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Abstract

New test statistics are proposed for testing whether two random

vectors are independent. Gieser and Randles as well as Taskinen,

Kankainen and Oja introduced and discussed multivariate extensions

of the quadrant test by Blomqvist. This paper serves as a sequel to this

work and presents new multivariate extensions of Kendall’s tau and

Spearman’s rho statistics. Two different approaches are discussed:

First, interdirection proportions are used to estimate the cosines of

angles between centered observation vectors and between differences

of observation vectors. Second, covariances between affine equivariant

multivariate signs and ranks are used. The test statistics arising from

these two approaches appear to be asymptotically equivalent if each

vector is elliptically symmetric. The spatial sign versions are easy

to compute for data in common dimensions. They provide practical,

robust alternatives to normal theory methods. Asymptotic theory

is developed to approximate the finite-sample null distributions as

well as to calculate limiting Pitman efficiencies. Small sample null

permutation distributions are also described. A simple simulation

study is used to compare the proposed tests to the classical Wilks’

test. Finally, the theory is illustrated by an example.

KEY WORDS: Affine invariance, Kendall’s tau, Pitman efficiency,

Quadrant test, Robustness, Spearman’s rho

2



1 INTRODUCTION

In many problem settings multiple measurements are made on each experi-
mental unit, resulting in high dimension multivariate data. It is often of inte-
rest to explore potential relationships among subsets of these measurements.
For example, some measurements may represent attributes of psychological
characteristics while others represent attributes of physical characteristics.
It may be of interest to determine whether there is a relationship between
the psychological and the physical characteristics. This requires a test of
independence between pairs of vectors, where the vectors potentially have
different measurement scales and dimensions.

Let xT
i = (x

(1)T

i ,x
(2)T

i ) for i = 1, . . . , n denote a random sample of vec-

tor pairs, where x
(1)T

i is a continuous vector of dimension p and x
(2)T

i is a
continuous vector of dimension q. We seek to test:

H0: x
(1)
i and x

(2)
i are independent vs Ha: they are dependent.

The classical parametric test due to Wilks (1935) is based on

W =
|A|

|A11||A22|
,

where A =
∑n

i=1 (xi − x̄i) (xi − x̄i)
T is partitioned into Ast =

∑n
i=1(x

(s)
i −

x̄
(s)
i )(x

(t)
i − x̄

(t)
i )T for s, t = 1, 2. Under the assumption of multivariate nor-

mality, Wilks’ test is optimal, that is, the most efficient test. Under H0 with
finite fourth moments, −n logW →d χ

2
pq.

A nonparametric analogue to Wilks’ test was given by Puri and Sen
(1971). They developed a class of tests based on componentwise ranking
which use a test statistic of the form

SJ =
|T |

|T11||T22|
.

Here the elements of (p+ q) × (p+ q) matrix T are

Tst =
1

n

n∑

i=1

Js

(
Csi

n+ 1

)
Jt

(
Cti

n + 1

)
,

where Csi denotes the rank of the sth component of xi among the sth compo-
nents of all n vectors, Js and Jt are arbitrary (standardized) score functions
and T is partitioned in the same manner as in the Wilks’ test. Under H0,
−n log SJ →d χ

2
pq.
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Muirhead (1982) examined the effect of the group of transformations
{x → Ax + b} on this problem. Here b is a p + q vector and

A =

(
A1 0
0 A2

)

is an arbitrary nonsingular matrix with p × p matrix A1 and q × q matrix
A2. The Wilks’ test is invariant under this group of transformations. Thus
its performance does not depend on the variance-covariance structure of ei-
ther x

(1)
i or x

(2)
i . The test given by Puri and Sen is not invariant under this

group of transformations. Gieser and Randles (1997) proposed a nonpara-
metric test based on interdirection counts that generalized the univariate
(p = q = 1) quadrant test of Blomqvist (1950) and which is invariant under
this transformation group. Taskinen, Kankainen and Oja (2003a) proposed a
more practical invariant extension of the quadrant test based on spatial signs.
It is easy to compute for data in dimensions (say, less than 15) commonly
encountered in practice. These two invariant quadrant test extensions share
certain asymptotic properties, for example, their asymptotic efficiencies are
the same.

This paper develops tests which generalize the popular univariate tests
due to Kendall (1938) and Spearman (1904) to any dimensions (arbitrary p
and q). They have advantages over the quadrant test extensions in that they
do not require centering (subtracting a location estimator) and they generally
have better power properties than the quadrant test extensions. Moreover,
the spatial sign versions are easy to compute for data in common dimensions,
thus providing intuitive, practical, robust alternatives to multivariate normal
theory methods.

The univariate tests based on Kendall’s tau, Spearman’s rho and Blom-
qvist’s quadrant statistic are described in Section 2. Their multivariate ana-
logues based on interdirections are also sketched. In Section 3, the more prac-
tical versions of these tests based on spatial signs and ranks are described.
Section 4 shows their large sample properties under the null hypothesis as
well as under a sequence of alternatives under mild assumptions; e.g. even
the assumption of the existence of first moments can be avoided. Asymptotic
efficiencies are given and simulations are used to compare the finite sample
powers of these tests in section 5. In Section 6, the theory is illustrated by
an example and the paper is concluded with some comments in Section 7.
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2 ANALOGUES TO KENDALL’S TAU

AND SPEARMAN’S RHO

Consider the problem of measuring dependence within the components of
bivariate vectors. Let (x

(1)
i , x

(2)
i )T , i = 1, . . . , n, be a random sample from a

bivariate, continuous population. Using the univariate sign funtion S(x) =

sign(x) = −1, 0, 1 as x <,=, > 0, the sign of the univariate x
(1)
i is S

(1)
i =

S(x
(1)
i ) and the sign of the difference x

(1)
i − x

(1)
j is S

(1)
ij = S(x

(1)
i − x

(1)
j ). The

centered rank of x
(1)
i is described as R

(1)
i = avejS(x

(1)
i − x

(1)
j ), and the uni-

variate median µ̂(1) of the x
(1)
i ’s satisfies avejS(µ̂(1)−x(1)

j ) = 0. The centered

sign of x
(1)
i is then Ŝ

(1)
i = S(x

(1)
i − µ̂(1)). Using x

(2)
1 , . . . , x

(2)
n to define S

(2)
i ,

S
(2)
ij , R

(2)
i , µ̂(2) and Ŝ

(2)
i analogously, the popular nonparametric measures

of dependence are now conveniently expressed. They are the Blomqvist’s
quadrant statistic

Q = avei{Ŝ(1)
i Ŝ

(2)
i },

Kendall’s tau
τ = avei,j{S(1)

ij S
(2)
ij }

and Spearman’s rho

ρ = avei{R(1)
i R

(2)
i } = avei,j,k{S(1)

ij S
(2)
ik }.

The test statistics are thus covariances (or correlations) between centered
signs, signs of the pairwise differences, and centered ranks, respectively.

When correlating univariate pairs, the most interpretable feature is the
magnitude of the correlation, that is, the square of the correlation coefficent.
Multivariate measures of correlation provide analogues to

Q2 = ave{(Ŝ(1)
i Ŝ

(1)
i′ )(Ŝ

(2)
i Ŝ

(2)
i′ )},

τ 2 = ave{(S(1)
ij S

(1)
i′j′)(S

(2)
ij S

(2)
i′j′)}

and
ρ2 = ave{(S(1)

ij S
(1)
i′j′)(S

(2)
ik S

(2)
i′k′)},

where the averages are computed over all possible indices. We can now inter-
pret Ŝ

(1)
i Ŝ

(1)
i′ and S

(1)
ij S

(1)
i′j′, for example, as the cosines of the angles between

x
(1)
i − µ̂(1) and x

(1)
i′ − µ̂(1) and between x

(1)
i −x

(1)
j and x

(1)
i′ −x

(1)
j′ , respectively.

In the univariate cases, the cosine values are +1 or −1.
In (1989) Randles used so called interdirection proportions to estimate

the cosines of angular distance between two vectors relative to the positions of
the other vectors. In the current context, for example, the cosine of the angle
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between x
(1)
i −x

(1)
j and x

(1)
i′ −x

(1)
j′ could be measured with cos(πp(1)(i, j; i′, j ′))

where p(1)(i, j; i′, j ′) represents the fraction of hyperplanes formed by dif-

ferences x
(1)
i∗ −x

(1)
j∗ and 0 such that x

(1)
i −x

(1)
j and x

(1)
i′ −x

(1)
j′ are on opposite

sides of the hyperplane. (Here i∗ and j∗ would not use any of {i, j, i′ or j ′}).
Defining similar proportions among x(2) vector differences, yields

τ 2
1 = ave{cos(πp(1)(i, j; i′, j ′)) cos(πp(2)(i, j; i′, j ′))}

and
ρ2

1 = ave{cos(πp(1)(i, j; i′, j ′)) cos(πp(2)(i, k; i′, k′))}
as natural multivariate analogues to Kendall’s τ 2 and Spearman’s ρ2, re-
spectively. Also here the averages are computed over all possible indices.
Kendall’s tau and Spearman’s rho analogues provide natural counterparts to
the quadrant test analogue

Q2
1 = ave{cos(πp̂(1)(i; i′)) cos(πp̂(2)(i; i′))},

which was studied by Gieser and Randles (1997), where, for example, p̂(1)(i; i′)

is the fraction of hyperplanes formed by p− 1 vectors x
(1)
i∗ − µ̂

(1) and 0 such

that x
(1)
i − µ̂

(1) and x
(1)
i′ − µ̂

(1) are on opposite sides of the hyperplane, where
i∗ is not equal to either i or i′. Here the observations are centered on some
affine equivariant location estimator µ̂

(1) based on x
(1)
1 , . . . ,x

(1)
n , for example,

the Oja (1983) median or the transformation retransformation spatial median
(Hettmansperger and Randles, 2002). The Kendall and Spearman analogues
do not require centering on a location estimator.

While Q2
1, τ

2
1 and ρ2

1 are meaningful extensions of the quadrant test statis-
tic, Kendall’s tau and Spearman’s rho, respectively, they are difficult to com-
pute if either p or q exceed 2. More practical extensions are described in the
next section.

3 TESTS BASED ON SPATIAL SIGNS

AND RANKS

Intuitive, computationally convenient extensions of Kendall’s and Spear-
man’s statistics can be created using notions of spatial signs and spatial
centered ranks as developed in Möttönen and Oja (1995). To make the re-
sulting correlation measures affine invariant, the data points are transformed
before spatial signs and ranks are formed. Consider a sample x1, . . . ,xn

where each vector is of dimension k. The data points are transformed into
zi = V̂ −1/2(xi − µ̂) where µ̂ is an affine equivariant location estimator and

V̂ is a shape matrix estimate.
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Definition 1. V̂ is called a shape matrix estimate, if it is a positive
definite k×k matrix with Tr(V̂ ) = k and affine equivariant in the sense that

if V̂ ∗ is calculated from Axi + b, i = 1, . . . , n, then

V̂ ∗ =
k

Tr(AV̂ AT )
AV̂ AT ,

for every k×k nonsingular matrix A and k vector b. Here Tr(·) denotes the
trace.

The spatial sign function is defined as

S(x) =

{
‖x‖−1x, x 6= 0

0, x = 0,

where ‖x‖ = (xT x)1/2 is the (Euclidean) length of the vector x. Applying the
spatial sign function to the transformed data points produces standardized

sign vectors Ŝi = S(zi) and Ŝij = S(zi − zj). The standardized rank

vector is then R̂i = avejŜij. Because the Ŝij’s and R̂i’s are based on
differences, they do not depend on µ̂ at all, unless it plays a role in the
computation of V̂ . The following is proved in the Appendix A.

Lemma 1. The standardized sign vectors Ŝi and Ŝij and standardized rank

vector R̂i are affine equivariant (and location invariant) in the sense that if

Ŝ
∗

i , Ŝ
∗

ij and R̂
∗

i are calculated from Axi+b, i = 1, . . . , n, then Ŝ
∗

i = P Ŝi and

Ŝ
∗

ij = P Ŝij and R̂
∗

i = P R̂i, where P = (AV̂ AT )−1/2AV̂ 1/2 is orthogonal.

The multivariate extension of Kendall’s tau is created by forming sign

vectors Ŝ
(1)

ij based on the first components x
(1)
1 , . . . ,x

(1)
n , transformed by a

shape matrix estimate V̂ (1) chosen so that

p avei,j{Ŝ
(1)

ij Ŝ
(1)T

ij } = Ip,

where Ip is the p × p identity matrix. This is the transformation studied

by Tyler (1987) only computed on differences x
(1)
i −x

(1)
j . See also Dümbgen

(1998). With this choice, the Ŝ
(1)

ij ’s do not depend on µ̂
(1) at all. Similarly, q-

dimensional sign vectors Ŝ
(2)

ij are formed based on x
(2)
1 , . . . ,x

(2)
n transformed

by a V̂ (2) chosen to satisfy

q avei,j{Ŝ
(2)

ij Ŝ
(2)T

ij } = Iq.
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The multivariate Kendall’s tau squared is then

τ 2
2 = ||avei,j{Ŝ

(1)

ij Ŝ
(2)T

ij }||2,

where ‖ · ‖2 = Tr(·T ·) is the squared matrix norm. τ 2
2 is not the same as

τ 2
1 , but like τ 2

1 it can be described as a correlation of cosines. Unlike τ 2
1 , the

statistic τ 2
2 is easily computed for data in common dimensions.

The multivariate extension of Spearman’s rho uses R̂
(1)

i based on the first

components x
(1)
1 , . . . ,x

(1)
n transformed by a shape matrix V̂ (1) chosen so that

p avei{R̂
(1)

i R̂
(1)T

i } = avei{R̂
(1)T

i R̂
(1)

i }Ip.

See Visuri, Oja and Koivunen (2000) for the development of these rank co-

variance matrices. With this choice, the rank vectors R̂
(1)

i do not depend on

µ̂
(1) in any way.

With analogous descriptions of the q-dimensional rank vectors R̂
(2)

i , the
multivariate Spearman’s rho squared is then

ρ2
2 = ||avei{R̂

(1)

i R̂
(2)T

i }||2.

It is not the same as ρ2
1, but it has a similar interpretation as a correlation of

cosines. The statistic ρ2
2 is easy to compute for data in common dimensions.

This property makes it much more practical than ρ2
1.

The quadrant statistic of Taskinen et al. (2003a) uses p-dimensional stan-

dardized sign vectors Ŝ
(1)

i based on x
(1)
1 , . . . ,x

(1)
n with µ̂

(1) and V̂ (1) chosen
to satisfy

avei{Ŝ
(1)

i } = 0 and p avei{Ŝ
(1)

i Ŝ
(1)T

i } = Ip.

The estimates µ̂
(1) and V̂ (1) are the transformation retransformation spatial

median and Tyler’s shape estimate as proposed in Hettmansperger and Rand-
les (2002). With analogous descriptions of the q-dimensional standardized

signs Ŝ
(2)

i , the Taskinen et al. test is based on the statistic

Q2
2 = ||avei{Ŝ

(1)

i Ŝ
(2)T

i }||2.

Again, Q2
2 is much easier to compute than Q2

1 and is therefore more practical.

4 LIMITING DISTRIBUTIONS

To establish a large sample distribution for the statistics described in Sec-
tion 3, we first examine their behaviour under the null hypothesis condition
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that x(1) is independent from x(2). Assume now that x(1) has a continuous
elliptically symmetric distribution with density function of the form

f(x(1)) = |Σ1|−1/2 exp
{
−Ψ1

(
||Σ−1/2

1 (x(1) − µ1)||
)}

,

where µ1 denotes the location of the distribution and Σ1 defines the shape
of its contours. Similarly assume that x(2) has an elliptically symmetric
distribution with density

g(x(2)) = |Σ2|−1/2 exp
{
−Ψ2

(
||Σ−1/2

2 (x(2) − µ2)||
)}

.

In the following we also need to assume that the location and shape estimates
used in the standardization are

√
n-consistent. Note that, if for example the

standardization for τ 2
2 and ρ2

2 is based on Dümbgen’s (1998) shape estimate,
no assumptions on the existence of first moments of f and g are needed.

Under above assumptions, and under contiguous alternatives, the statis-
tics τ 2

1 and τ 2
2 , ρ2

1 and ρ2
2 and Q2

1 and Q2
2 are asymptotically equivalent within

each pair, respectively:

Theorem 1. Under the null hypothesis with elliptically symmetric marginal

distributions, n(τ 2
1 − τ 2

2 )
P−→ 0, n(ρ2

1 − ρ2
2)

P−→ 0 and n(Q2
1 −Q2

2)
P−→ 0.

Also small sample simulations showed only minor differences in the per-
formance of the statistics within each pair. Thus, in what follows, we examine
exclusively the more practical versions τ 2

2 , ρ2
2 and Q2

2.

Theorem 2. Under the null hypothesis assumptions described above, the
limiting distributions of

npq

4c2F c
2
G

τ 2
2 ,

npq

c2F c
2
G

ρ2
2 and npq Q2

2

are chi-squared distributions with pq degrees of freedom. The constants c2
F

and c2G depend on the marginal distributions F and G, respectively.

The constants c2F and c2G depend on the underlying distributions Ψ1 and
Ψ2, that is, the distributions of the respective standardized component ra-
dius. When Σ1 = I, the centered rank function is RF (x) = EF [S(x−x

(1)
i )].

Letting x = ru, where r = ||x|| and u = S(x), RF (ru) = qF (r)u, for
some bounded increasing function qF (r). The constant c2F = EF [q2

F (r)] and
c2G is analogously defined. See Appendix B for expressions of c2F at selected
distributions. To use τ 2

2 and ρ2
2 as test statistics for detecting correlation,

obviously the constants c2F and c2G must be consistently estimated since they
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depend on the respective marginal distributions. Fortunately, this is not
difficult since convergent estimates

ĉ 2
F = avei{R̂

(1)T

i R̂
(1)

i } and ĉ 2
G = avei{R̂

(2)T

i R̂
(2)

i }

are readily available.
To consider and compare the efficiencies of different test statistics, we next

derive the limiting distributions of τ 2
2 , ρ2

2 and Q2
2 under certain contiguous

alternative sequences. We use similar sequences of alternatives as Gieser and
Randles (1997) and Taskinen et al. (2003a): Let x

(1)
i and x

(2)
i be independent

with spherical marginal densities exp{−Ψ1(||x(1)||)} and exp{−Ψ2(||x(2)||)}
and write, for some choices of M1 and M2,

(
y

(1)
i

y
(2)
i

)
=

(
(1 − ∆)Ip ∆M1

∆M2 (1 − ∆)Iq

)(
x

(1)
i

x
(2)
i

)
, (1)

with ∆ = δ/
√
n. Let f∆ be the density of (y

(1)T

i ,y
(2)T

i )T . The optimal
likelihood ratio test statistic for testing H0 against H∆ is then

L =
n∑

i=1

{log f∆(y
(1)
i ,y

(2)
i ) − log f0(y

(1)
i ,y

(2)
i )}.

We need the general assumption that, under the null hypothesis,

L =
√
nδK − 1

2
δ2σ2 + oP (1) (2)

where K = avei{ki} = avei{k(y(1)
i ,y

(2)
i )} with E(ki) = 0 and V ar(ki) = σ2 is

bounded. This should be checked separately in each case. See the Appendix
A for the formula for ki. Under this assumption, the sequence of alternatives
is then contiguous to the null hypothesis (LeCam’s first lemma).

If now τ 2∗
2 , ρ2∗

2 and Q2∗
2 represent τ 2

2 and ρ2
2 and Q2

2 calculated from these
transformed observations, then we get the following result.

Theorem 3. Formax(p, q) > 1, The limiting distributions of [npq/4c2F c
2
G] τ 2∗

2

and [npq/c2F c
2
G] ρ2∗

2 are noncentral chi-squared distributions with pq degrees of
freedom and noncentrality parameter

δ2

4 pq c2F c
2
G

||d1M1 + d2M
T
2 ||2,

where
d1 = (p− 1)E(||x(2)

i − x
(2)
j ||)E(||x(1)

i − x
(1)
j ||−1)

10



and
d2 = (q − 1)E(||x(1)

i − x
(1)
j ||)E(||x(2)

i − x
(2)
j ||−1).

The limiting distribution of npq Q2∗
2 is a noncentral chi-squared distribution

with pq degrees of freedom and noncentrality parameter

δ2

pq
||c1M1 + c2M

T
2 ||2,

where
c1 = (p− 1)E(||x(2)

i ||)E(||x(1)
i ||−1)

and
c2 = (q − 1)E(||x(1)

i ||)E(||x(2)
i ||−1).

For the case p = q = 1, see Taskinen et al. (2003b). The use of these
noncentrality parameters in asymptotic efficiencies requires some clarifying
comments. We are considering efficiencies for the dependent alternatives in
the ’directions’ determined by fixedM1 andM2. The alternative distributions
are not elliptical (except in the normal case) but the sequence is contiguous to
an elliptical null distribution. Next note that the efficiencies are of the same
type ||h1M1 + h2M

T
2 ||2 where h1 and h2 depend on the marginal spherical

distributions and the test used. If the marginal distributions are the same
(which implies h1 = h2), then the efficiencies do not depend on M1 and M2

at all. We say that the test is “asymptotically unbiased” if the noncentrality
parameter is positive. Our tests are clearly not asymptotically unbiased
for choices M1 and M2 such that h1M1 = −h2M

T
2 . The only exception is

again the case where both marginal distributions are multivariate normal;
in that case M1 = −MT

2 implies uncorrelateness as well as independence.
Finally note that, if the marginal distributions are elliptical, then due to affine
invariance, the efficiencies are given by ||h1Σ

−1/2
1 M1Σ

1/2
2 +h2Σ

1/2
1 MT

2 Σ
−1/2
2 ||2.

In the next section, our efficiency comparisons use M1 = MT
2 .

As test statistics for testing the null hypothesis of independence, none of
the τ 2

2 , ρ2
2 or Q2

2 have an unconditional distribution-free property for small n.
However, their permutation null distribution and hence permutation p-values
are easy to generate. The permutation principle dictates that all possible n!
pairings of the given set of n first component x(1) vectors with the set of n
second component x(2) vectors are equally likely. Since the computation of
marginal standardized signs and ranks do not depend on the pairing, the null
permutation distributions can be generated by finding

τ 2
2 (α) = ||avei,j{Ŝ

(1)

ij Ŝ
(2)T

αiαj
}||2,

ρ2
2(α) = ||avei{R̂

(1)

i R̂
(2)T

αi
}||2

11



and

Q2
2(α) = ||avei{Ŝ

(1)

i Ŝ
(2)T

αi
}||2,

where α = (α1, . . . , αn)T is drawn at random from the n! permutations of
the integers (1, . . . , n).

5 LIMITING AND FINITE-SAMPLE

EFFICIENCIES

We next compare τ 2
2 and ρ2

2 to Wilks’ test W through limiting efficiencies
and simple simulation studies. For comparisons between quadrant statistics
and W , see Gieser and Randles (1997) and Taskinen et al. (2003a). As the
limiting distributions are of the same type, χ2

pq, the efficiency comparisons
may be based on noncentrality parameters only. The efficiency comparisons
are now made in the multivariate normal distribution, t distribution and
contaminated normal distribution cases. For simplicity, we assume thatM1 =
MT

2 .
Since W has a limiting noncentral chi-squared distribution with pq deg-

rees of freedom and noncentrality parameter δ2||M1 +MT
2 ||2, the asymptotic

efficiencies are simply given by

ARE(τ 2
2 ,W ) = ARE(ρ2

2,W ) =
(d1 + d2)

2

16 pq c2F c
2
G

,

with d1 and d2 given in Theorem 3. For a k-dimensional multivariate normal
distribution with cdf Φ,

EΦ(||xi − xj||) =
2 Γ
(

k+1
2

)

Γ
(

k
2

) and EΦ(||xi − xj||−1) =
Γ
(

k−1
2

)

2 Γ
(

k
2

) .

And for a k-dimensional standardized t-distribution with ν degrees of freedom

Etν (||xi − xj||) =

√
ν − 2Γ

(
k+1
2

)
Γ
(

2ν−1
2

)
Γ2
(

ν−1
2

)

Γ
(

k
2

)
Γ2
(

ν
2

)
Γ (ν − 1)

and

Etν (||xi − xj||−1) =
Γ
(

k−1
2

)
Γ
(

2ν+1
2

)
Γ2
(

ν+1
2

)
√
ν − 2Γ

(
k
2

)
Γ2
(

ν
2

)
Γ (ν + 1)

.

The resulting limiting efficiencies for selected degrees of freedom and di-
mensions are listed in Table 1. Note that since limiting multinormality of
the regular covariance matrix holds if the fourth moments of the underlying

12



distribution are finite, W has a limiting distribution only when ν > 4. When
the underlying distribution is multivariate normal (ν = ∞), the Wilks’ test
is the best, but τ 2

2 and ρ2
2 are very competitive with it. As the underlying

population becomes heavy-tailed (ν gets smaller), then τ 2
2 and ρ2

2 are better
than Wilks’ test.

Table 1: ARE(τ 2
2 ,W ) and ARE(ρ2

2,W ) at dif-
ferent p- and q-variate t distributions for se-
lected ν = ν1 = ν2.

p
q 2 3 5 8 10

2 1.12 1.13 1.14 1.15 1.16
3 1.14 1.16 1.17 1.17

ν = 5 5 1.17 1.18 1.19
8 1.19 1.20
10 1.20

2 1.00 1.01 1.02 1.03 1.03
3 1.02 1.03 1.04 1.04

ν = 10 5 1.04 1.05 1.05
8 1.06 1.06
10 1.07

2 0.93 0.94 0.95 0.95 0.96
3 0.95 0.96 0.96 0.96

ν = ∞ 5 0.96 0.97 0.97
8 0.97 0.98
10 0.98

Consider next the contaminated normal distribution with cdf Φε,c(x) =
(1 − ε) Φ(x) + εΦ(x/c), where c > 0 and Φ is the cdf of Nk(0, Ik). Now

EΦε,c
(||xi − xj||) =

[
(1 − ε)2 + ε(1 − ε)

√
2(1 + c2) + cε2

] 2Γ
(

k+1
2

)

Γ
(

k
2

)

and

EΦε,c
(||xi − xj||−1) =

[
(1 − ε)2 + 2ε(1 − ε)

√
2

1 + c2
+
ε2

c

]
Γ
(

k−1
2

)

2Γ
(

k
2

)
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and limiting efficiencies for ε = 0.1 and for selected values of c are listed in
Table 2. Here the superior performance of the nonparametric tests is obvious.

Table 2: ARE(τ 2
2 ,W ) and ARE(ρ2

2,W ) at
different p- and q-variate contaminated nor-
mal distributions for ε = 0.1 and for selected
values of c.

p
q 2 3 5 8 10

2 1.17 1.19 1.20 1.21 1.22
3 1.20 1.22 1.23 1.23

c = 3 5 1.23 1.24 1.25
8 1.25 1.26
10 1.26

2 1.92 1.95 1.98 2.00 2.01
3 1.98 2.01 2.04 2.04

c = 6 5 2.05 2.07 2.08
8 2.09 2.10
10 2.11

A simulation study was used to compare the finite sample powers of τ 2
2 ,

ρ2
2 and W . For comparisons between quadrant statistics, see Taskinen et al.

(2003a). Independent x(1)- and x(2)-samples of sizes n = 30 and 60 were gene-
rated from a multivariate standard normal distribution, from a standardized
t distribution with ν1 = ν2 = 5 and from a contaminated normal distribution
with ε = 0.1 and c = 6. The transformation in (1) with M1 = MT

2 = I was
used for chosen values of δ to introduce dependence into the model. The tests
were applied and the process was replicated 1500 times. The critical values
used in test constructions were based on the chi-square approximations to
the null distributions as given in Theorem 1 (with estimated ĉ 2

F and ĉ 2
G).

The empirical powers for p = q = 3 are given in Figure 1 and for p = q = 5
in Figure 2. Consider first the simulation results in the case p = q = 3. In
the multivariate normal case W is slightly better than the other tests. In
the considered t distribution case tests are almost equally powerful and in
the contaminated normal case τ 2

2 and ρ2
2 perform much better than W . As

n = 30, ρ2
2 seems to be slightly more powerful than τ 2

2 , but as n increases, no
significant differences can be seen between tests. As p = q = 5 and n = 30,
ρ2

2 is clearly more powerful than τ 2
2 , but again for large n, the tests are almost

14



equally powerful. The size of ρ2
2 is very close to the designated size 0.05 in

all cases. For small sample sizes, the size of τ 2
2 is often slightly below 0.05

and for heavy-tailed distributions W varies widely above 0.05.
As interdirection based τ 2

1 and ρ2
1 are computationally very intensive,

we compared the empirical powers of τ 2
1 and ρ2

1 to those of τ 2
2 and ρ2

2 for
n = 15 and p = q = 2 only. As seen in Figure 3, both Spearman’s rho
statistics are clearly better than the two Kendall’s tau statistics, as was
expected. However, no significant differences can be seen between τ 2

1 and τ 2
2

and between ρ2
1 and ρ2

2, respectively.

6 A REAL DATA EXAMPLE

McNaughton and Davies (1987) studied the effect of an aerobic conditioning
program on cholesterol levels. Several physical and blood-related variables
of 12 subjects were measured before and after an aerobic conditioning prog-
ram. Table 3 lists changes in respiratory variables: vital capacity (VC),
forced expiratory volume (FEV) and maximum oxygen uptake (VO2) and
changes in cholesterol variables: total cholesterol (TC), triglycerides (TG)
and HDL cholesterol (HDL). We wish to test whether the respiratory changes
are independent of cholesterol changes.

Table 3: Respiratory and cholesterol changes of 12 sub-
jects.

Respiratory changes Cholesterol changes

Subject VC FEV VO2 TC TG HDL
1 0.30 0.45 24.00 -0.50 -0.20 0.00
2 0.40 0.50 10.00 0.60 0.10 0.20
3 0.20 0.45 4.00 0.40 -0.10 0.00
4 0.20 0.30 2.00 0.10 0.10 -0.10
5 0.60 0.50 13.00 -0.50 -0.20 0.00
6 0.30 0.10 10.00 0.10 0.60 0.00
7 0.70 1.00 28.00 -0.90 -1.40 0.40
8 0.10 0.10 8.00 -0.50 0.10 -0.30
9 0.20 0.30 3.00 0.40 0.00 -0.10
10 0.20 0.35 0.00 0.40 0.10 0.00
11 0.30 0.59 -5.00 0.30 0.00 0.10
12 0.00 20.00 0.00 0.50 0.10 0.00
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The p-values given by different tests were calculated using the chi-square
approximations to the null distributions. For the original data set, the p-
values for W , τ 2

2 , ρ2
2 and Q2

2 are 0.022, 0.028, 0.018 and 0.025. To illustrate
the robustness of τ 2

2 , ρ2
2 and Q2

2, the first VO2 measurement was moved
from -25 to 50 and the p-values were recalculated. The results are shown
in Figure 4. When the first VO2 measurement decreases, the p-value given
by W increases substantially, while only small changes can be seen in the
p-values of other tests.

Finally, the permutation p-values were obtained for the original data set
using 1500 permutation samples. The p-values for W , τ 2

2 , ρ2
2 and Q2

2 are
0.069, 0.011, 0.015 and 0.013. Note that even for this very small sample size
(n = 12), the permutation p-values of τ 2

2 , ρ2
2 and Q2

2 are quite similar to
those given by the chi-square approximation, and the approximation for ρ2

2

is extremely good. More variation is seen in the p-value of W .

7 FINAL REMARKS

The paper develops new nonparametric intuitively appealing tests for test-
ing whether two random vectors are independent. The tests generalize the
popular univariate tests due to Kendall (1938) and Spearman (1904). In
the first approach, Randles’ (1989) interdirections were used in the test con-
struction. It is remarkable that, in this approach, no explicit location vector
and scatter matrix estimates are needed. In the second approach, the exten-
sions based on the spatial signs and ranks of the standardized observations
are introduced. Natural shape matrix estimates for the standardization are
proposed. The test statistics arising from these two approaches appear to be
asymptotically equivalent if each vector is elliptically symmetric.

The new tests have an appealing invariance property and a convenient
limiting chi-square null distribution. The tests have excellent asymptotic and
finite-sample efficiencies. The spatial sign and rank versions are easy to com-
pute for data in any dimension. As demonstrated in the example, the tests
are resistant to outliers, and the p-values for the conditionally distribution-
free permutation test are also easily generated. To conclude, the spatial sign
and rank versions provide intuitively appealing, practical, robust alternatives
to multivariate normal theory methods.
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APPENDIX A: PROOFS OF THE RESULTS

Proof of Lemma 1 Using V̂ ∗ = k [Tr(AV̂ AT )]−1AV̂ AT and µ̂
∗ = Aµ̂+b,

it is straightforward to show that

Ŝ
∗

i = (AV̂ AT )−1/2AV̂ 1/2Ŝi =: P Ŝi.

Transformation matrix P is clearly orthogonal. Similarly Ŝ
∗

ij = P Ŝij and

R̂
∗

i = P R̂i.

Proof of Theorem 1 To shorten the notations in what follows, we write
x

(1)
ij = x

(1)
i − x

(1)
j and x

(2)
ij = x

(2)
i − x

(2)
j . Due to the affine invariance of

the tests we consider only the case with spherical marginal densities. First,
Gieser and Randles (1997) showed that Q2

1 and

∥∥∥∥∥
1

n

∑

i

x
(1)
i x

(2)T

i

||x(1)
i ||||x(2)

i ||

∥∥∥∥∥

2

are asymptotically equivalent. Same asymptotic representation is found for
Q2

2 in the proof of Theorem 1 in Taskinen et al. (2003a). Second, under the
null model, the interdirection proportions p(1)(i, j; i′, j ′) are U-statistics with
bounded kernels and expected values

E(p(1)(i, j; i′, j ′)) =
1

π
cos−1

(
x

(1)T

ij x
(1)
i′j′

||x(1)
ij ||||x(1)

i′j′||

)
,

and similarly for p(2)(i, j; i′, j ′). Thus

p(1)(i, j; i′, j ′) = E(p(1)(i, j; i′, j ′)) + op(1).

As in Gieser and Randles (1997), one can then show that the multivariate
Kendall’s τ 2

1 is asymptotically equivalent to

1

n4

∑

i

∑

j

∑

i′

∑

j′

cos(πE(p(1)(i, j; i′, j ′))) cos(πE(p(2)(i, j; i′, j ′)))

=

∥∥∥∥∥
1

n2

∑

i

∑

j

x
(1)
ij x

(2)T

ij

||x(1)
ij ||||x(2)

ij ||

∥∥∥∥∥

2

,

and similarly for Spearman’s ρ2
1. The proof is then completed by finding the

same asymptotic representations for τ 2
2 and ρ2

2; see the proof of Theorem 2.
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Proof of Theorem 2

The limiting distribution of τ 2
2 : As in the proof of Theorem 1 in Taskinen

et al. (2003a), it can be shown that under H0,

√
n

(
1

n2

∑

i

∑

j

Ŝ
(1)

ij Ŝ
(2)T

ij − 1

n2

∑

i

∑

j

x
(1)
ij x

(2)T

ij

||x(1)
ij ||||x(2)

ij ||

)
P−→ 0.

Hence it is enough to derive the limiting distribution of

WK =
1

n2

∑

i

∑

j

x
(1)
ij x

(2)T

ij

||x(1)
ij ||||x(2)

ij ||
.

Since vec(WK) is asymptotically equivalent with a U-statistic with kernel

h

((
x

(1)
1

x
(2)
1

)
,

(
x

(1)
2

x
(2)
2

))
= vec

(
x

(1)
12 x

(2)T

12

||x(1)
12 ||||x

(2)
12 ||

)
,

the limiting distribution of
√
nvec(WK) is asymptotically normal with ex-

pected value

E

[
vec

(
x

(1)
12 x

(2)T

12

||x(1)
12 ||||x

(2)
12 ||

)]
= 0

and variance 4ΣK, where

ΣK = E

[
vec

(
x

(1)
12 x

(2)T

12

||x(1)
12 ||||x

(2)
12 ||

)
vecT

(
x

(1)
13 x

(2)T

13

||x(1)
13 ||||x

(2)
13 ||

)]
.

Now for spherically distributed x(1) and x(2),

ΣK = E

[
E

[
vec

(
x

(1)
12 x

(2)T

12

||x(1)
12 ||||x

(2)
12 ||

)
vecT

(
x

(1)
13 x

(2)T

13

||x(1)
13 ||||x

(2)
13 ||

)∣∣∣∣

(
x

(1)
1

x
(2)
1

)]]

= E
[
vec
(
RF (x(1))RT

G(x(2))
)
vecT

(
RF (x(1))RT

G(x(2))
)]

= E
[
vec
(
qF (r)qG(r)u(1)u(2)T

)
vecT

(
qF (r)qG(r)u(1)u(2)T

)]

= E
[
q2
F (r)q2

G(r)
]
E
[
vec
(
u(1)u(2)T

)
vecT

(
u(1)u(2)T

)]

= c2F c
2
GIpq/pq,

and the limiting distribution of
√
nvec(WK) is Npq (0, 4 c2Fc

2
GIpq/pq). Conse-

quently,

npq

4c2F c
2
G

τ 2
2 =

npq

4c2F c
2
G

vec(WK)Tvec(WK)
d−→ χ2

pq.
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The limiting distribution of ρ2
2. First note that under H0,

√
n

(
1

n3

∑

i

∑

j

∑

k

Ŝ
(1)

ij Ŝ
(2)T

ik − 1

n3

∑

i

∑

j

∑

k

x
(1)
ij x

(2)T

ik

||x(1)
ij ||||x(2)

ik ||

)
P−→ 0.

Then write

WS =
1

n3

∑

i

∑

j

∑

k

x
(1)
ij x

(2)T

ik

||x(1)
ij ||||x(2)

ik ||
.

Since vec(WS) is asymptotically equivalent with a U-statistic with kernel

h

((
x

(1)
1

x
(2)
1

)
,

(
x

(1)
2

x
(2)
2

)
,

(
x

(1)
3

x
(2)
3

))

=
1

3
vec

(
x

(1)
12 x

(2)T

13

||x(1)
12 ||||x

(2)
13 ||

+
x

(1)
21 x

(2)T

23

||x(1)
21 ||||x

(2)
23 ||

+
x

(1)
31 x

(2)T

32

||x(1)
31 ||||x

(2)
32 ||

)
,

the limiting distribution of
√
nvec(WS) is asymptotically normal with ex-

pected value 0 and variance 9ΣS, where

ΣS = E

[
h

((
x

(1)
1

x
(2)
1

)
,

(
x

(1)
2

x
(2)
2

)
,

(
x

(1)
3

x
(2)
3

))
· hT

((
x

(1)
1

x
(2)
1

)
,

(
x

(1)
4

x
(2)
4

)
,

(
x

(1)
5

x
(2)
5

))]
.

As in the case of τ 2
2 , it can be shown that ΣS = c2F c

2
GIpq/9pq. Hence the limi-

ting distribution of
√
nvec(WS) is Npq (0, c2F c

2
GIpq/pq) and [npq/c2F c

2
G]ρ2

2
d−→

χ2
pq.

The limiting distribution of Q2
2 is derived in Taskinen et al. (2003a).

Proof of Theorem 3

Gieser (1993) considered the asymptotic representation L =
√
nδK− 1

2
δ2σ2+

oP (1), where

K =
1

n

∑

i

ki =
1

n

∑

i

[
p− ψ1(r

(1)
i )r

(1)
i + ψ1(r

(1)
i )r

(2)
i u

(1)T

i M1u
(2)
i

+ q − ψ2(r
(2)
i )r

(2)
i + ψ2(r

(2)
i )r

(1)
i u

(2)T

i M2u
(1)
i

]
,

with r
(1)
i = ||x(1)

i ||, u
(1)
i = ||x(1)

i ||−1x
(1)
i and ψ1(r) = Ψ′

1(r), and similarly for

r
(2)
i , u

(2)
i and ψ2(r). If in the above representation E(ki) = 0 and E(k2

i ) = σ2,
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the sequence of alternatives is contiguous to the null hypothesis. See Gieser
(1993) for mild conditions.

As our test statistics are just squared norms of the U-statistics with
bounded kernels, LeCam’s third lemma could be easily applied to find the
limiting distributions of the linearized versions of the U-statistics under the
alternative sequences. We however give an alternative, somewhat heuristic
proof to keep the formulas as simple and easily interpretable as possible.

The limiting distribution of τ 2∗
2 . The sequence of alternatives for ∆ =

δ/
√
n is thus contiguous to the null hypothesis ∆ = 0. Therefore (see the

proof of Theorem 2) also

√
n

(
1

n2

∑

i

∑

j

S̃
(1)

ij S̃
(2)T

ij − 1

n2

∑

i

∑

j

y
(1)
ij y

(2)T

ij

||y(1)
ij ||||y(2)

ij ||

)
P−→ 0,

where S̃
(1)

ij and S̃
(2)

ij are the standardized sign vectors of y
(1)
ij and y

(2)
ij . As

y
(1)
ij = x

(1)
ij − δ√

n
x

(1)
ij +

δ√
n
M1x

(2)
ij

and

y
(2)
ij = x

(2)
ij − δ√

n
x

(2)
ij +

δ√
n
M2x

(1)
ij ,

we get

y
(1)
ij

||y(1)
ij ||

=
x

(1)
ij

||x(1)
ij ||

− δ√
n

x
(1)
ij x

(1)T

ij M1x
(2)
ij

||x(1)
ij ||3

+
δ√
n

M1x
(2)
ij

||x(1)
ij ||

+ oP (n−1/2)

and

y
(2)
ij

||y(2)
ij ||

=
x

(2)
ij

||x(2)
ij ||

− δ√
n

x
(2)
ij x

(2)T

ij M2x
(1)
ij

||x(2)
ij ||3

+
δ√
n

M2x
(1)
ij

||x(2)
ij ||

+ oP (n−1/2).

But then in the spherical case,

√
n

n2

∑

i

∑

j

S̃
(1)

ij S̃
(2)T

ij =

√
n

n2

∑

i

∑

j

x
(1)
ij x

(2)T

ij

||x(1)
ij ||||x(2)

ij ||

− δ

n2

∑

i

∑

j

x
(1)
ij x

(1)T

ij MT
2 x

(2)
ij x

(2)T

ij

||x(1)
ij ||||x(2)

ij ||3
+

δ

n2

∑

i

∑

j

x
(1)
ij x

(1)T

ij MT
2

||x(1)
ij ||||x(2)

ij ||

− δ

n2

∑

i

∑

j

x
(1)
ij x

(1)T

ij M1x
(2)
ij x

(2)T

ij

||x(2)
ij ||||x(1)

ij ||3
+

δ

n2

∑

i

∑

j

M1x
(2)
ij x

(2)T

ij

||x(2)
ij ||||x(1)

ij ||
+ oP (1).
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Hence

√
n

(
1

n2

∑

i

∑

j

S̃
(1)

ij S̃
(2)T

ij − 1

n2

∑

i

∑

j

x
(1)
ij x

(2)T

ij

||x(1)
ij ||||x(2)

ij ||

)
P−→

δ

pq

[
(p− 1)E(||x(2)

ij ||)E(||x(1)
ij ||−1)M1

+ (q − 1)E(||x(1)
ij ||)E(||x(2)

ij ||−1)MT
2

]
,

which completes the proof.

The limiting distribution of ρ2∗
2 . If we proceed as above, we get

√
n

(
1

n3

∑

i

∑

j

∑

k

S̃
(1)

ij S̃
(2)T

ik − 1

n3

∑

i

∑

j

∑

k

y
(1)
ij y

(2)T

ik

||y(1)
ij ||||y(2)

ik ||

)
P−→

δ

pq

[
(p− 1)EG(qG(r)r)E(||x(1)

ij ||−1)M1

+ (q − 1)EF (qF (r)r)E(||x(2)
ij ||−1)MT

2

]
.

Finally note that 2EG(qG(r)r) = E(||x(2)
ij ||) and 2EF (qF (r)r) = E(||x(1)

ij ||).

The limiting distribution of Q2∗
2 is derived in Taskinen et al. (2003a).

APPENDIX B: EXPRESSIONS FOR c2F AT

CERTAIN MULTIVARIATE

DISTRIBUTIONS

The constants c2F for standard multivariate normal distribution F = Φ, mul-
tivariate t distribution F = tν and multivariate contaminated normal distri-
bution F = Φε,c are

c2Φ =
1

2π

Γ2
(

k+1
2

)

Γ
(

k
2

)
∞∑

i=0

Γ2
(

1
2

+ i
)

Γ
(

k+2
2

+ i
)
i!

(
1

4

)i

,

c2tν =
Γ
(

ν+k
2

)
Γ
(

3ν
2

)

Γ3
(

ν
2

)
Γ
(

k
2

)
∞∑

i=0

∞∑

j=0

{
Γ
(

k+1
2

+ i
)
Γ
(

ν+1
2

+ i
)
Γ
(

k+1
2

+ j
)

Γ
(

k+2
2

+ i
)
Γ
(

k+2
2

+ j
)

Γ
(

ν+1
2

+ j
)
Γ
(

k+2
2

+ i + j
)

Γ
(

3ν+k+2
2

+ i+ j
)
i!j!

}
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and

c2Φε,c
=

1

2π

Γ2
(

k+1
2

)

Γ
(

k
2

)
∞∑

i=0

Γ2
(

1
2

+ i
)

Γ
(

k+2
2

+ i
)
i!
ci,ε,c,

where

ci,ε,c =
ε3 + (1 − ε)3

4i
+

2(1 − ε)ε2 + 2ε(1 − ε)2c4i+2

(c2 + 1)2i+1

+
ε(1 − ε)2 + (1 − ε)ε2c2i+1

2i− 3

2 (c2 + 1)i+ 1

2

.

Expressions for the multivariate normal and t distribution cases are de-
rived in Möttönen, Oja and Tienari (1997). The expression for the con-
taminated normal case is found in a similar way. Constants for selected
distributions and dimensions are listed in Table 4.

Table 4: Constants c2F for selected distributions
and dimensions.

k c2Φ c2t10 c2t5 c2Φ0.1,3
c2Φ0.1,6

2 0.4063 0.4046 0.4028 0.4025 0.3980
3 0.4360 0.4333 0.4302 0.4299 0.4231
5 0.4614 0.4574 0.4531 0.4529 0.4441
8 0.4760 0.4711 0.4660 0.4659 0.4560
10 0.4808 0.4757 0.4702 0.4702 0.4600
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Figure 1: Empirical powers for p = q = 3 using the multivariate normal
distribution (first row), multivariate t distribution with ν = 5 (second row)
and contaminated normal distribution with ε = 0.1 and c = 6 (third row).
The thick solid line denotes W , the thin solid line ρ2

2 and the dotted line τ 2
2 .
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Figure 2: Empirical powers for p = q = 5 using the multivariate normal
distribution (first row), multivariate t distribution with ν = 5 (second row)
and contaminated normal distribution with ε = 0.1 and c = 6 (third row).
The thick solid line denotes W , the thin solid line ρ2

2 and the dotted line τ 2
2 .
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Figure 3: Empirical powers for n = 15 and p = q = 2 using the multivariate
normal distribution (a), multivariate t distribution with ν = 5 (b) and con-
taminated normal distribution with ε = 0.1 and c = 6 (c). The thick solid
line denotes τ 2

2 , the thin solid line ρ2
2, the thick dotted line τ 2

1 and the thin
dotted line ρ2

2.
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Figure 4: p-values for aerobic conditioning program data when the first VO2

measurement is moved from -25 to 50. The thick solid line denotes W , the
thin solid line ρ2

2, the thick dotted line τ 2
2 and the thin dotted line Q2
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