliptical
population with the estimating equation

1

n

n∑

i=1

w1(ri(C))ui(C)uT
i (C) =

1

n

n∑

i=1

w2(ri(C))Ik (4)

Maronna [13] and Huber [7] proved the existence and uniqueness of solu-
tions under some general assumptions on weight functions w1 and w2 and
the observed sample. Maronna [13] proved the consistency and asymptotic
normality utilizing Huber’s [6] results. The influence functions and upper
limit for breakdown point were also derived. Later, Tyler [20] studied the
breakdown properties of M-estimators in detail.

Tyler [21] considered a limiting form of Huber’s type M-estimator. His

estimator Ĉ solves
k

n

n∑

i=1

ui(C)uT
i (C) = Ik.

This corresponds to choosing w1(r) = k and w2(r) = 1 in Maronna’s defini-
tion. It is remarkable that, in the elliptical model E(µ, Σ, ρ), the finite sample
distribution (and the limiting distribution) of Ĉ does not depend on ρ at all.
The estimator is then the most robust estimator among the set of consistent
and asymptotically normal estimators in the sense that it minimizes max-
imum asymptotic variance over the elliptical model. For these results, see
Tyler [21].

In this paper we introduce a family of so called symmetrised M-estimators
of scatter which are defined to be M-estimators computed on pairwise differ-
ences of the observed data. A special case, the symmetrised version of Tyler’s
M-estimator, has been earlier proposed by Dümbgen [2]. In the univariate
case taking the pairwise differences is a well known operation; it makes the
distribution symmetric, with location at 0. In the multivariate case taking
pairwise differences makes all univariate projections symmetric with location
at 0, thus it is not necessary to impose any arbitrary definition of the loca-
tion in a situation with a non-symmetric distribution. Pairwise differences
are also useful for other reasons. Estimators of scatter in the elliptically
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symmetric family usually require the location either be known or estimated
simultaneously. With the estimators at hand, this is no longer needed as the
location center of the pairwise differences is always the origin.

Maybe the most interesting point is that a symmetrised M-estimator of
scatter, or indeed any symmetrised scatter matrix, has the so called inde-
pendence property: the scatter functional is a diagonal matrix if the the
components of the random vector are independent. The covariance matrix
naturally has this property but for example regular M-estimators do not. In
the literature, this property has not received much attention so far.

The independence property is highly important, for example, in inde-
pendent component analysis or ICA. See Hyvärinen et al [8]. Briefly, the
ICA problem consists of finding an original random vector, or source, s with
independent components when only an unknown linear mixture x = As is
observed. Previously proposed solutions to the ICA problem are usually
based on an idea justified by the central limit theorem that linear mixtures
of non-normal random variables are closer to the normal distribution than
any of the original ones. The solution to ICA is then found as a solution to
the optimization problem concerning some measure of non-gaussianity. Oja
et al. [14] proposed a method that is based on the use of two different scat-
ter matrices that both have the independence property. Thus, the concept
of independence is used itself to solve the ICA problem.

The plan of this paper is as follows. In Section 2 the scatter matrix
estimators based on pairwise differences are introduced and their basic prop-
erties are discussed. The influence functions are derived in Section 3 and
the limiting distribution as well as numerical values for the asymptotic and
finite-sample efficiencies are given in Section 4. The paper is concluded with
some final comments in Section 5.

2 Definitions and basic properties

Throughout the paper we assume that the k-variate random variables x
with cumulative distribution function (cdf) Fx are continuous implying that
P (aTx+ b = 0) = 0 for all k-vectors a and scalars b. A scatter functional is
denoted by C(·) and is defined as follows.

Definition 1. A k × k matrix valued functional C(·) is a scatter matrix if
it is symmetric, positive definite and affine equivariant in the sense that, for
any nonsingular k × k matrix A and k-vector b, C(FAx+b) = AC(Fx)AT .
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We also assume that the scatter matrix functional C(·) can be applied
to the empirical distribution function Fn. The resulting estimator is then
denoted by Ĉ = C(Fn).

Consider now two independent vectors x1 and x2 with the same distri-
bution F and their difference x1 − x2.

Definition 2. A symmetrised scatter functional CS(·) is a symmetrised ver-
sion of a scatter matrix functional C(·) defined by CS(F ) = C(Fx1−x2) where
x1 and x2 are independent random vectors with cdf F .

A symmetrised scatter functional is indeed a scatter functional as it is
affine equivariant, symmetric and positive definite. See Oja et al. [14]. The
symmetrised version of a scatter estimator is obtained by replacing Fx1−x2

in the above definition with the empirical distribution function of pairwise
differences of the observations or, alternatively, using pairwise differences in-
stead of the observations in the original scatter estimator. Such an estimator
is often asymptotically equivalent to a U-statistic. See Chapter 5 in Serfling
[16].

Note that in the elliptically symmetric case the distribution of the differ-
ence is also elliptically symmetric with the scatter parameter proportional
to the original scatter parameter. Thus both the original and symmetrised
versions of any given estimator estimate the same population quantity, up to
a constant.

The following theorem and its corollary show an important property of
the symmetrised scatter functionals.

Theorem 1. Let C(·) be a scatter matrix functional and F be the cdf of a
random vector with symmetric and independent components. Then C(F ) is
diagonal.

The following corollary is implied by the fact that x1 − x2 always has
symmetric components.

Corollary 1. A symmetrised scatter matrix functional CS(·) has the indepen-
dence property, that is, when F is the cdf of a random vector with independent
components, CS(F ) is diagonal.

As a special case of symmetrised scatter matrices, we will consider in
the following the so called symmetrised M-estimators, which from now on
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will be denoted by C(·). Let x1, . . . ,xn be a random sample from a k-
variate elliptical distribution. For a simplicity, write zij(C) = C−1/2(xi−xj),
rij(C) = ||zij(C)|| and uij(C) = ||zij(C)||−1zij(C), 1 ≤ i < j ≤ n, where C
is a positive definite symmetric k × k matrix.

As in the regular M-estimation, we consider three different types of sym-
metrised M-estimators:

Definition 3. Let C be a positive definite symmetric k × k matrix. The
symmetrised M-estimator of scatter Ĉ is (i) the choice of C that minimizes

(
n

2

)
−1∑∑

i<j

ρ(rij(C)) +
1

2
log |C|, (5)

or (ii) the choice that solves

(
n

2

)
−1∑∑

i<j

{
w(rij(C))uij(C)uT

ij(C)− Ik

}
= 0, (6)

or (iii) the choice that solves

(
n

2

)
−1∑∑

i<j

{
w1(rij(C))uij(C)uT

ij(C)− w2(rij(C))Ik

}
= 0, (7)

where ρ, w, w1 and w2 are real-valued functions on [0,∞).

If w(r) = ρ′(r)r, then the estimators (5) and (6) coincide. If w = w1 and
w2(r) = 1, estimators (6) and (7) are the same. Kent and Tyler [9, 10] con-
sidered a class of M-estimates of scatter that minimize the objective function
for a given function ρ. The existence and uniqueness of so called redescend-
ing M-estimates and constrained M-estimates was proved under very light
conditions on function ρ and the observed sample. In [10], the existence
and uniqueness of CM-functionals was also shown and the asymptotic dis-
tributions were derived. Further, Tatsuoka and Tyler [17] and Kent and
Tyler [11] considered the uniqueness of different M-functionals under broad
class of symmetric distributions.

The symmetrised M-estimator based on the estimation equation (7) is
indeed the same as for the regular M-estimators of scatter by Huber [7], Sec-
tion 8.4, with the exception that pairwise differences are used. This removes
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the need for any explicit location vector in the definition. The existence and
uniqueness of a solution then follow from Huber’s corresponding proofs for
the case of known location in Section 8.6, taking into account that what is
needed of the sample is now needed of the set of pairwise differences of the
sample. The assumptions used in Huber’s proof for the existence are, using
the current notation, as follows:

(E-1) w1(r)/r
2 is decreasing, and positive when r > 0

(E-2) w2(r) is increasing, and positive when r ≥ 0

(E-3) w1(r) and w2(r) are bounded and continuous

(E-4) w1(0)/w2(0) < k

(E-5) For any hyperplane H, let P (H) be the fraction of pairwise differences
belonging to that hyperplane.

(i) For all hyperplanes H, P (H) < 1− kw2(∞)/w1(∞)

(ii) For all hyperplanes H, P (H) ≤ 1/k

For the proof of uniqueness the following assumptions are needed:

(U-1) w1(r)/r
2 is decreasing

(U-2) w1(r) is continuous and increasing, and positive when r > 0

(U-3) w2(r) is continuous and decreasing, non-negative, and positive when
0 ≤ r < r0 for some r0

(U-4) For all hyperplanes H P (H) < 1/2

Because of assumptions (E-2) and (U-3), to prove both the existence and
uniqueness simultaneously the second weight function w2 has to be constant.
This is, however, not a necessary condition, since in case of several solutions,
some rule for choosing the solution can be used. Therefore, in this paper
w2 is not assumed to be a constant. Further, for the influence function
and asymptotic normality the existence of Taylor expansions of the weight
functions and certain expectations are needed. These are assumed implicitly
as the question is mostly technical.
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To find a solution to the estimating equation an iterative algortihm of
the form

C ←
∑∑

i<j{w1(rij(C))zij(C)zT
ij(C))}

∑∑
i<j{w2(rij(C))} ,

can be used. This is similar to one commonly used to find regular M-estimates
(see Huber [7]).

The symmetrised M-functional C(F ) corresponding to Ĉ is defined as the
solution of

E
[
w1(r12(C(F )))u12(C(F ))uT

12(C(F ))− w2(r12(C(F )))Ik

]
= 0, (8)

where x1,x2 ∼ F are independent. The proofs for the existence and unique-
ness of C(F ) are as those for the estimator, with the exception that in
assumptions (E-5) and (U-4) the probability of a hyperplane P (H) is ac-
cording to the true distribution of the differences. To guarantee the Fisher-
consistency of C(F ) to Σ under the specific elliptical distribution F , the M-
functional C(F ) should be uniquely defined at F and in addition the weight
functions w1 and w2 should be scaled so that, for that specific F ,

E[w1(r12(Σ))] = kE[w2(r12(Σ)))]. (9)

In this paper, we will consider the following M-estimators in more detail:

(i) Weight functions w1(r) = r2 and w2(r) = 2 yield the regular sample
covariance matrix.

(ii) The choices w1(r) = k and w2(r) = 1 and an additional condition that
Tr(C) = k give the estimator already introduced by Dümbgen [2]. This
is the symmetrised version of Tyler’s [21] M-estimator.

(iii) The weight functions for symmetrised Huber’s M-estimator are given
by w2(r) = 1 and

w1(r) =

{
r2/σ2, r2 ≤ c2

c2/σ2, r2 > c2,

where c is a tuning constant defined so that q = Pr(χ2
k ≤ c2/2) for a

chosen q. The scaling factor σ is such that E[w(‖x1−x2‖)] = k, where
x1,x2 ∼ Nk(0, Ik). For the relationship between the tuning constant
and asymptotic breakdown point of regular M-estimator, see Tyler [20].
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Note that the assumptions (E-1) to (E-5) and (U-1) to (U-4) hold for the
symmetrised Huber’s M-estimator but (E-4) does not hold for the Dümbgen’s
estimator. However, as the symmetrised version of Tyler’s M-estimator, it
does exist and is unique.

3 Influence functions

The influence function measures the robustness of a functional T against a
single outlier, that is, the effect of contamination by a distribution with its
whole probability mass located at a single point x (see Hampel et al. [4]).
Consider hereafter the contaminated distribution

Fε = (1− ε)F + ε∆x,

where ∆x is the cdf of a distribution with probability mass one at a singular
point x. Then the influence function of T is defined as

IF (x; T, F ) = lim
ε→0

T (Fε)− T (F )

ε
.

Hampel et al. [4] showed that, for any scatter functional C(F ), the influ-
ence function of C at a spherical F0, symmetric around the origin and with
C(F0) = Ik, is given by

IF (x; C, F0) = αC(‖x‖)xx
T

‖x‖2 − βC(‖x‖)Ik, (10)

where αC and βC are two real valued functions (depending on F0). It can be
seen that function αC measures the effect of an outlier on the off-diagonal
element of C, while the influence function of a diagonal element of C depends
on both αC and βC . For robust estimator αC and βC should be continuous
and bounded.

It is worth noting that the influence function of a symmetrised M-functional
is not the same as the influence function of the corresponding regular M-
functional on the symmetrised distribution. Instead, for the symmetrised
M-functional defined in (8), we obtain the following.

9



Theorem 2. Assume that a symmetrised M-functional C(·) is Fisher-consistent.
Then at spherical F0, its influence function is given by

αC(‖x‖) =
1

η1
Ex1

[
w1(‖x1 − ‖x‖e1‖)

(
1− k(x1)

2
2

‖x1 − ‖x‖e1‖2
)]

βC(‖x‖) =
1

k
αC(‖x‖) +

1

η2

Ex1

[
w2(‖x1 − ‖x‖e1‖)−

1

k
w1(‖x1 − ‖x‖e1‖)

]
,

if η2 6= 0, where (x1)2 denotes the second component of x1, e1 = (1, 0, . . . , 0)T

and

η1 =
E[w′

1(‖x1 − x2‖)‖x1 − x2‖+ kw1(‖x1 − x2‖)]
2k(k + 2)

,

η2 =
E[w′

1(‖x1 − x2‖)‖x1 − x2‖ − k2w′

2(‖x1 − x2‖)‖x1 − x2‖]
4k

,

where x1 and x2 are independent and have the distribution F0. Additionally,
if the symmetrised M-functional C(·) has a fixed trace Tr(C(F )) = k then
αC is as before and βC = αC/k.

Note that βC = αC/k holds for other estimators with fixed trace, like
Tyler’s M-estimator, as well and not just for symmetrised M-estimators.
Figure 1 illustrates functions αC and βC for the sample covariance matrix,
Dümbgen’s estimator, Tyler’s M-estimator, the regular Huber’s M-estimator
with q = 0.94 and the symmetrised Huber’s M-estimator with q = 0.72
at the bivariate standard normal distribution. The values for q in both
Huber’s M-estimators are chosen so that the asymptotic relative efficiency
with respect to the regular sample covariance matrix is 0.95 under normal
distribution model (see Section 4). The influence function for regular Huber’s
M-estimator is given in Huber [7] and for Tyler’s M-estimator, αC(r) = k+2
(Ollila et al. [15]).

As seen in Figure 1, functions αC and βC of regular Huber’s M- and Tyler’s
M-estimator are clearly continuous and bounded. The boundedness of the
influence functions of symmetrised Huber’s M- and Dümbgen’s estimators is
implied by the following theorem.

Theorem 3. The functions αC and βC of a symmetrised M-estimator are
bounded when the weight functions w1 are w2 are bounded.
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Figure 1: Functions αC and βC for sample covariance matrix, symmetrised
Huber’s M-, Dümbgen’s estimator, regular Huber’s M- and Tyler’s M-
estimator at the bivariate standard normal distribution.

4 Limiting distributions and efficiencies

In this section we give the asymptotic distribution of symmetrised M-estimators
and consider their efficiency properties. In Maronna [13], the consistency and
asymptotic normality of regular M-estimators of location and scatter were
proven partly based on Huber’s [6] results. In Huber’s approach, it is assumed
that the objective function is BASED ON?? the sum of i.i.d observations,
therefore his results cannot be applied here. Arcones et al. [1] extended Hu-
ber’s results to the case where the objective function is a U-process. In their
paper, the asymptotic normality of estimators based on such a U-process is
proven under some technical conditions. These results can be applied to the
estimator defined via the objective function (5). The proofs for the estimators
based on the estimating equations (6) are still to be done.

Next we give the result of asymptotic normality of symmetrised M-estimators
assuming that our estimator is

√
n-consistent. In this paper, the problem of

consistency is left open.

Theorem 4. Let x1, . . . ,xn be a random sample from a k-variate spherical
distribution F0 and denote Ĉ = C(Fn) where Fn is the empirical distribution
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function of the sample. Assume that Ĉ is
√

n-consistent, then

√
n vec(Ĉ − Ik)→d Nk(0, E[vec(IF (x; C, F0))vec(IF (x; C, F0))

T ]).

According to Tyler [18], the covariance matrix of a scatter matrix in the
spherical case may be written as

ASV (Ĉ12; F0)(Ik2 + Ik,k) + ASC(Ĉ11, Ĉ22; F0)vec(Ik)vec(Ik)
T ,

where Ik,k is a k2 × k2 matrix with (i, j)-block being equal to a k × k ma-

trix that has 1 at entry (j, i) and zero elsewhere, ASV (Ĉ12; F0) denotes the

asymptotic variance of any off-diagonal element and ASC(Ĉ11, Ĉ22; F0) the
covariance of any two diagonal elements. Here, these variances and covari-
ances are as in the following corollary to Theorem 4.

Corollary 2. In the k-variate spherical case the asymptotic variance of any
off-diagonal element of a symmetrised M-estimator Ĉ is

ASV(Ĉ12; F0) =
1

k(k + 2)
Ex2

[
1

η2
1

Ex1

[
w1(‖x1 − x2‖)

(
1− ‖x1‖2
‖x1 − x2‖

)]2
]

,

the asymptotic variance of any diagonal element, if η2 6= 0, is

ASV(Ĉ11; F0) =
2(k − 1)

k
ASV(Ĉ12; F0)

+
1

k2
Ex2

[
1

η2
2

Ex1
[w1(‖x1 − x2‖)− kw2(‖x1 − x2‖)]2

]

and the asymptotic covariance between any two distinct diagonal elements is

ASC(Ĉ11, Ĉ22; F0) = ASV (Ĉ11; F0)− 2ASV (Ĉ12; F0).

Note that due to the affine equivariance of Ĉ and properties of vec-
operator and Kronecker product, the limiting distribution of

√
n vec(Ĉ −C)

at elliptical F is multivariate normal with zero mean and covariance matrix

ASV (Ĉ12; F0)(Ik2 + Ik,k)(C ⊗ C) + ASC(Ĉ11, Ĉ22; F0)vec(C)vec(C)T ,

where ASV (Ĉ12; F0) and ASC(Ĉ11, Ĉ22; F0) are as in Corollary 2.
It should be noted that the assumption about condition (9) is essential.

The limiting distribution when that condition does not hold could also be
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given but this is not sensible as in practice the real underlying distribution
is unknown. Because of this, the estimators are tuned under one reference
distribution, usually the normal distribution. Different scatter matrix esti-
mators are thus comparable only in the normal distribution case. For other
elliptical distributions, a correction factor is needed in order to have Fisher
consistency towards Σ and further to make scatter matrices comparable.

In the following we compare limiting efficiencies of different M-estimators.
To circumvent the problem of Fisher consistency, we compare different shape
matrix estimators instead of scatter matrices. The shape matrix functional
V (·) associated with the scatter functional C(·) is defined by

V (F ) =
k

Tr(C(F ))
C(F ).

Note that both Dümbgen’s and Tyler’s estimators estimate the shape with-
out any modifications. At elliptical F , all shape estimators estimate the
same population quantity and are comparable without any correction fac-
tors. Moreover, in most applications it is enough to estimate the scatter only
up to a constant. The limiting distribution of

√
n vec(V̂ −V ) at elliptical dis-

tribution is given by the following theorem; the result follows from Theorem
1 in Tyler [19].

Theorem 5. Let Ĉ be a scatter matrix and V̂ = (k/Tr(Ĉ))Ĉ the associated

shape matrix. The limiting distribution of
√

n vec(V̂ − V ) at elliptical F is
multinormal with asymptotic covariance matrix

τ1

(
Ik2 − 1

k
vec(V )vec(Ik)

T

)
(Ik2 + Kk)(V ⊗ V )

(
Ik2 − 1

k
vec(Ik)vec(V )T

)
,

where τ1 = ASV (V̂12; F0).

The limiting distribution of the shape matrix estimator is thus character-
ized by one single number, that is, the variance of any off-diagonal element
of V̂ at spherical F0 (Ollila et al. [15]). The asymptotic relative efficien-
cies of shape matrix estimators are in turn ratios of these variances. The
variance of an off-diagonal element of the Tyler’s estimate is (k + 2)/k, for
the shape estimate based on regular Huber’s estimate see Huber [7], Section
8.7. To find the variances of the off-diagonal elements of the symmetrised
M-estimators considered here we used a combination of numeric integration
and Monte Carlo simulation.
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Table 1 lists the limiting efficiencies of shape estimators based on the
regular Huber’s M-estimator and symmetrised Huber’s M-estimator with re-
spect to the shape estimator based on the regular sample covariance matrix,
or in other words the regular shape estimator. The efficiencies are consid-
ered under different t-distributions with selected values of dimensions k and
degrees of freedom ν, with ν = ∞ referring to the normal case. In order to
make the estimators comparable, the tuning parameter q was chosen so that
for both estimators, the resulting efficiency in the normal case with respect
to the regular shape estimator is 0.95. These values for q are 0.94, 0.91,
0.87 and 0.84 for the regular Huber’s M-estimator and 0.72, 0.56, 0.39 and
0.30 for the symmetrised Huber’s M-estimator, for dimensions 2, 3, 4 and 5,
respectively. In Table 2, the limiting efficiencies of the Tyler’s M-estimator
and its symmetrised version, the Dümbgen’s estimator, with respect to the
regular shape estimator are given. The distributions considered here are the
same as in Table 1.

Table 1: Asymptotic relative efficiencies of the shape estimators based on
regular Huber’s M-estimator (H) and symmetrised Huber’s M-estimator (S)
relative to the regular shape estimator at different t-distribution cases with
selected values of k and ν.

k = 2 k = 3 k = 4 k = 5
ν H S H S H S H S
5 2.21 2.37 2.27 2.53 2.32 2.59 2.36 2.65
6 1.54 1.63 1.58 1.71 1.60 1.75 1.63 1.78
8 1.22 1.26 1.24 1.33 1.27 1.34 1.27 1.36
15 1.04 1.06 1.04 1.10 1.05 1.10 1.06 1.11
∞ 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Table 1 shows that when shape estimators based on the regular and sym-
metrised Huber’s M-estimators are tuned to the same efficiency with respect
to the regular shape estimator, the symmetrised Huber’s M is more efficient
in the considered t-distribution cases. From Table 2 it can be seen that when
the Tyler’s M-estimator is symmetrised, the increase in efficiency is consider-
able under these distributions. The price to pay is a loss of some robustness,
see discussion in Section 5.

Table 3 lists the results of a small simulation study concerning finite
sample efficiencies of the same shape estimators as in Tables 1 and 2 with

14



Table 2: Asymptotic relative efficiencies of the shape estimators based on
Tyler’s M-estimator (T) and Dümbgen’s estimator (D) relative to the regular
shape estimator at different t-distribution cases with selected values of k and
ν.

k = 2 k = 3 k = 4 k = 5
ν T D T D T D T D
5 1.50 2.39 1.80 2.49 2.00 2.59 2.14 2.68
6 1.00 1.61 1.20 1.67 1.33 1.72 1.43 1.77
8 0.75 1.23 0.90 1.27 1.00 1.30 1.07 1.33
15 0.59 1.02 0.71 1.04 0.79 1.06 0.84 1.07
∞ 0.50 0.91 0.60 0.92 0.67 0.93 0.71 0.94

respect to the regular shape estimator. 1500 samples of three different sample
sizes and two different dimensions were drawn from t-distributions with 5 and
8 degrees of freedom and from the normal distribution. For every estimator
and distribution, the mean squared errors

MSE(V̂ij) =
1

1500

1500∑

k=1

(V̂
(k)
ij − Iij)

2

were computed for every off-diagonal element, that is, i 6= j (Iij is then of
course equal to zero). Since the off-diagonal elements have equal variances
and are uncorrelated, a further mean of their MSE’s was taken. The listed
finite sample efficiencies are then ratios of these means. The corresponding
asymptotic relative efficiencies (denoted by n =∞) from Tables 1 and 2 are
also listed for easy reference.

The results of the small sample study show that the convergence to the
limiting efficiency is reasonably fast in the case of ν = 8. In the case of
ν = 5 the convergence is clear but much slower. Especially for small sample
sizes, the loss in efficiency is remarkable, but also in the case n = 200, the
efficiencies are far from the asymptotical ones. In the normal case the finite
sample and the limiting efficiencies are naturally the same.
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Table 3: Finite sample efficiencies of the shape estimators based on sym-
metrised Huber’s M- (S), Huber’s M- (H), Dümbgen’s estimator (D), regular
Huber’s M- (H) and Tyler’s M-estimator (T) with respect to the regular
shape matrix

k = 3 k = 5
n S H D T S H D T
20 1.25 1.28 1.25 0.98 1.31 1.36 1.33 1.15

ν = 5 50 1.48 1.48 1.50 1.12 1.59 1.60 1.60 1.38
200 1.78 1.77 1.80 1.35 1.93 1.93 1.95 1.72
∞ 2.53 2.27 2.49 1.80 2.65 2.36 2.68 2.14
20 1.10 1.13 1.07 0.83 1.12 1.15 1.12 0.92

ν = 8 50 1.19 1.18 1.17 0.83 1.20 1.20 1.19 0.99
200 1.22 1.21 1.21 0.84 1.26 1.24 1.26 1.04
∞ 1.33 1.24 1.27 0.90 1.36 1.27 1.33 1.07
20 0.96 0.99 0.91 0.62 0.96 0.94 0.99 0.71

ν =∞ 50 0.95 0.92 0.96 0.61 0.96 0.94 0.95 0.72
200 0.95 0.92 0.93 0.59 0.95 0.94 0.93 0.72
∞ 0.95 0.95 0.92 0.60 0.95 0.95 0.94 0.71

5 Final remarks

We have shown that the use of pairwise differences in M-estimation of scat-
ter may lead to increase in efficiency. Another benefit is the fact that the
location need not be estimated nor known. This offers one solution to the
problem of finding simultaneous M-estimates of location and scatter. Previ-
ously proposed algorithms either have restrictions on the weight functions or
do not have rigorous proofs of convergence, see Hettmansperger and Randles
[5]. Symmetrising the scatter estimator of an existing pair of estimators or
combining a symmetrised scatter estimator with a location estimator gives
a pair of affine equivariant location and scatter estimators with certainly
converging algorithms.

Symmetrised M-estimators of scatter were shown to have a property that
regular M-estimators in general do not. It is well known that when the com-
ponents of a random vector are independent, the regular sample covariance
matrix is diagonal. This is not true for M-estimators of scatter in general but
the symmetrisation of marginal distributions inherent in the symmetrised M-

16



estimators of scatter ensures it. This independence property can be used in
the so called independent component analysis (see Oja et al. [14]) to find a
random vector with independent components when only an unknown linear
mixing of it is observed. A new class of estimators using robust or non-
parametric estimators of scatter such as the symmetrised M-estimators of
scatter may be therefore used to solve this problem. However, it should be
noted that the forms of the influence function and the limiting distribution
derived in Section 4 apply only to the elliptic distribution family. Within
this family the only random variables with independent components are in
fact those with the spherical normal distribution and in that special case any
scatter functional is diagonal. The detailed analysis of symmetrised scatter
functionals under the so called IC-model, or the one containing distributions
with independent components and their affine transformations, is an open
question and will be studied in the future.

The breakdown properties of Dümbgen’s estimator have been studied
by Dümbgen and Tyler [3] and the breakdown point was found to be 1 −√

1− 1/k in case of special kind of contamination. If the type of contam-
ination is restricted, the breakdown point becomes 1/k, that is, the same
as for Tyler’s M-estimator. The breakdown behaviour of symmetrised M-
estimators in general is left open but it is apparent that when an estimator
is symmetrised, its breakdown point drops as a single outlier affects n − 1
pairwise differences. However, in the light of the efficiency studies in Section
4, it could be argued that a symmetrised version of a highly robust estimator
loses some of the robustness but gains efficiency instead.
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Appendix: Proofs of the results

Proof of Theorem 1. Assume that x is a random k-vector with indepen-
dent and symmetric components and let µ be the vector of symmetry centers.
Let I−

i be a k× k diagonal matrix that has −1 the ith diagonal element and
+1 as all other diagonal elements. Now because x− µ and I−

i (x− µ) have
the same distribution and C(·) is a scatter matrix functional it holds

C(Fx) = C(Fx−µ) = C(FI−
i

(x−µ)) = I−

i C(Fx)I−

i

for all i = 1, . . . , k, which implies that all off-diagonal elements of C(Fx) are
equal to their opposite, that is, are equal to zero.

To prove Theorem 2, we need the following Lemma.

Lemma 1. Assume that x1 is a random vector with a spherical distribution
F0 and for an arbitrary x write x = ru, where r = ||x|| and u = ||x||−1x.
Then

M(x) : = Ex1

[
w1(‖x1 − x‖)

(x1 − x)(x1 − x)T

‖x1 − x‖2
− w2(‖x1 − x‖)Ik

]

= (m(r)− kg(r))uuT + g(r)Ik,
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where
m(r) = Ex1 [w1(‖x1 − re1‖)− kw2(‖x1 − re1‖)]

and

g(r) = Ex1

[
w1(‖x1 − re1‖)

(x1)
2
2

‖x1 − re1‖2
− w2(‖x1 − re1‖)

]
,

where in turn (x1)2 and e1 are as in Theorem 2.

Proof of Lemma 1. First consider the case x = re1. Due to spherical
symmetry of x1 M(re1) is diagonal and all diagonal elements except the
first are equal to

g(r) := Ex1

[
w1(‖x1 − re1‖)

(x1)
2
2

‖x1 − re1‖2
− w2(‖x1 − re1‖)

]
.

The trace of M(re1) is equal to

m(r) := Ex1 [w1(‖x1 − re1‖)− kw2(‖x1 − re1‖)] .

Now, the first diagonal element is equal to m(r)− (k − 1)g(r) and so

M(re1) = (m(r)− kg(r))e1e
T
1 + g(r)Ik.

For an arbitrary x there exists an orthogonal matrix A such that x = A(re1).
Note that x1 and Ax1 have the same distribution and that ‖As‖ = ‖s‖ for
any vector s. We then have that

M(x) = AM(re1)A
T = (m(r)− kg(r))uuT + g(r)Ik.

Proof of Theorem 2. Inserting Fε = (1− ε)F0 + εδx to equation (8) (and
adopting the convention that 0/0 = 0) and taking the derivative with respect
to ε at ε = 0 yields to

∂

∂ε
E
[
w1(r12(C(Fε)))u12(C(Fε))u

T
12(C(Fε))− w2(r12(C(Fε)))Ik

] ∣∣∣∣
ε=0

− 2E
[
w1(r12(C(Fε)))u12(C(Fε))u

T
12(C(Fε))− w2(r12(C(Fε)))Ik

] ∣∣∣∣
ε=0

+ 2E
[
w1(rx(C(Fε)))ux(C(Fε))u

T
x(C(Fε))− w2(rx(C(Fε)))Ik

] ∣∣∣∣
ε=0

= 0,
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where rx(C(Fε)) = ‖C(Fε)
−1/2(x1−x)‖C(Fε)

and ux(C(Fε)) = rx(C(Fε))
−1 C(Fε)

−1/2(x1−
x). In the following, write IF (x; C, F0) = IF (x) for simplicity. Note that
the second term above is equal to zero. Now (assuming that the order of
differentiation and integration can be changed) one has that

E

[
w1(‖x1 − x2‖)

(x1 − x2)(x1 − x2)
T (x1 − x2)

T IF (x)(x1 − x2)

‖x1 − x2‖4
]

− E

[
w1(‖x1 − x2‖)

(x1 − x2)(x1 − x2)
T IF (x) + IF (x)(x1 − x2)(x1 − x2)

T

2‖x1 − x2‖2
]

− E

[
w′

1(‖x1 − x2‖)‖x1 − x2‖
(x1 − x2)(x1 − x2)

T (x1 − x2)
T IF (x)(x1 − x2)

2‖x1 − x2‖4
]

+ E

[
w′

2(‖x1 − x2‖)‖x1 − x2‖
(x1 − x2)

T IF (x)(x1 − x2)

2‖x1 − x2‖2
Ik

]

+ 2E

[
w1(‖x1 − x‖)

(x1 − x)(x1 − x)T

‖x1 − x‖2
− w2(‖x1 − x‖)Ik

]
= 0.

Notice next that as x1 and x2 are spherically distributed, also x1 − x2 is
spherical, that is, ‖x1 − x2‖ and ‖x1 − x2‖−1(x1 − x2) are independent. To
simplify notations write r12 = ‖x1 − x2‖,

a =
E [w′

1(r12)r12 + kw1(r12)]

k(k + 2)

and

b =
E [w′

1(r12)r12 − 2w1(r12)− (k + 2)w′

2(r12)r12]

2k(k + 2)
.

Then using Lemma 1 together with

E

[
(x1 − x2)(x1 − x2)

T (x1 − x2)
T IF (x)(x1 − x2)

‖x1 − x2‖4
]

=
2IF (x) + Tr(IF (x))Ik

k(k + 2)

and

E

[
(x1 − x2)

T IF (x)(x1 − x2)

‖x1 − x2‖2
]

=
1

k
Tr(IF (x)),

the above equation simplifies to

a IF (x) = 2(m(‖x‖)− kg(‖x‖))uuT + 2g(‖x‖)Ik − b T r(IF (x))Ik. (11)
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Now taking the trace on both sides and solving Tr(IF (x)) we get Tr(IF (x)) =
2(a + bk)−1m(‖x‖) if a + bk is not zero. Together with (11) this gives

IF (x; C, F0) =
2

a
(m(‖x‖)−kg(‖x‖))uuT− 2

a

(
b

a + bk
m(‖x‖)− g(‖x‖)

)
Ik.

Denote next η1 = a/2 and η2 = (a + bk)/2. The result then follows using
Lemma 1. Note that if a + bk is zero then equation (11) is identically true
with respect to trace of the influence function. This means that the trace
and thus also βC cannot be found this way. On the other hand, if the trace
of C(F ) is known to be k then it is also known that Tr(IF (x; C, F0)) = 0.
Taking the trace in (11) shows that then also m(‖x‖) = 0 and so

IF (x; C, F0) =
2

a
(−kg(‖x‖))uuT +

2

a
g(‖x‖)Ik.

Proof of Theorem 3. It suffices to show the finiteness of

Ex1

[
w1(‖x1 − re1‖)

k(x1)
2
2

‖x1 − re1‖2
]

and since w1(‖x1 − re1‖) < K for some K it is sufficient to consider only

Ex1

[
(x1)

2
2

‖x1 − re1‖2
]

,

which is obviously finite since

0 ≤ (x1)
2
2 ≤ ‖x1 − re1‖2.

To prove Theorem 4, we need the following Lemma.

Lemma 2. Let xi, . . . ,xn be a sample from a spherically symmetric distri-
bution and write xij = xi − xj, rij = ‖xij‖ and uij = r−1

ij xij for simplicity.

Assume that the symmetrised M-estimator Ĉ is
√

n-consistent, then

√
n(Ĉ − Ik)

=
√

n

[(
n

2

)
−1∑∑

i<j

{
w1(rij)

2η1

(
uiju

T
ij −

η2 − η1

kη2
Ik

)
− w2(rij)

2η2
Ik

}]
+ op(1),

where η1 and η2 are as in Theorem 2.
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Proof of Lemma 2. At first, write C∗ =
√

n(Ĉ − Ik). Since Ĉ is
√

n-
consistent, C∗ is bounded in probability. Further,

Ĉ−1/2 = Ik −
1

2
√

n
C∗ + op(n

−1/2),

zij = Ĉ−1/2xij = xij −
1

2
√

n
C∗xij + op(n

−1/2)

and

zijz
T
ij

‖zij‖2
= uiju

T
ij +

1√
n
uT

ijC
∗uijuiju

T
ij −

1

2
√

n
(C∗uiju

T
ij + uiju

T
ijC

∗) + op(n
−1/2).

Using the Taylor series expansion, we get

w1(‖zij‖) = w1(rij)−
1

2
√

n
w′

1(rij)rij u
T
ijC

∗uij + op(n
−1/2)

and

w2(‖zij‖) = w2(rij)−
1

2
√

n
w′

2(rij)rij u
T
ijC

∗uij + op(n
−1/2)

Now (omitting the op(n
−1/2)-terms)

√
n

((
n

2

)
−1∑∑

i<j

{
w1(‖zij‖)

zijz
T
ij

‖zij‖2
− w2(‖zij‖)Ik

})

=
√

n

((
n

2

)
−1∑∑

i<j

{
w1(rij)uiju

T
ij − w2(rij)Ik

}
+

1√
n

w1(rij)u
T
ijC

∗uijuiju
T
ij

− 1

2
√

n
w1(rij)(C

∗uiju
T
ij + uiju

T
ijC

∗)− 1

2
√

n
w′

1(rij)rij u
T
ijC

∗uijuiju
T
ij

+
1

2
√

n
w′

2(rij)rij u
T
ijC

∗uij)

)
= 0.

Then proceeding as in the proof of Theorem 2, we get

√
n

((
n

2

)
−1∑∑

i<j

{
w1(rij)uiju

T
ij − w2(rij)Ik

}
)

= E

[
w1(rij)

k

]
C∗

− E

[
w′

2(rij)rij

2k

]
Tr(C∗)Ik + E

[
w′

1(rij)rij − 2w1(rij)

2k(k + 2)

]
(2C∗ + Tr(C∗)Ik)

= aC∗ + bT r(C∗)Ik.
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Now taking the trace on both sides and solving Tr(C∗) yields to Tr(C∗) =

(a + bk)−1
√

n
((

n
2

)
−1∑∑

i<j{w1(rij)− w2(rij)k}
)
. Therefore,

C∗ =
√

n(Ĉ − Ik)

=
√

n

[(
n

2

)
−1∑∑

i<j

{
w1(rij)

a

(
uiju

T
ij −

b

a + bk

)
− w2(rij)

a + bk
Ik

}]

and the result follows since η1 = a/2 and η2 = (a + bk)/2. Note that, for the
Dümbgen’s estimator, the terms including η2 reduce to zero and

√
n(Ĉ − Ik) =

√
n (k + 2)

(
n

2

)
−1∑∑

i<j

{
uiju

T
ij − k−1Ik

}
+ op(1).

Proof of Theorem 4. Lemma 2 shows that
√

n vec(Ĉ − Ik) has the same
limiting distribution as

√
nU , where

U =

(
n

2

)
−1∑∑

i<j

ϕ(xi,xj)

with

ϕ(x1,x2) =
1

2

(
w1(r12)

η1
vec(u12u

T
12)−

(
(η2 − η1)w1(r12)

kη1η2
+

w2(r12)

η2

)
vec(Ik)

)

= ϕ(x2,x1)

is a k2-variate U-statistic. A straightforward generalisation of univariate
result given in Lehmann [12], Appendix, states that

√
n(U − θ)→d Nk2(0, 4E[ψ(x)ψ(x)T ]),

where θ = E[ϕ(x1,x2)] and ψ(x) = Ex1 [ϕ(x1,x)] − θ. The subindex x1

means again that the expectation is with respect to x1. Here θ = 0 which
follows from noting that r12 and u12 are independent, E[u12u

T
12] = k−1Ik

and E[w2(r12)− k−1w1(r12)] = 0. The idea of finding ψ(x) is the same as in
Lemma 1, resulting in

ψ(x) =
1

2
IF (x; C, F0),
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from which the result follows.

Proof of Corollary 2. Using the same notation as in Theorems 2 and 4
and noting that ‖x‖ and ‖x‖−1x are independent it is possible to write the

asymptotic covariance matrix of Ĉ as

E[αC(‖x‖)2]E[vec(uuT )vec(uuT )T ]

− E[αC(‖x‖)βC(‖x‖)]E[vec(uuT )vec(Ik)
T + vec(Ik)vec(uuT )T ]

+ E[βC(‖x‖)2]vec(Ik)vec(Ik)
T .

Since E[uuT ] = k−1Ik and

E[vec(uuT )vec(uuT )T ] = (k(k + 2))−1(Ik2 + Ik,k + vec(Ik)vec(Ik)
T ),

the covariance matrix is equal to

1

k(k + 2)
E
[
αC(‖x‖)2

]
(Ik2 + Ik,k)

+ E

[(
1

k
αC(‖x‖)− βC(‖x‖)

)2

− 2

k

(
1

k(k + 2)
αC(‖x‖)2

)]
vec(Ik)vec(Ik)

T

Proof of Theorem 5. The result follows from Theorem 1 in Tyler [19].

Write τ1 = ASV (Ĉ12; F0) = ASV (V̂12; F0) and let V (C) = k vec(C)/Tr(C).
Then V (aC) = V (C) for all a > 0 and as V ′(C) = 1

2
{dV (C)/dvec(V )}(Ik2 +

Jk), where Jk =
∑k

i=1 eie
T
i ⊗ eie

T
i , one has that

V ′(C) =
1

2

[
k

Tr(C)
(Ik2 + Ik,k + Jk)−

k

Tr2(C)
vec(C)vec(Ik)

T

]
(Ik2 + Jk)

=
k

2 Tr(C)

[
Ik2 − 1

k
vec(V )vec(Ik)

T

]
(Ik2 + Ik,k) =:

k

2 Tr(C)
W (Ik2 + Ik,k).

Now Theorem 1 in [19] implies that the limiting distribution of
√

n vec(V̂ −V )
is multivariate normal with mean zero and asymptotic covariance matrix

ASC{
√

n vec(V̂ − V )} = 2τ1{V ′(C)}(V ⊗ V ){V ′(C)}T

=
τ1k

2

2 Tr2(C)
W (Ik2 + Ik,k)(C ⊗ C)(Ik2 + Ik,k)W

T

=
τ1

2
W (Ik2 + Ik,k)(V ⊗ V )(Ik2 + Ik,k)W

T = τ1W (Ik2 + Kk)(V ⊗ V )W T .

The last equality follows, since (V ⊗V )Ik,k = Ik,k(V ⊗V ) and (Ik2 + Ik,k)
2 =

2(Ik2 + Ik,k).
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