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Abstract

The classical second order source separation methods use approximate joint

diagonalization of autocovariance matrices with several lags to estimate the

unmixing matrix. Based on recent asymptotic results, we propose a novel

unmixing matrix estimator which selects the best lag set from a finite set of

candidate sets specified by the user. The theory is illustrated by a simulation

study.
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1. Introduction

The second order source separation (SOS) model assumes that the ob-

served p time series are linear combinations of p latent uncorrelated weakly

(second-order) stationary time series with different time dependence struc-

tures. The aim is then to find an estimate for an unmixing matrix, which
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transforms the observed time series back to uncorrelated latent time series.

The applications of second order source separation include, for example, the

analysis of medical images and signals (EEG, MEG, fMRI) and financial time

series (Hyvärinen et al., 2001; Comon and Jutten, 2010).

Classical unmixing matrix estimators for the SOS model use autocovari-

ances and cross-autocovariances of the observed p time series. The so-called

algorithm for multiple unknown signals extraction (AMUSE) and second-

order blind identification (SOBI) algorithm for SOS models were suggested

by Tong et al. (1990) and Belouchrani et al. (1997), respectively. In both

methods the latent time series are found by performing joint diagonaliza-

tion of autocovariance matrices. Later, in Miettinen et al. (2012, 2016a),

corresponding unmixing matrix functionals and estimators were proposed

and their statistical properties were derived. The limiting and finite sam-

ple performances of the estimators were investigated and it was noted that

the performance of the estimators depends a lot on the selection of autoco-

variance matrices to be jointly diagonalized. See also Miettinen et al. (2014),

Illner et al. (2015) and Miettinen (2015) for discussion on different algorithms

for SOBI and the impact on the choice of autocovariances to be selected.

In this paper we address the problem of selecting the lags for the autoco-

variances to be diagonalized. We provide a two-stage estimation procedure

which aims at finding the optimal set of autocovariance matrices for the

SOBI estimate from the candidate sets specified by the user. The simulation

studies show that our estimator, which is based on estimating asymptotic

variances, is able to find the best set of autocovariance matrices when the

length of the time series is sufficient.
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The paper is organized as follows. In Section 2 we recall the SOS model,

classical functionals and estimators as well as theoretical results derived

in Miettinen et al. (2016a). In Section 3, the procedure for a more efficient

SOBI (eSOBI) is described, and in Section 4 its performance is compared

with the classical SOBI estimators.

2. Notations and definitions

2.1. Second order source separation (SOS) model

Assume that the p-variate time series follows a Second Order Source Sep-

aration (SOS) model, that is, x = (xt)t=0,±1,±2,... is such that

xt = Ωzt + µ, t = 0,±1,±2, . . . , (1)

where Ω is a full-rank p× p mixing matrix, µ is a p-variate location vector,

which is considered as a nuisance parameter, and z = (zt)t=0,±1,±2,... is a

p-variate latent time series satisfying

(A1) E(zt) = 0 and E(ztz
′
t) = Ip.

(A2) E(ztz
′
t+τ ) = E(zt+τz

′
t) = Λτ is diagonal for all τ = 1, 2, . . ..

This is a semiparametric model as only moment assumptions on z are

made. Assumption (A2) is needed for identifiability of Ω. Assumption (A1)

fixes µ and the scales of the components. After these assumptions, the signs

and order of the components still remain unidentified. For practical purposes

this is, however, sufficient.
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2.2. SOS functionals based on autocovariance matrices

The classical SOS functionals are based on the autocovariances and cross-

autocovariances of the p time series. The most simple unmixing matrix

functional is AMUSE (Algorithm for Multiple Unknown Signals) functional,

which simultaneously diagonalizes the covariance matrix and an autocovari-

ance matrix with selected lag τ . The corresponding sample statistic, the

so-called AMUSE estimator, was proposed in Tong et al. (1990).

The statistical properties of AMUSE estimators were studied recently

in Miettinen et al. (2012). The drawback of the method is that it is highly

sensitive to the selection of lag τ . Motivated by this, Belouchrani et al. (1997)

proposed the SOBI (Second Order Blind Identification) algorithm that aims

at jointly approximately diagonalizing several autocovariance matrices.

Write now Sτ1 , . . . ,SτK for K autocovariance matrices with distinct lags

τ1, . . . , τK . In SOBI, the p× p unmixing matrix functional Γ = (γ1, . . . ,γp)
′

is then the matrix that maximizes

K∑
k=1

||diag(ΓSτkΓ
′)||2 =

p∑
j=1

K∑
k=1

(γ ′jSτkγj)
2

under the constraint ΓS0Γ
′ = Ip. Here we write diag(S) for a p×p diagonal

matrix with the diagonal elements as in S and off(S) = S−diag(S).

The rows of Γ can be found either one by one (deflation-based approach)

or simultaneously (symmetric approach). These two approaches were studied

in Miettinen et al. (2014) and Miettinen et al. (2016a), respectively. In this

paper we focus on symmetric SOBI as it is usually considered as the superior

method. The corresponding estimating equations for the symmetric SOBI

functional can be derived using the method of Lagrange multipliers. It was

4



shown in Miettinen et al. (2016a) that the symmetric SOBI functional Γ can

then be defined as follows.

Definition 1. The symmetric unmixing matrix functional Γ = (γ1, . . . ,γp)
′

solves the estimating equations

γ ′iT (γj) = γ ′jT (γi) and γ ′iS0γj = δij, i, j = 1, . . . , p,

where T (γ) =
∑K

k=1(γ
′Sτkγ)Sτkγ.

The above estimating equations suggest a fixed-point algorithm for com-

puting the SOBI estimator (Miettinen et al., 2016a). However, an equivalent

solution can be computed faster using an algorithm for approximate joint di-

agonalization of matrices (Clarkson, 1988) which is based on Jacobi rotations.

Algorithms for computing the AMUSE and SOBI estimates are provided in

the R package JADE (Nordhausen et al., 2015; Miettinen et al., 2016b).

2.3. Asymptotical properties of the SOS estimators

The estimating equations allow us to study the asymptotical properties

of the symmetric SOBI estimator defined as follows.

Definition 2. The unmixing matrix estimator Γ̂ = (γ̂1, . . . , γ̂p)
′, based on

the sample autocovariance matrices Ŝ0, Ŝτ1 , . . . , ŜτK , solves the estimating

equations

γ̂ ′iT̂ (γ̂j) = γ̂ ′jT̂ (γ̂i) and γ̂ ′iŜ0γ̂j = δij, i, j = 1, . . . , p,

where T̂ (γ) =
∑K

k=1(γ
′Ŝτkγ)Ŝτkγ.

Now assume that the observed times series follows the SOS model (1) and

assume (wlog) that µ = 0. We also assume that
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(A3) the diagonal elements of
∑K

k=1 Λ2
τk

are strictly decreasing.

(A4) Ω = Ip and
√
T (Ŝτk −Λτk) = Op(1), k = 0, 1, . . . , K as T →∞.

Assumption (A3) guarantees the identifiability of the mixing matrix and fixes

the order of the component time series in the SOS model. Assumption (A4)

is needed for consistency. Miettinen et al. (2016a) then proved the following

result.

Theorem 1. Under (A1)-(A4), Γ̂ = (γ̂1, . . . , γ̂p)
′ →p Ip. Further, if the

joint limiting distribution of

√
T
[
vec(Ŝ0, Ŝτ1 , . . . , ŜτK )− vec(Ip,Λτ1 , . . . ,ΛτK )

]
is a singular (K + 1)p2-variate normal distribution with mean value zero,

then the joint limiting distribution of
√
Tvec(Γ̂− Γ) is a singular p2-variate

normal distribution.

The SOBI estimator is affine equivariant which means that Γ̂Ω and the

estimated latent time series do not depend on the mixing matrix Ω. This

implies that neither the limiting distribution of
√
Tvec(Γ̂Ω−Ip) depends on

Ω, and also the limiting distribution of
√
Tvec(Γ̂− Γ) is obtained easily for

arbitrary Ω.

The limiting joint normality of sample autocovariance matrices naturally

depends on the distribution of the latent p-variate time series. In Miettinen

et al. (2012), the joint limiting normality was proven assuming that zt are

uncorrelated multivariate linear processes, that is,

zt =
∞∑

j=−∞

Ψjεt−j,
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where εt are standardized iid p-vectors (with exchangeable and marginally

symmetric components with finite fourth moments) and Ψj, j = 0,±1,±2, . . . ,

are diagonal matrices satisfying
∑∞

j=−∞Ψ2
j = Ip. Notice that for example all

causal ARMA processes can be written as linear processes. For the limiting

covariance matrices of
√
Tvec(Γ̂− Γ), see then Miettinen et al. (2016a).

In the case of linear processes, the limiting variances of
√
Tvec(Γ̂Ω− Ip)

can be estimated from the data, even if Ω is unknown. Further, when εt

are Gaussian, the limiting variances depend on Ψj, j = 0,±1,±2, . . . , only

through the autocovariance matrices of the process. Hence, the estimation

of the limiting variances is relatively simple in the Gaussian case, the only

dilemma being the infinite number of autocovariance matrices of z in the for-

mulas. The number of autocovariances, M , to be included in the estimation

procedure is upper bounded by T − 1, where T is the sample size, and lower

bounded by the largest lag τK . The target M is the largest lag for whch the

autocovariance matrix of z is nonzero. If εt are not Gaussian, the formu-

las for the limiting variances include Ψj, j = 0,±1,±2, . . . , as well as the

fourth moments of εt. The estimation thus becomes more cumbersome. Us-

ing the R package BSSasymp (Miettinen et al., 2015), the covariance matrix

of
√
Tvec(Γ̂ − Γ) can be estimated both under the Gaussianity assumption

and without it.

3. A more efficient SOBI estimator

The choice of autocovariance matrices to be jointly diagonalized in SOBI

is known to affect the efficiencies of SOBI estimators (Tang et al., 2005;

Miettinen et al., 2012, 2016a). However, only few ad-hoc guidelines for the
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autocovariance matrix selection are provided in the literature (Tang et al.,

2005, e.g.). Motivated by this we propose the eSOBI estimator, which makes

use of the asymptotical results described in the previous section.

In Ilmonen et al. (2010) it was shown that the sum of the limiting vari-

ances of the off-diagonal elements of
√
Tvec(Γ̂Ω− Ip) provide a global mea-

sure of variation of Γ̂. We thus propose an estimation procedure in which

we go through sets of autocovariance matrices specified by the user, and

choose the set which yields the most efficient unmixing matrix estimator,

that is, the one with smallest estimated global measure of variation. Let

X = (x1, . . . ,xT ) denote the (centered) data matrix. The estimator is found

via the following simple algorithm:

1. Choose L lag sets {T1,T2, . . . ,TL}.

2. For each lag set Tl, l = 1, . . . , L, compute Γ̂l and Ẑ
l

= Γ̂lX, and

estimate the asymptotic covariance matrix of
√
Tvec(Γ̂lΩ− Ip) based

on Ẑ
l
.

3. The efficient SOBI estimator is the one that minimizes the sum of the

limiting variances of the off-diagonal elements of
√
Tvec(Γ̂Ω− Ip).

The affine equivariance of the estimator follows from that of the regular SOBI,

since the choice of the lag set is only based on the estimated latent time series

Ẑ
l
which do not depend on the mixing matrix. We also consider a procedure

where only one Γ̂l and one Ẑ
l

is computed in step 2, and the asymptotic

covariance matrices for all lag sets are estimated using Ẑ
l
. This approach is

obviously faster to compute. In Section 4 we compare the efficiency of the

two variants.
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As instead of unbiased estimation of the limiting variances, the main

interest is in finding the smallest sum of the limiting variances, we recommend

that the assumption on the source components being Gaussian processes

is made. This results in substantial reductions in computation times and

is justified by the fact that the effect of non-Gaussianity to the limiting

variances is rather small and almost similar for each lag set (Miettinen et al.,

2012, 2014).

In addition to the selection of the lag set, one could use the asymptotical

results to choose between the symmetric and deflation-based SOBI or to

choose the diagonality criterion (Miettinen, 2015). However, when combined

with the selection of the lags, we regard the gain which can be attained from

these choices too small as compared to the extra computational burden.

Therefore we focus here only on the standard symmetric SOBI estimator.

The R package BSSasymp (Miettinen et al., 2015) provides a function for

the computation of the eSOBI estimate, and also tools to construct more

complicated versions.

4. Simulation studies

In this section we compare the performance of the eSOBI estimator to

that of classical SOBI estimator using simulation studies. As a performance

index we use the minimum distance index (MDI, Ilmonen et al., 2010), which

compares the estimated mixing matrix to the true one. The minimum dis-

tance index is defined as

D̂ = D(Γ̂Ω) =
1√
p− 1

inf
C∈C
‖CΓ̂Ω− Ip‖,
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where ‖ · ‖ is the matrix (Frobenius) norm and C is the set of p× p matrices

which have exactly one non-zero element on each row and column. The

index is invariant with respect to the change of the mixing matrix, and it

is scaled so that 0 ≤ D̂ ≤ 1. The smaller the MDI-value, the better is the

performance.

To compare the performances, multivariate time series were generated in

R 3.2.3 (R Core Team, 2015) from the following four models with different

choices of T and with 2000 repetitions. In all simulation settings, the mixing

matrix was Ω = Ip as due to affine equivariance, this has no effect on the

results.

(A) AR(1), AR(2), AR(3) and ARMA(1, 1) time series with Gaussian in-

novations.

(B) AR(1), AR(2), MA(15) and MA(15) time series with exponentially,

t5, normally and uniformly distributed innovations, respectively.

(C) The same coefficients as in (A) with multivariate t5-distributed inno-

vations.

(D) Time series of models (A) and (B) combined.

Notice that in models (A), (B) and (D) the components of the time series

are mutually independent and in model (C) they are only uncorrelated, still

satisfying the assumption (A2). The eSOBI estimators were computed using

the following 17 candidate sets of lags:

Hence the lag sets have different lengths and consider different lag com-

binations. Set T1 yields the AMUSE type of estimate, and set T11 is the
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T1 = {1} T13 = {1, 2, . . . , 50}

T2 = {1, 2} T14 = {1, 2, . . . , 10, 12, . . . , 20}
... T15 = {5, 6, . . . , 10, 12, . . . , 20, 25, . . . , 50}

T10 = {1, 2, . . . , 10} T16 = {2, 4, . . . , 20}

T11 = {1, 2, . . . , 12} T17 = {1, 2, 3, 5, 7, 11, 13, 17, 19}

T12 = {1, 2, . . . , 20}

default set in many papers considering SOBI estimator. Tang et al. (2005)

argue that in the context of EEG data, also large lags are important. This

motivates us for using the sets T13 and T15 as candidate sets. Notice that

our R function eSOBI in the package BSSasymp allows the user to include

all those candidate lag sets into the collection he/she considers useful for the

application at hand.

Four eSOBI estimators are computed in the simulation studies. The

candidate sets are fixed, but the estimators differ in how the asymptotic

variances are estimated. The first estimator is computed as described in

the algorithm in Section 3, that is, the initial SOBI estimate is computed

separately for each lag set. For the other eSOBI estimators, the asymptotic

variances for all lag sets are estimated using a common initial SOBI estimate.

The initial SOBI estimates use sets T1, T11 and T15, respectively. The eSOBI

estimators are compared to AMUSE with τ = 1 and SOBI with T2, T5, T11

and T13. Also the minimum of T (p−1)D̂2 over all candidate sets is computed.

Notice that in all our computations the maximum number of autocovariances,

M, to compute the asymptotic quantities was set to 200.

The results in Figure 1 show that the choice of the common initial es-
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timate has an evident effect in models (A), (C) and (D) when T is small,

but all eSOBI estimates converge to the same values as T increases. It is

also worth mentioning that when T is sufficiently large, then always the set,

which was theoretically the best out of the candidate sets, was picked for

each eSOBI. This means in setting (A) T2, setting (B) T12, setting (C) T2

and setting (D) T2. Notice that the theoretically best set is not the best in

each repetition and therefore the average of the minimum of T (p−1)D̂2 over

all candidate sets is below that of the eSOBI estimator.

Conclusions

SOBI is a popular blind source separation method, and widely used for

example in the analysis of biomedical signals. The selection of lags for the

autocovariance matrices to be jointly diagonalized in SOBI has a significant

effect on the performance of the method. However, only ad hoc guidelines

for lag selection are given in the literature. In this paper we propose a

more efficient version of the (symmetric) SOBI method. The more efficient

SOBI method (eSOBI) goes through all the lag sets specified by the user,

and chooses the best one using asymptotic considerations. In our simulation

studies we showed the excellent performance of eSOBI. Hence we advice users

to use subject knowledge to select a rich set of candidate sets of lags. The

eSOBI will then select the best one. If a common initial estimate is used

and the gaussianity assumption is made when estimating the asymptotic

variances, the computational costs are quite small as compared to the gained

efficiency.
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Figure 1: The averages of T (p− 1)D̂2 for different estimators.
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