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Abstract

A new method for separating the mixtures of independent sources has been pro-
posed recently in [8]. This method is based on two scatter matrices with the so called
independence property. The corresponding method is now further examined. Simple
simulation studies are used to compare the performance of so called symmetrised
scatter matrices in solving the independence component analysis problem. The re-
sults are also compared with the classical FastICA method. Finally, the theory is
illustrated by some examples.
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1 Introduction

Independent component analysis (ICA) is a useful technique in various signal
processing as well as data analysis applications. Briefly, the idea in ICA is to
find a transformation that transforms the data to independent components.
See e.g. [4] for a review.

The classical ICA model is in its simplest form
x = As,

where the random k-vector @ is the observed mixture of independent compo-
nents, A is an unknown k x k mixing matrix of full-rank and s = (sy, ..., sp)"
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has independent components. At most one of the independent components is
allowed to be gaussian. Now using only observations @, the goal in ICA is to
find a matrix B such that Bax has independent components. Matrix B is then
called as unmixing matrix. Note that if D is a k x k diagonal matrix and P is
a k x k permutation matrix, then

x = (AP 'D ') (DPs),

where DPs has independent components as well. Therefore, s may be de-
fined only up to multiplying constants and a permutation. This ambiguity is,
however, insignificant in most applications.

In this paper, we will show how the ICA problem may be solved using two
different scatter matrices. This approach to ICA is introduced in [8]. In Sec-
tion 2, we will recall the definition of scatter matrix and show how scatter
matrices can be used to build up the so called symmetrised scatter matrices.
Some examples of symmetrised scatter matrices are also given. In Section 3,
we will show how scatter matrices are used to solve the ICA problem. Differ-
ent methods are compared through simulation studies in Section 4 and some
examples are given in Section 5.

2 Symmetrised scatter matrices

In the next section, we will show how two different scatter matrices may be
used to find the unmixing matrix that transforms the observations back to
independent components, but recall first the definition of a scatter matrix.

Definition 1 Let x be a random k-vector with cdf F. A symmetric k X k
matriz valued functional S(x) is a scatter matriz if it is positive definite and
affine equivariant in the sense that

S(Axz +b) = AS(x)AT,
where A is any nonsingular k X k matriz and b is a k-vector.

As will be seen in the next section, scatter matrices cannot be used in inde-
pendent component analysis unless they have the following property.

Definition 2 If S(x) is a diagonal matriz for all © with independent compo-
nents, then S(x) is said to have the independence property.

An example of the scatter matrix with independence property is the regular
covariance matrix, but for example regular M-functionals and S-functionals
do not have this property. In [8] it is, however, shown that by computing



any scatter matrix using pairwise differences one obtains a matrix with the
independence property. In other words, if S(x) is a scatter matrix, then

S($1 — :1:2),

where &, and x, are independent copies of x, is a scatter matrix with the
independence property. Note that if pairwise differences are used to compute
the scatter matrix, no explicit location vector is needed in the definition. In
the following the scatter matrices based on pairwise differences will be called
as symmetrised scatter matrices.

In the next, consider some examples of symmetrised scatter matrices. The
symmetrised M-functional S(x) is based on the regular M-functional [7,5] and
it solves

Elw(r)(z1 — za)(@1 — ®2)" — wa(r)S(z)] =0,
where r = [(z;—x2)"S(x) (2, —x2)]"/? and w; and w, are some non-negative
weight functions. This scatter functional is proposed and studied in [10]. The
examples of symmetrised M-functionals include the following:

(i) The weight functions for symmetrised Huber’s M-estimator are given by

1/ 2 2
wl(r):{ /o, T and wsy(r) =1,

A/r?o?,  r?> P

where ¢ is a tuning constant defined so that ¢ = Pr(xi < ¢*/2) for a chosen
q. The scaling factor o is such that Fw;(||x; — x2||)] = k.

(ii) Diimbgen’s estimator [2] uses w;(r) = k/r? and wo(r) = 1. This estimator is
the symmetrised version of Tyler’s M-estimator [11]. Note that Diimbgen’s

estimator is defined only up to a constant. Therefore it is affine equivariant
in the sense that S(Az + b) o AS(x)A”.

Another symmetrised covariance estimator used in this paper is the spatial
Kendall’s tau matrix

(X1 — @) (21 — wz)T
|21 — 2|2

S(x)=F

This matrix is introduced and studied in [12] and it is a symmetrised version
of the so called spatial sign covariance matrix (see e.g. [6,12]). Note that
the spatial Kendall’s tau matrix is not a real scatter matrix, since it is only
orthogonal equivariant, that is, S(Uz + b) o< US(x)U” for any orthogonal
k x k matrix U. As shown in [8], it can, however, be used in the independent
component analysis.

The above estimators are highly robust, therefore we will include one nonro-
bust estimator to our comparisons, that is, the matrix of fourth moments of



differences

S(x) = B |z — ol A1 — 22) (1 — 2)"] .
Like the spatial Kendall’s tau matrix, this matrix is only orthogonal equivari-
ant.

3 Independent component analysis based on scatter matrices

In this section, we will show how two different scatter matrices may be used
to solve the ICA problem. Let now S; and S, be two scatter matrices with
the independence property and assume that

xr = Az,
where z has independent components, and scatter matrices are such that
Si1(z) =1y and Sy(z) = D(z),

where D(z) is a diagonal matrix with diagonal elements dy > --- > dj, > 0.
The assumption on distinct eigenvalues guarantees that the transformation
matrix A is uniquely defined. Therefore, in this approch, the independent
components cannot have the same marginal distributions.

In [8], it is shown that if the unmixing matrix is computed using

Bla) = [a([Si(@)] " 2)] [Si(@)]

where Uy(x) is the matrix of eigenvectors of Sy(x), then

, (1)

B(x)x = Jz

for some diagonal matrix J with diagonal elements £1. Thus the transforma-
tion in (1) gives the independent components up to a sign. In this approach,
the first scatter matrix is used to whiten the data. By writing A = ULVT,
where U and V are orthogonal matrices and L is a diagonal matrix (singu-
lar value decomposition), it is easy to see that [S;(x)]"/2x = UV T z. Then,
since Ug([Sl(a:)]_l/Qaz) = UV™ the second scatter matrix may be used to find
the rotation matrix that yields to independent components. Note also that in
this approach, the components become ordered according to their marginal
kurtosis.

Since the above ICA transformation requires scatter matrices with the in-
dependence property, the symmetrised scatter matrices are very useful here.
In [8], it is also shown that it is enough to assume that S is only orthogonally
equivariant.



4 Comparison of the methods

In this section, we will compare the performance of our scatter matrix based
methods with the popular FastICA method [3] through a simple simulation
study. Most of the ICA algorithms are based on the idea that due to the
central limit theorem, the distribution of mixed sources tends to gaussian
distribution. Therefore, the algorithms search for the unmixing matrix that
maximizes the nongaussianity of the sources. In FastICA, the nongaussianity
is measured with approximation to negentropy, that is, the negentropy of y is
approximated with

J(y) ={E[G(y)] - E[G()] }*,

where v is a random variable from a standard normal distribution. According
to [3], some useful choices for function G are

G(u) = a 'logcosh(au) and G(u) = —exp(—u?/2),
where 1 < o < 2.

In the following we will compare the accuracies of estimated unmixing matri-
ces. The accuracies are measured using the so called Amari-error [1], which
is a standard performance index in the field of signal separation. If the esti-
mated unmixing matrix is denoted by B and true mixing matrix by A, then
the Amari-error is defined as

o 1 Zk: Zk: |pij| )4 . <§k: |pij| _1>
2k(k —1) | i j:lmaxh‘pih| j=1 \i=1 mazxn|pj| 7

where P = (p;;) = BA. Since the unmixing matrix may only be estimated up
to sign changes and permutation of rows, the perfect separation implies that P
is a permutation matrix consisting of values 1 and/or -1. In that case F = 0.
Moreover, when the estimation procedure fails to separate the sources, the
value of F increases. The inaccuracy measure is scaled so that the maximum
value is 1.

In the first experiment, four independent sources were considered. Sources
were generated from a standard normal distribution, ¢5-distribution, uniform
distribution and cauchy-distribution and then mixed with a random 4 x 4
matrix. The unmixing matrices were then estimated using different methods
and the Amari-errors were computed in each case. The sample size was 1000
and the process was replicated 200 times with the same mixing matrix. The
boxplots of resulting simulation errors are illustrated in Figure 1. Algorithm
(1) corresponds to FastICA with G(u) = log cosh(u) and (2) to FastICA with
G(u) = —exp(—u?/2). In all our scatter matrix based methods, we use the



sample covariance matrix as S;. The other scatter matrix S5 is chosen to be the
symmetrised Huber’s M-estimator in (3), the Diimbgen’s estimator in (4), the
spatial Kendall’s tau matrix in (5) and the matrix of fourth moments of the
differences in (6). For the symmetrised Huber’s M-estimator, we chose ¢ = 0.9
as the tuning constant. The corresponding estimator is then highly efficient,
but still robust against some very extreme outliers. Also smaller values of ¢
were applied here, but the resulting Amari-errors were then higher than in the
case of ¢ = 0.9. In the second case, two skewed distributions were included in
the simulation study, that is, lognormal distribution and Rayleigh distribution.
These two distributions are widely used in modeling several signal processing
phenomena. The simulation setup was similar as before. The results are also
given in Figure 1.
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Fig. 1. Separation performance of four symmetrically distributed sources (left fig-
ure) and four symmetric and two skewed sources (right figure) of length 1000. The
boxplots (1) and (2) correspond to FastICA with two different G' functions. Other
boxplots correspond to scatter matrix based methods, where S is the sample co-
variance matrix and Sy is the symmetrised Huber’s M-estimator (3), the Diimbgen’s
estimator (4), the spatial Kendall’s tau matrix (5) and the matrix of fourth moments
of the differences (6).



Consider first the simulation results in case of symmetrical sources. The use
of symmetrised M-estimators or spatial Kendall’s tau matrix in separating
the sources yields to very low inaccuracies. The matrix of fourth moments
of the differences works also well, even though some higher inaccuracies are
encountered. Both FastICA methods fail to separate the sources more often
than the scatter matrix based methods. When two sources from the skewed
distributions were included in the study, the variances of inaccuracies given by
FastICA methods decrease and the separation performances are always poorer
than those of the scatter matrix based methods. This result was, however,
expected, since it is well known that the FastICA method performs poorly in
case of asymmetric distributions.

Table 1 lists the times needed to compute one ICA transformation using
the algorithms described before. The transformations were computed with
C-functions called from R. As seen from the table, the methods based on sym-
metrised M-estimators are quite slow to compute. However, those algorithms
that use the spatial Kendall’s tau matrix or the matrix of fourth moments of
the differences are very fast even in the case k = 4 and n = 2000. The Fas-
tICA algorithms are naturally the fastest ones, but as seen from the simulation
study, these algorithms often yield to poor estimates of unmixing matrices.

Table 1
Computation times (in seconds) of different ICA algorithms on an AMD Athlon(tm)
XP 2200+ (1.8 GHz) and 515 MB of RAM.

Algorithm

k=2 500 0.00 001 131 140 0.10 0.08
1000 0.01 0.01 5.16 513 039 0.32
2000 0.01 0.01 2097 2037 1.57 1.27
k=3 500 0.01 000 1.7 193 0.18 0.13
1000 0.01 0.01 6.88 7.61 0.67 0.54
2000 0.01 0.01 2741 2944 266 2.13
k=4 500 0.01 001 254 423 027 021
1000 0.01 0.01 33.87 19.07 1.06 0.83
2000 0.01 0.03 40.23 7197 4.23 3.37




5 Examples

5.1 Signal separation

To illustrate the performance of our method, the example with mixed signals
is first considered. Three independent signals were generated using the Matlab
function demosig and are illustrated in Figure 2. The sample size was 500 and
as a mixing matrix A we used a random 3 x 3 matrix. The true unmixing
matrix is now

1.829 —1.254 —0.203
B =|-0.358 —0.140 1.256
—1.743 3.189 —-0.009

and the mixed signals are given in Figure 3.

The signals were then separated using the transformation in (1). In this exam-
ple S7 was chosen to be the sample covariance matrix and as Sy we used the
spatial Kendall’s tau matrix. Other symmetrised scatter estimators, however,
yielded to results of the same type. The estimated unmixing matrix is now

1.876 —1.275 —0.315
B=1-0201 -0249 1.234 |,
1.775 —3.206 —0.015

which is, in spite of some sign changes, very close to the true one. The separa-
tion results are shown in Figure 4. Note that except the flipped axis of third
signal, the sources are very well separated.

In the second example, four independent speech signals of length 1000 were
considered. This data is downloaded from www2.ele.tue.nl/ica99/. The sig-
nals were mixed using a random 4 x 4 matrix and then separated using our
scatter matrix based method with the sample covariance matrix as S; and
the Diibgen’s estimator as S;. The original speech signals are given in Fig-
ure 5 and the separated signals in Figure 6. As seen from these Figures, the
resulting signals are permutated, but very well separated. The permutation
results from the fact that in the second scatter matrix computed on original
independent components, the diagonal values were not ordered. Again, if the
other symmetrised scatter matrices are used here, the results are more or less
the same.



5.2 Mized images

In this example, we use our estimation procedure to separate artificial mix-
tures of three natural images. The images were downloaded from the website
www.cis.hut.fi/projects/ica/data/images/. The original 130 x 130 pixel images
were vectorized by stacking the rows next to each other. The random 3 x 3
matrix was then used as a mixing matrix A. The original images are given
in the first row of Figure 7 and mixed images in the second row. The true
unmixing matrix is now

15.439 3.815 —21.871
B =1-15.552 —1.718 21.376
32.892  3.104 —42.021

And using the transformation (1) with sample covariance matrix as S; and
spatial Kendall’s tau matrix as Sy we obtain

35.547 3.745 —45.776
B=|-13534 —3.616 19.489 |,
15.687 1.496 —21.338

which is, except the permutation, very close to the true unmixing matrix. For
the separated images, see the third row of Figure 7. Note that in this example,
our data set consisted of 16900 3-dimensional observations, therefore the use
of symmetrised M-estimators here was a bit too time-consuming. When the
matrix of fourth moments of the differences was used as S, the separation
was as good as before.

Finally, note that the both FastICA methods were also applied to the above
data sets. These methods, however, failed to separate the sources. The corre-
sponding Amari-errors were approximately 0.5, while the Amari-errors for the
methods based on scatter matrices were below 0.1.

References

[1] Amari, S., Cichocki, A. and Yang, H.H. (1996). A new learning algorithm for
blind signal separation. Advances in Neural Information Processing Systems 8,
MIT Press.

[2] Diimbgen L. (1998). On Tyler’s M-functional of scatter in high-dimension. Ann.
Inst. Statist. Math., 50, 471-491.



Hyvarinen, A. and Oja, E. (1997). A fast fixed-point algorithm for independent
component analysis. Neural Computation, 9(7), 1483-1497.

Hyvarinen, A., Karhunen, J. and Oja, E. (2001). Independent Component
Analysis, Wiley, New York.

Huber P. J. (1981). Robust Statistics, Wiley, New York.

Marden (1999). Some robust estimates of Principal components. Statistics €
Probability Letters, 43, 349-359.

Maronna R. A. (1976). Robust M-estimators of multivariate location and
scatter. Ann. Statist., 4, 51-67.

Oja, H., Sirkid, S. and Eriksson, J. (2006). Scatter matrices and independent
component analysis. Austrian Journal of Statistics. To appear.

Ollila, E., Hettmansperger, T.P. and Oja, H. (2003). Affine equivariant
multivariate sign methods. Under revision.

[10] Sirki&, S., Taskinen, S. and Oja, H. (2006). Symmetrised M-estimators of

scatter. Under revision.

[11] Tyler D. E. (1987). A distribution-free M-estimator of multivariate scatter. Ann.

Statist., 15, 234-251.

[12] Visuri, S., Koivunen, V. and Oja, H. (2000). Sign and rank covariance matrices.

Journal of Stat. Plan. Inf., 91, 557-575.

10



-5 05 05 15

420 2

2 012

24012 21012

4020 2

-15 05 05 15

4202
[

2 012

r

r

r

100 200 300 400 500
Fig. 3. Mixed signals.

i

i

Fig. 4. Separated signals.

11




024

02

2

R

0246 4202 20 0246

4024

Fig. 6. Separated speech signals.

12




Fig. 7. Original images (first row), mixed images (second row) and separated images
(third row).
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