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Abstract. Classical multivariate analysis is based on the assumption that the
data come from a multivariate normal distribution. The tests of multinor-
mality have therefore received very much attention. Several tests for assess-
ing multinormality, among them Mardia’s popular multivariate skewness and
kurtosis statistics, are based on standardized third and fourth moments. In
Mardia’s construction of the affine invariant test statistics, the data vectors
are first standardized using the sample mean vector and the sample covariance
matrix. In this paper we investigate whether, in the test construction, it is ad-
vantagoeus to replace the regular sample mean vector and sample covariance
matrix by their affine equivariant robust competitors. Limiting distributions
of the standardized third and fourth moments and the resulting test statistics
are derived under the null hypothesis and are shown to be strongly dependent
on the choice of the location vector and scatter matrix estimate. Finally, the
effects of the modification on the limiting and finite-sample efficiencies are
illustrated by simple examples in the case of testing for the bivariate normal-
ity. In the cases studied, the modifications seem to increase the power of the
tests.

1. Introduction

Classical methods of multivariate analysis are for the most part based on the as-
sumption that the data are coming from a multivariate normal population. In the
one-sample multinormal case, the regular sample mean vector and sample covari-
ance matrix are complete and sufficient, but on the other hand highly sensitive
to outlying observations. It is also well known that the tests and estimates based
on the sample mean vector and sample covariance matrix have poor efficiency
properties in the case of heavy tailed noise distributions. Testing for departures
from multinormality helps to make practical choices between competing methods
of analysis.

In the univariate case, standardized third and fourth moments b1 and b2 are
often used to indicate the skewness and kurtosis. For a random sample x1, ..., xn

from a p-variate distribution with sample mean vector x̄ and sample covariance
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matrix S, Mardia (1970,1974,1980) defined the p-variate skewness and kurtosis
statistics as

b1,p = avei,j [(xi − x̄)T S−1(xj − x̄)]3

and
b2,p = avei[(xi − x̄)T S−1(xi − x̄)]2,

respectively. The statistics b1,p and b2,p are functions of standardized third and
fourth moments, respectively. From the definition one easily sees that b1,p and b2,p

are invariant under affine transformations. In the univariate case these reduce to
the usual univariate skewness and kurtosis statistics b1 and b2. Mardia advocated
using the skewness and kurtosis statistics to test for multinormality as they are
distribution-free under multinormality. See also Bera and John (1983) and Koziol
(1993) for the use of the standardized third and fourth moments in the test con-
struction.

Intuitively, as in the univariate case, the skewness and kurtosis statistics
b1,p and b2,p compare the variation measured by third and fourth moments to
that measured by second moments. The second, third and fourth moments are
all highly non-robust statistics, however, and more efficient procedures may be
obtained through comparisons of robust and nonrobust measures of variations.
It is therefore an appealing idea to study whether it is useful or reasonable to
replace the regular sample mean vector x̄ and sample covariance matrix S by
some affine equivariant robust competitors, location vector estimate µ̂ and scatter
matrix estimate Σ̂.

The paper is organised as follows. In Section 2 the limiting distributions of
Mardia’s test statistics under the null model of multinormality are discussed. The
test statistics are based on the standardized third and fourth moments; the regular
mean vector and regular covariance matrix are used in the standardization. Section
3 lists the tools and assumptions for alternative

√
n-consistent affine equivariant

location and scatter estimates. The location and scatter estimates are then used
in the regular manner to standardize the data vectors. The limiting distributions
of the standardized third and fourth moments in this general case are found in
Section 4. As an illustration of the theory, the effect of the way of standardization
on the limiting and small sample efficiencies in the bivariate case are studied in
Sections 5 and 6. The auxiliary lemmas and proofs have been postponed to the
Appendix.

2. Limiting null distributions of Mardia’s statistics

In this section we recall the wellknown results concerning the limiting null distribu-
tions of the Mardia’s skewness and kurtosis statistics. As, due to affine invariance,
the distributions of the test statistics do not depend on the unknown µ and Σ,
it is not a restriction to assume in the following derivations that x1, ..., xn is a
random sample from the Np(0, Ip) distribution. Write

zi = S−1/2(xi − x̄), i = 1, ..., n,
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for the data vectors standardized in the classical way. Mardia’s skewness statistic
can be decomposed as

b1,p = 6
∑

j<k<l

[avei{zijzikzil}]2 + 3
∑

j 6=k

[avei{z2
ijzik}]2 +

∑

j

[avei{z3
ij}]2

and the Mardia’s kurtosis statistic is similarly

b2,p =
∑

j 6=k

avei{z2
ijz

2
ik}+

∑

j

avei{z4
ij}.

See e.g. Koziol (1993). Under multinormality b1,p and b2,p are affine invariant,
all the standardized third and fourth moments are asymptotically normal and
asymptotically independent and consequently the limiting distributions of

n
b1,p

6
and

√
n

b2,p − p(p + 2)√
8p(p + 2)

are a chi-square distribution with p(p+1)(p+2)/6 degrees of freedom and a N(0, 1)
distribution, respectively.

3. Location and scatter estimates

In Mardia’s test construction, the data vectors are standardized using the regular
sample mean vector x̄ and sample covariance matrix S. In this paper we thus con-
sider what happens if these are replaced by other

√
n-consistent affine equivariant

location and scatter estimates of µ and Σ, say, µ̂ and Σ̂. Next we list assumptions
and useful notations for location vector estimate µ̂ and scatter matrix estimate Σ̂.

First we assume that, for the Np(0, Ip) distribution, the influence functions
of these location and scatter functionals at z are

γ(r) u and α(r) uuT − β(r) Ip,

respectively, where r = ||z|| and u = ||z||−1z. We will later see that the limiting
distributions of the modified test statistics depend on the used location and scat-
ter estimates through these functions. For the inluence functions of location and
scatter functionals, see also Hampel et al. (1986), Croux and Haesbroek (2000)
and Ollila et al. (2003a,b).

We further assume that, again under the Np(0, Ip) distribution,

t =
√

n ave{γ(ri)ui} =
√

n µ̂ + oP (1)

and
C =

√
n ave{α(ri)uiu

T
i − β(ri)Ip} =

√
n (Σ̂− Ip) + oP (1).

Finally, assume that, for the Np(0, Ip) distribution, the expected values E(γ2(r)),
E(α2(r)) and E(β2(r)) are finite. These assumptions imply that the limiting dis-
tributions of

√
nµ̂ and

√
n vec(Σ̂− Ip) are p- and p2-variate normal distributions
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with zero mean vectors and covariance matrices

E[γ2(r)]
p

Ip

and

E[α2(r)]
p(p + 2)

[Ip2+Ip,p+vec(Ip)vec(Ip)T ]+
(

E[β2(r)] +
2
p
E[α(r)β(r)]

)
vec(Ip)vec(Ip)T ,

respectively. (Here Ip,p is the so called commutation matrix. See e.g. Ollila et al.
(2003b).)

4. Limiting distribution of the standardized third and fourth
moments

Consider now any estimators µ̂ and Σ̂ and write

zi = Σ̂−1/2(xi − µ̂), i = 1, ..., n,

for the standardized observations. Denote the standardized third and fourth mo-
ments by

Ujkl =
√

n avei{zijzikzil},
Vjk =

√
n avei{z2

ijz
2
ik − 1}

and
Vjj =

√
n avei{z4

ij − 3}.
The limiting distributions of the standardized third and fourth moments are given
by the following theorem. The results easily follow from Lemmas 7.1 and 7.2 stated
and proven in the Appendix.

Theorem 4.1. Under multinormality, the limiting distribution of the vector of all
possible third moments Ujkl (j < k < l), Ujjk (j 6= k) and Ujjj is a multivariate
normal distribution with zero mean vector and limiting variances and covariances

V ar(Ujkl) = 1
V ar(Ujjk) = 2 + κ

V ar(Ujjj) = 6 + 9κ

Cov(Ujjk, Ullk) = κ

Cov(Ujjk, Ukkk) = 3κ

where

κ = 1 +
E[γ2(r)]

p
− 2

E[r3γ(r)]
p(p + 2)

.

All the other covariances are zero.
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Theorem 4.2. Under multinormality, the limiting distribution of the vector of
fourth moments Vjk (j 6= k) and Vjj is a multivariate normal distribution with
zero mean vector and limiting variances and covariances

V ar(Vjk) = 4 + τ1 + 2τ2

V ar(Vjj) = 24 + 9τ1 + 36τ2

Cov(Vjk, Vjl) = τ1 + τ2

Cov(Vjk, Vml) = τ1

Cov(Vjj , Vkk) = 9τ1

Cov(Vjk, Vjj) = 3τ1 + 6τ2

Cov(Vjk, Vll) = 3τ1

where

τ1 = 4
[
E[α2(r)]
p(p + 2)

− 2
E[α(r)β(r)]

p
+ E[β2(r)]− E[α(r)r4]

p(p + 2)(p + 4)
+

E[β(r)r4]
p(p + 2)

]

and

τ2 = 2 + 2
E[α2(r)]
p(p + 2)

− 4
E[α(r)r4]

p(p + 2)(p + 4)
.

We close this section with some discussion on the implications of the above
results. First note that, if the regular mean vector and sample covariance matrix
are used in the standardization, then simply

γ(r) = r, α(r) = r2 and β(r) = 1

which gives
κ = τ1 = τ2 = 0

and all the third moments and fourth moments are asymptotically mutually in-
dependent, respectively. For other location and scatter statistics this is not neces-
sarily true and also the limiting variances may vary. This means that the limiting
distributions and efficiencies of b1,p and b2,p may drastically change. The limiting
distribution of nb1,p/6 is a weighted sum of chi-square variables with one degree
of freedom which makes the calculation of the approximate p-value less practical.
The limiting distribution of

√
n(b2,p − p(p + 2)) is still normal with mean value

zero, but its limiting variance depends on the chosen scatter matrix. In the last
two section we illustrate the impact of the choice of the location vector and scatter
matrix estimate on the limiting distribution and efficiency in the bivariate case.
The extension to the general p-variate case is straightforward.

5. Tests for bivariate normality

Assume now that x1, ..., xn is a random sample from an unknown bivariate dis-
tribution and we wish to test the null hypothesis H0 of bivariate normality. For
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limiting power considerations we use the contaminated bivariate normal distri-
bution, the so called Tukey distribution: We say that the distribution of x is a
bivariate Tukey distribution T (∆,µ, σ) if the pdf of x is

f(x) = (1−∆)φ(x) + ∆σ−2φ((x− µ)/σ),

where φ(x) is the pdf of N2(0, I2) distribution and ∆ ∈ [0, 1]. Alternative sequences
Hn

1 : T (∆,µ, 1) and Hn
2 : T (∆,0, σ) with ∆ = δ/

√
n, r = ||µ|| > 0 and σ > 1

are then used for the comparisons of the skewness and kurtosis test statistics,
respectively.

Write now
T 1 = (U112, U221, U111, U222)T

and
T 2 = (V11, V22, V12)T

for the vectors of the standardized third and fourth moments. Using the results in
Section 4, one directly gets the following results.

Corollary 5.1. Under H0, the limiting distribution of
√

nT 1 is a 4-variate normal
distribution with zero mean vector and covariance matrix

Ω1 =




2 0 0 0
0 2 0 0
0 0 6 0
0 0 0 6


 + κ




1 0 0 3
0 1 3 0
0 3 9 0
3 0 0 9


 .

Corollary 5.2. Under H0, the limiting distribution of
√

nT 2 is a 3-variate normal
distribution with zero mean vector and covariance matrix

Ω2 =




24 0 0
0 24 0
0 0 4


 + τ1




9 9 3
9 9 3
3 3 1


 + τ2




36 0 6
0 36 6
6 6 2


 .

It is now possible to construct the limiting distributions of the affine invariant
test statistics b1,2 and b2,2. The comparison of the effect of different standardiza-
tions is possible but not easy, however, as the limiting distributions may be of
different type. This is avoided if one uses the following test statistic versions:

Definition 5.3. Modified Mardia’s skewness and kurtosis statistics in the bivariate
case are

b∗1,2 = T 1
T Ω−1

1 T 1 and b∗2,2 = (1, 1, 2)T 2.

Note that, if the sample mean and covariance matrix are used, the definition
gives b∗1,2 = b1,2/6 and b∗2,2 = b2,2−8, respectively. In the former case, with general
µ̂ and Σ̂, the affine equivariance property is lost.

The alternative to the regular sample mean vector and sample covariance
matrix used in this example is the affine equivariant Oja median (Oja, 1983) and
the related scatter matrix estimate based on the Oja sign covariance matrix (SCM).
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See Visuri et al. (2000) and Ollila et al. (2003b) for the SCM. Note also that the
scatter matrix estimate based on the Oja SCM is asymptotically equivalent with
the zonoid covariance matrix (ZCM) and can be seen as an affine equivariant
extension on mean deviation. For the definition and use of the ZCM, see Koshevoy
et al (2003). We chose these statistics as their influence functions are relatively
simple at the N2(0, I2) case, the influence functions are given by

γ(r) = 2

√
2
π

, α(r) = 2

[
2

√
2
π

r − 1

]
and β(r) = 1.

The constants needed for the asymptotic variances and covariances are then

κ =
4
π
− 1

2
, τ1 =

32
π
− 29

3
and τ2 =

16
π
− 14

3
.

Consider first the alternative contiguous sequence Hn
1 with µ = (r, 0, ..., 0)T .

Using classical LeCam’s third lemma one then easily sees that, under the alter-
native sequence Hn

1 , the limiting distribution of nb∗1,2 is a noncentral chi-square
distribution with 4 degrees of freedom and noncentrality parameter δT

1 Ω−1
1 δ1,

where δ1 depends on the location estimate used in the standardization. In the
regular case (sample mean vector),

δ1 = (0, 0, r3, 0)T

and the Oja median gives

δ1 = (0, r − q(r)2
√

2/π, r3 + 3r − q(r)6
√

2/π, 0)T .

The function q(r) = ||R(µ)|| is easily computable and defined through the so called
spatial rank function

R(µ) = E(||µ− x||−1(µ− x))
with x ∼ N2(0, I2). See Möttönen and Oja (1995).

Next we consider the sequence Hn
2 .Then

V ar(b∗2,2) = (1, 1, 2) Ω2




1
1
2




and under Hn
2 the limiting distribution of n(b∗2,2)

2/V ar(b∗2,2) is a noncentral chi-
square distribution with one degree of freedom and noncentrality parameter
[(1, 1, 2)δ2]2/V ar(b∗2,2), where δ2 in this case depends on the scatter estimate used
in the standardization. In the regular case (sample covariance matrix) we get

δ2 = (3(σ2 − 1)2, 3(σ2 − 1)2, (σ2 − 1)2)T

and the ZCM gives

δ2 = (3(σ4 − 1)− 12(σ − 1), 3(σ4 − 1)− 12(σ − 1), (σ4 − 1)− 4(σ − 1))T

In Figure 1 the asymptotical relative efficiencies of the new tests (using the
Oja median and the ZCM estimate) relative to the regular tests (using the sample
mean and sample covariance matrix) are illustrated for different values of r and
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for different values of σ. The AREs are then simply the ratios of the noncentrality
parameters. The new tests seem to perform very well: The test statistics using
robust standardization seem to perform better than the tests with regular location
and scatter estimates.
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Figure 1. Limiting efficiencies of the tests based on the Oja
median and the ZCM relative to the regular Mardia’s tests for
different values of r and σ. The left (right) panel illustrates the
efficiency of b∗1,2 (b∗2,2).

6. A real data example

In our real data example we consider two bivariate data sets of n = 50 observations
and the combined data set (n = 100). The data sets are shown and explained in
Figure 2. We wish to test the null hypothesis of bivariate normality. Again the
the skewness and kurtosis statistics to be compared are those based on the sample
mean vector and sample covariance matrix (regular Mardia’s b1,2 and b2,2) and
those based on the Oja median and the ZCM (denoted by b∗1,2 and b∗2,2). The values
of the test statistics and the approximate p-values were calculated for the three
data sets (’Boys’,’Girls’, ’Combined’). See Table 1 for the results. As expected, the
observed p-values were much smaller in the combined data case.

As discussed in the introduction, the statistics b1,2 and b2,2 compare the third
and fourth central moments to the second ones (given by the sample covariance
matrix). The statistics b∗1,2 and b∗2,2 use robust location vector and scatter matrix
estimates in this comparison. One can then expect that, for data sets with outliers
or for data sets coming from heavy tailed distributions, the comparison to robust
estimates tends to produce higher values of the test statistics and smaller p-values.
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Figure 2. The height of the mother and the birth weight of the
child measured on 50 boys who have siblings (o) and 50 girls (x)
who do not have siblings.

Table 1. The observed values of the test statistics with corre-
sponding p-values for the three data sets.

Boys Girls Combined
Test statistic p-value Test statistic p-value Test statistic p-value

b1,2 3.034 0.552 3.376 0.497 9.242 0.055
b∗1,2 5.152 0.272 2.336 0.674 11.257 0.024
b2,2 0.016 0.900 0.282 0.596 2.275 0.132
b∗2,2 0.834 0.361 1.152 0.283 5.166 0.023

In our examples for the analyses of bivariate data we used the Oja median
and the ZCM to standardize the data vectors. In the general p-variate case (with
large p and large n) these estimates are, however, computationally highly intensive,
and should be replaced by more practical robust location and scatter estimates.
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7. Appendix: Auxiliary lemmas

The limiting distributions of the standardized third and fourth moments are given
by the following linear approximations.

Lemma 7.1. Let x1, ..., xn be a random sample from N(0, Ip)-distribution and let
zi = Σ̂−1/2(xi − µ̂), i = 1, ..., n, be the standardized observations. Write also
ri = ||xi|| and ui = ||xi||−1xi. Then

√
n avei{zijzikzil} =

√
n avei{xijxikxil}+ oP (1)

=
√

n avei{r3
i uijuikuil}+ oP (1) for j < k < l,

√
n avei{z2

ijzik} =
√

n avei{x2
ijxik} − tk + oP (1)

=
√

n avei{r3
i u2

ijuik − γ(ri)uik}+ oP (1) for j 6= k

and
√

n avei{z3
ij} =

√
n avei{x3

ij} − 3tj + oP (1)

=
√

n avei{r3
i u3

ij − 3γ(ri)uij}+ oP (1).

Lemma 7.2. Let x1, ..., xn be a random sample from N(0, Ip)-distribution and let
zi = Σ̂−1/2(xi−µ̂), i = 1, ..., n, be the standardized observations. Again, ri = ||xi||
and ui = ||xi||−1xi. Then for j 6= k,

√
n avei{z2

ijz
2
ik − 1} =

√
n avei{x2

ijx
2
ik − 1} − Cjj − Ckk + oP (1)

=
√

n avei{r4
i u2

iju
2
ik − 1− α(ri)[u2

ij + u2
ik] + 2β(ri)}+ oP (1)

and
√

n avei{z4
ij − 3} =

√
n avei{x4

ij − 3} − 6Cjj + oP (1)

=
√

n avei{r4
i u4

ij − 3− 6α(ri)u2
ij + 6β(ri)}+ oP (1).

Proofs of the lemmas: Note first that

zi = Σ̂−1/2(xi − µ̂) = xi − 1√
n

t− 1
2
√

n
Cxi + o(1/

√
n).

Thus

zij = xij − 1√
n

tj − 1
2
√

n

p∑
r=1

Cjrxir + o(1/
√

n),

z2
ij = x2

ij −
2√
n

tjxij − 1√
n

p∑
r=1

Cjrxirxij + o(1/
√

n),

z3
ij = x3

ij −
3√
n

tjx
2
ij −

3
2
√

n

p∑
r=1

Cjrxirx
2
ij + o(1/

√
n)
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and

z4
ij = x4

ij −
4√
n

tjx
3
ij −

2√
n

p∑
r=1

Cjrxirx
3
ij + o(1/

√
n).

As the observations come from the Np(0, Ip) distribution (all the moments ex-
ist), the standard law of large numbers and central limit theorem together with
Slutsky’s lemma yield the result.
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ments. Finally, we wish to mention that, after writing the paper, we learned about
the paper Croux et al. (2003) with a very similar but more general approach. Croux
and his cowriters study the behaviour of the infromation matrix (IM) test when
the maximum likelihood estimates are replaced by robust estimates. One of their
examples is the modified Jarque-Bera test for univariate skewness and kurtosis.
Their conclusion also is that the use of the robust estimates icreases the power of
the IM test.
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