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Abstract

In this paper we assume that the observed p time series are linear combi-
nations of p latent uncorrelated weakly stationary time series. The problem
is then to find an estimate for the unmixing matrix that transforms the
observed time series back to uncorrelated time series. The so called SOBI
(Second Order Blind Indentification) estimate aims at a joint diagonalization
of the covariance matrix and several autocovariance matrices with varying
lags. In this paper, we propose a new procedure that extracts the latent time
series one-by-one. The limiting distribution of this deflation-based SOBI is
found under general conditions, and we show how the results can be used for
the comparison of estimates. The exact formula for the limiting covariance
matrix of the deflation-based SOBI estimate is given for general multivariate
MA(∞) processes. Also, a whole family of estimates is proposed with the
deflation-based SOBI as a special case, and the limiting properties of these
estimates are found as well. The theory is widely illustrated by simulation
studies.

Keywords:
Asymptotic Normality, Autocovariance, Blind Source Separation, MA(∞)
Processes, Minimum Distance Index, SOBI

∗Corresponding author
Email address: jari.p.miettinen@jyu.fi (Jari Miettinen)

Preprint submitted to Journal of Multivariate Analysis October 3, 2013



1. Introduction

The blind source separation (BSS) model is a semiparametric model,
where the components of the observed p-variate vector x are assumed to
be linear combinations of the components of an unobserved p-variate source
vector z. The BSS model can then simply be written as x = Ωz, where Ω is
an unknown full rank p×p mixing matrix, and the aim is, based on the obser-
vations x1, . . . ,xT , to find an estimate of the mixing matrix Ω (or its inverse).
Notice that, in the independent component analysis (ICA), see for example
Hyvärinen et al. (2002), which is perhaps the most popular BSS approach, it
is further assumed that the components of z are mutually independent and
at most one of them is gaussian.

It is often assumed in BSS applications that the observation vectors
x1, . . . ,xT are independent and identically distributed (iid) random vectors.
In this paper x1, . . . ,xT are observations of a time series. We assume that
the p-variate observations x1, ...,xT obey a BSS model such that

xt = Ωzt, t = 0,±1,±2, . . . (1)

where Ω is a full-rank p × p mixing matrix, and z = (zt)t=0,±1,±2,... is a
p-variate time series that satisfies

(A1) E(zt) = 0,

(A2) E(ztz
′
t) = Ip, and

(A3) E(ztz
′
t+τ ) = E(zt+τz

′
t) = Dτ is diagonal for all τ = 1, 2, . . ..

The p time series in z are thus weakly stationary and uncorrelated. Given
(x1, . . . ,xT ), the aim is to find estimate Γ̂ of an unmixing matrix Γ such
that Γx has uncorrelated components. Γ = Ω−1 is naturally one possible
unmixing matrix. Notice that Ω and z in the definition are confounded in
the sense the signs and order of the components of z (and the signs and order
of the columns of Ω, respectively) are not uniquely defined.

In the signal processing community, model (1) is often described as a
model with components which are temporally correlated but spatially uncor-
related or as a “colored” data model as opposite to the “white” iid model (Ci-
chocki & Amari, 2002; Comon & Juten, 2010). Contrary to the ICA model,
multiple gaussian sources are not excluded in the BSS model assumption. In
ICA higher order moments are often used to recover the underlying sources,
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whereas in model (1) the use of second order statistics is adequate, and the
separation is based on the information coming from the serial dependence.
Due to this property, this blind source separation approach is also called
second order source separation (SOS) approach.

The outline of this paper is as follows. In Section 2.1 we first discuss the
so called AMUSE estimator (Tong et al., 1990) which was the first estima-
tor of the unmixing matrix developed for this problem and is based on the
simultaneous diagonalization of two autocovariance matrices. The behavior
of this estimate however depends heavily on the chosen lags. As a solution
to this dilemma the so called SOBI estimator (Belouchrani et al., 1997),
which jointly diagonalizes k > 2 autocovariance matrices, is considered in
Section 2.2. In Section 3 the limiting distribution of a new deflation-based
SOBI estimate is derived. The algorithm for the computation of this esti-
mate was suggested in Nordhausen et al. (2012). In Section 4, a large family
of unmixing matrix estimates is proposed with the deflation-based SOBI as
a special case, and the limiting properties of these estimates are found as
well. The limiting behavior and finite-sample behavior of the estimates are
illustrated in simulation studies in Section 5. T he paper is concluded with
some final remarks.

2. BSS functionals based on autocovariance matrices

2.1. Functionals based on two autocovariance matrices

Let us first recall the statistical functional corresponding to the AMUSE
(Algorithm for Multiple Unknown Signals Extraction) estimator introduced
by Tong et al. (1990). Assume that x follows a blind source separation
(BSS) model such that, for some lag k > 0, the diagonal elements of the
autocovariance matrix E(ztz

′
t+k) = Dk are distinct, and write

Sk = E(xtx
′
t+k) = ΩDkΩ

′, k = 0, 1, 2, . . .

for the autocovariance matrices. The unmixing matrix functional Γk is then
defined as a p× p matrix that satisfies

ΓkS0Γ
′
k = Ip and ΓkSkΓ

′
k = Λk,

where Λk is a diagonal matrix with the diagonal elements in a decreasing
order. Notice that Γk is affine equivariant, that is, if Γk and Γ∗k are the values
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of the functionals at x and x∗ = Ax in the BSS model (1) then Γ∗k = ΓkA
−1

and further Γkx = Γ∗kx
∗ (up to sign changes of the components).

The statistical properties of the AMUSE estimator were studied recently
in Miettinen et al. (2012). The exact formula for limiting covariance ma-
trix was derived for MA(∞) processes, and the asymptotic as well as finite
sample behavior was investigated. It was shown that the behavior of the
AMUSE estimate depends crucially on the choice of the lag k; the p time
series can for example be separated consistently only if the eigenvalues in
Λk are distinct. Without additional information on the time series, it is not
possible to decide which lag k should be used in estimation. To circumvent
this problem Belouchrani et al. (1997) proposed the SOBI (Second Order
Blind Indentification) algorithm that aims to jointly diagonalize several au-
tocovariance matrices S0, S1, . . . , SK . Belouchrani et al. (1997) introduced
an algorithm that uses iterative Givens rotations to (approximately) jointly
diagonalize the autocovariance matrices. In this paper, we propose the use
of an algorithm that finds the latent uncorrelated time series in a deflation-
based manner.

2.2. Functionals based on several autocovariance matrices

Let S1, . . . , SK be autocovariance matrices with lags 1, . . . , K. The p× p
unmixing matrix functional Γ = (γ1, . . . ,γp)

′ is the matrix that minimizes

K∑
k=1

||off(ΓSkΓ
′)||2

under the constraint ΓS0Γ
′ = Ip, or, equivalently, maximizes

K∑
k=1

||diag(ΓSkΓ
′)||2 =

p∑
j=1

K∑
k=1

(γ ′jSkγj)
2 (2)

under the same constraint. Here diag(S) is a p × p diagonal matrix with
the diagonal elements as in S and off(S) = S−diag(S). In this paper, the
columns of an unmixing matrix functional Γ are found one by one so that
γj, j = 1, . . . , p− 1 maximizes

K∑
k=1

(γ ′jSkγj)
2, (3)
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under γ ′rS0γj = δrj, r = 1, . . . , j. Notice that, for population S0, ..., SK , the
solution found using (3) maximizes also (2). This is not usually true for the
sample estimates.

Remark 1. In the literature, there are several algorithms available for a si-
multaneous diagonalization of K autocovariance matrices. Perhaps the most
widely used algorithm based on the Jacobi rotation technique was introduced
in Cardoso & Souloumiac (1996).

Now using (3) one can see that the vector γj optimizes the Lagrangian
function

L(γj,λj) =
K∑
k=1

(γ ′jSkγj)
2 − λjj(γ ′jS0γj − 1)−

j−1∑
r=1

λjrγ
′
rS0γj,

where λj = (λj1, . . . , λjj)
′ are the Lagrangian multipliers for γj. By solving

above optimization problem one can easily show that the unmixing matrix
functional Γ satisfies the following p− 1 estimating equations:

Definition 1. The unmixing matrix functional Γ = (γ1, . . . ,γp)
′ based on

S0 and S1, . . . , SK solves the estimating equations

T (γj) = S0(

j∑
r=1

γrγ
′
r)T (γj), j = 1, . . . , p− 1,

where

T (γ) =
K∑
k=1

(γ ′Skγ)Skγ.

Also now the resulting Γ is affine equivariant, that is, Γx = Γ∗x∗ (up to
sign changes and permutation of the components), where Γ and Γ∗ are the
values of the functionals computed at x and x∗ = Ax.

3. Statistical properties of the SOBI estimator

3.1. Limiting multivariate normality

Assume now that (x1, ...,xT ) follow the BSS model (1). We also assume
(wlog) that the source vectors are centered at zero. The (population) autoco-
variance matrices Sk can naturally be estimated by the sample autocovariance
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matrices

Ŝk =
1

T − k

T−k∑
t=1

xtx
′
t+k, k = 0, 1, 2, . . .

As the population autocovariance matrices are symmetric in our model, we
estimate Sk with a symmetrized version

ŜSk =
1

2
(Ŝk + Ŝ ′k).

Applying Definition 1 to observed data, a natural unmixing matrix esti-
mate is obtained as follows.

Definition 2. The unmixing matrix estimate Γ̂ = (γ̂1, . . . , γ̂p)
′ based on Ŝ0

and ŜS1 , . . . , Ŝ
S
K solves the estimating equations

T̂ (γ̂j) = Ŝ0(

j∑
r=1

γ̂rγ̂
′
r)T̂ (γ̂j), j = 1, . . . , p− 1, (4)

where

T̂ (γ) =
K∑
k=1

(γ ′ŜSk γ)ŜSk γ.

The estimating equations also suggest a simple algorithm for computing
the rows of the unmixing matrix estimate Γ̂ one-by-one, see Appendix A.

Solving the rows of Γ̂ in a deflation-based manner allows us to derive
asymptotic properties of the unmixing matrix estimate Γ̂. Without loss of
generality, we derive the limiting distribution under Ω = Ip only. The lim-
iting distribution for other values of Ω can then be found using the affine
equivariance property of Γ̂.

Theorem 1. Assume that (x1, ...,xT ) is an observed time series from the
BSS model with Ω = Ip and

√
T
[
vec(Ŝ0, Ŝ

S
1 , . . . , Ŝ

S
K)− vec(Ip,Λ1, . . . ,ΛK)

]
= Op(1),

where Λk, k = 1, . . . , K, satisfy
∑

k λkiλkj 6=
∑

k λ
2
ki for i < j. Assume also
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that Γ̂ = (γ̂1, . . . , γ̂p) is such solution for (4) that Γ̂→p Ip. Then
√
T γ̂ji = −

√
T γ̂ij −

√
T (Ŝ0)ij + op(1), for i < j,

√
T γ̂ji =

∑
k λkj(

√
T ŜSk )ji −

∑
k λ

2
kj(
√
T Ŝ0)ji∑

k λkj(λkj − λki)
+ op(1), for i > j,

√
T γ̂jj = −1

2

√
T ((Ŝ0)jj − 1) + op(1).

For the proof, see the proof of more general Theorem 2 in Appendix B. It
is interesting that the joint limiting distribution of γ̂1, . . . , γ̂p depends on the
order in which they are found. Theorem 1 also implies the following result.

Corollary 1. Assume that (x1, ...,xT ) is an observed time series obeying the
BSS model. Assume also that the joint limiting distribution of

√
T
[
vec(Ŝ0, Ŝ

S
1 , . . . , Ŝ

S
K)− vec(S0, S1, . . . , SK)

]
is a (singular) (K + 1)p2-variate normal distribution with mean value zero.
Then, if Γ̂ →p Γ, the limiting distribution of

√
Tvec(Γ̂ − Γ) is a singular

p2-variate normal distribution.

3.2. MA(∞) processes

To examine the limiting properties of unmixing matrices under some spe-
cific time series model, we now assume that zt are uncorrelated multivariate
MA(∞) processes, that is,

zt =
∞∑

j=−∞

Ψjεt−j, (5)

where Ψj, j = 0,±1,±2, . . ., are diagonal matrices satisfying
∑∞

j=−∞Ψ2
j =

Ip, and εt are p-variate iid random vectors with E(εt) = 0 and Cov(εt) = Ip.
Hence

xt = Ωzt =
∞∑

j=−∞

(ΩΨj)εt−j

is also multivariate MA(∞) process. Notice that every second-order station-
ary process is either a linear process (MA(∞)) or can be transformed to one
using the Wold’s decomposition. Notice also that causal ARMA(p, q) pro-
cesses are MA(∞) processes. See Chapter 3 in Brockwell & Davis (1991).
We further assume that
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(A4) the components of εt have finite fourth order moments, and

(A5) the components of εt are exchangeable and marginally symmetric, that
is,

JPεt ∼ εt
for all sign-change matrices J and for all permutation matrices P . (J is
a sign-change matrix if it is a diagonal matrix with diagonal elements
±1, and P is a permutation matrix if it is obtained from an identity
matrix by permuting its rows and/or columns.)

Assumptions (A4) and (A5) imply that E(ε3tiεtj) = 0 and justify notations
E(ε4ti) = βii <∞ and E(ε2tiε

2
tj) = βij <∞.

The limiting distributions of the sample autocovariance matrices Ŝk de-
pend on the Ψt, t = 0,±1,±2, . . . only through autocovariances of the pa-
rameter vector series,

Fk =
∞∑

t=−∞

ψtψ
′
t+k, k = 0, 1, 2, ...

where ψt = (ψt1, . . . , ψtp)
′, and ψt1, . . . , ψtp are the diagonal elements of Ψt,

t = 0,±1,±2, . . . . See Miettinen et al. (2012).
Under the above assumptions the asymptotic normality of Γ̂ is obtained,

and the asymptotic variances are as follows.

Corollary 2. Assume that (x1, ...,xT ) is an observed time series from the
BSS model xt = Ωzt, where (zt) is a multivariate MA(∞) process defined in
(5) that satisfies also (A4) and (A5). Assume (wlog) that Ω = Ip, S0 = Ip
and Sk = Λk, for k = 1, 2, . . . . Then

(i) the joint limiting distribution of

√
T (vec(Ŝ0, Ŝ

S
1 , . . . , Ŝ

S
K)− vec(Ip,Λ1, . . . ,ΛK))

is a singular (K + 1)p2-variate normal distribution with mean value
zero and covariance matrix

V =

V00 . . . V0K
...

. . .
...

VK0 . . . VKK

 . (6)
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with submatrices of the form

Vlm = diag(vec(Dlm))(Kp,p −Dp,p + Ip2).

Here Kp,p =
∑

i

∑
j(eie

T
j )⊗(eje

T
i ), Dp,p =

∑
i(eie

T
i )⊗(eie

T
i ) and Dlm

is a p× p matrix with elements

(Dlm)ii = (βii − 3)(Fl)ii(Fm)ii +
∞∑

k=−∞

((Fk+l)ii(Fk+m)ii + (Fk+l)ii(Fk−m)ii) ,

(Dlm)ij =
1

2

∞∑
k=−∞

((Fk+l−m)ii(Fk)jj + (Fk)ii(Fk+l−m)jj)

+
1

4
(βij − 1)(Fl + F ′l )ij(Fm + F ′m)ij, i 6= j.

(ii) The limiting distribution of
√
T (γ̂j − ej) is a p-variate normal distri-

bution with mean zero and covariance matrix

ASV (γ̂j) =

j−1∑
r=1

ASV (γ̂jr)ere
′
r + ASV (γ̂jj)eje

′
j +

p∑
t=j+1

ASV (γ̂jt)ete
′
t,

where

ASV (γ̂ji) =

∑
l,m λliλmi(Dlm)ji − 2µij

∑
k λki(Dk0)ji + µ2

ij(D00)ji

(µij − µii)2
, for i < j

ASV (γ̂ji) =

∑
l,m λljλmj(Dlm)ji − 2µjj

∑
k λkj(Dk0)ji + µ2

jj(D00)ji

(µjj − µji)2
, for i > j

ASV (γ̂jj) = 4−1(D00)jj

with µij =
∑

k λkiλkj.

Remark 2. Notice that if we assume (A4) but replace (A5) by

(A6) The components of εt are mutually independent,

then, in this independent component model case, the joint limiting distribu-
tion of (Ŝ0, Ŝ

S
1 , . . . , Ŝ

S
K) is again as given in Corollary 2 but with βij = 1

for i 6= j. If we further assume that innovations εt are iid from Np(0, Ip),
then βii = 3 and βij = 1 for all i 6= j, and the variances and covariances in
Corollary 2 become even more simplified.

9



4. A new family of deflation-based estimates

The criterion function for the deflation-based SOBI estimator considered
so far is based on fourth moments. We next consider a modification of the
criterion in (3) that is obtained if the second power in

∑K
k=1(γ

′
jSkγj)

2 is

replaced by
∑K

k=1G(γ ′jSkγj) with other choices of G. Different choices of G
then yield estimates with different robustness and efficiency properties. No-
tice however that the estimate still depends on the observations through the
second moments and to find an estimate with a bounded influence function,
for example, does not seem to be possible for any choice of G. To obtain
an estimate with a high break-down point and a bounded influence function,
either (i) the covariance and the autocovariance matrices should be replaced
by a robust scatter matrix and by robust autocovariance matrices, respec-
tively, or (ii) the covariance matrix should be replaced by a robust scatter
matrix and G should be bounded. However, further research is needed here.

The columns of Γ are again found one by one so that γj, j = 1, . . . , p− 1
maximizes

K∑
k=1

G(γ ′jSkγj), (7)

under γ ′rS0γj = δrj, r = 1, . . . , j − 1. In Section 2.2 we used G(x) = x2, but
now we let G be any increasing twice continuously differentiable function.

As before, the functional Γ = (γ1, . . . ,γp)
′ based on functionals S0 and

S1, . . . , SK can be shown to solve the estimating equations

T (γj) = S0(

j∑
r=1

γrγ
′
r)T (γj), j = 1, . . . , p− 1, (8)

where

T (γ) =
K∑
k=1

g(γ ′Skγ)Skγ,

and g = G′. Corresponding unmixing matrix estimate Γ̂ = (γ̂1, . . . , γ̂p)
′

is obtained by replacing autocovariance matrices with symmetrized sample
autocovariance matrices in estimating equations. Further, the limiting distr-
bution of Γ̂ can be derived using the following result:
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Theorem 2. Assume that (x1, ...,xT ) is an observed time series obeying the
BSS model with Ω = Ip. Assume also that

√
T
[
vec(Ŝ0, Ŝ

S
1 , . . . , Ŝ

S
K)− vec(Ip,Λ1, . . . ,ΛK)

]
= Op(1),

where Λk, k = 1, . . . , K, satisfy
∑

k g(λki)λkj 6=
∑

k g(λki)λki for i < j, and

Γ̂ = (γ̂1, . . . , γ̂p) is such solution for (8) that Γ̂→p Ip. Then
√
T γ̂ji = −

√
T γ̂ij −

√
T (Ŝ0)ij + op(1), for i < j,

√
T γ̂ji =

∑
k g(λkj)

√
T (ŜSk )ji −

∑
k g(λkj)λkj

√
T (Ŝ0)ji∑

k g(λkj)(λkj − λki)
+ op(1), for i > j,

√
T γ̂jj = −1

2

√
T ((Ŝ0)jj − 1) + op(1).

The results in Corollary 1 and Corollary 2 also hold for any twice con-
tinuously differentiable function G. For MA(∞) processes the asymptotic
variances are then given by

ASV (γ̂ji) =

∑
l,m g(λli)g(λmi)(Dlm)ji − 2µij

∑
k g(λki)(Dk0)ji + µ2

is(D00)ji

(µij − µii)2
,

for i < j,

ASV (γ̂ji) =

∑
l,m g(λlj)g(λmj)(Dlm)ji − 2µjj

∑
k g(λkj)(Dk0)ji + µ2

jj(D00)ji

(µjj − µji)2
,

for i > j,

ASV (γ̂jj) = 4−1(D00)jj,

where µij =
∑

k g(λki)λkj, and matrices Dlm are as defined in Corollary 2.

5. Simulation studies

5.1. Minimum distance index

There are several possible performance indices to measure the accuracy
of an unmixing matrix (for an overview see for example Nordhausen et al.,
2011a). Most of the indices are functions of the gain matrix Ĝ = Γ̂Ω. For a
good estimate Γ̂, Ĝ is then close to some C in

C = {C : each row and column of C has exactly one non-zero element.}
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In this paper, the estimates are compared using the minimum distance
index (Ilmonen et al., 2010)

D̂ = D(Γ̂Ω) =
1√
p− 1

inf
C∈C
‖CΓ̂Ω− Ip‖ (9)

with the matrix (Frobenius) norm ‖·‖. It is shown (Ilmonen et al., 2010) that
the minimum distance index is affine invariant and 0 ≤ D̂ ≤ 1. Moreover,
if Ω = Ip and

√
T vec(Γ̂ − Ip) → Np2(0,Σ), then the limiting distribution

of T (p − 1)D̂2 is that of weighted sum of independent chi squared variables
with the expected value

tr ((Ip2 −Dp,p)Σ(Ip2 −Dp,p)) . (10)

Notice that tr((Ip2 −Dp,p)Σ(Ip2 −Dp,p)) is the sum of the limiting variances

of the off-diagonal elements of
√
T vec(Γ̂−Ip) and therefore provides a global

measure of the variation of the estimate Γ̂.

5.2. Simulation setups

In our simulations, the three-variate time series z1, ...,zT were generated
from the following five models with different choices of T and with 10 000
repetitions. In all simulation settings, the mixing matrix was Ω = Ip. Notice
that, due to affine equivariance of the estimates, the performance compar-
isons do not depend on this choice.

(A) AR(3), AR(5) and AR(6) processes with coefficient vectors (0.4,−0.5, 0.2),
(−0.1, 0, 0, 0,−0.1) and (0, 0.2, 0,−0.4, 0, 0.3), respectively, and spheri-
cal three-variate t5-distributed innovations,

(B) three independent MA(50) processes with normal innovations,

(C) three independent AR(3) processes with coefficient vectors (0.5, 0.2,−0.4),
(−0.3, 0.2,−0.1) and (0.1, 0.1, 0.3), respectively, and normal innova-
tions,

(D) AR(2), AR(5) and MA(6) processes with coefficient vectors (0.1, 0.5),
(0.2, 0.5, 0.3, 0.1,−0.5) and (0.4, 0.2, 0.1,−0.6,−0.2,−0.4), respectively,
and normal innovations,

12



(E) AR(1), AR(4) and MA(5) processes with coefficient vectors (0.5),
(0.1,−0.3,−0.1, 0.1) and (0.1,−0.3,−0.1, 0.4, 0.1), respectively, and nor-
mal innovations.

The averages of T (p−1)D̂2 over 10 000 repetitions were used to compare
the finite-sample efficiencies of different estimates. We also calculated the
expected values of the limiting distributions of T (p − 1)E(D̂2) in each case
to compare the asymptotic efficiencies.

5.3. Simulation results

Main results from our simulations are as follows.

(i) The SOBI estimate based on several autocovariance matrices seems to
outperform the AMUSE estimates that are based on two autocovari-
ance matrices only: Figure 1 illustrates the finite sample behavior of
the AMUSE estimates with lags 1 or 4 as compared to the deflation-
based SOBI estimate with ten autocovariance matrices in model (A).
It is seen that the deflation-based SOBI estimate is much more efficient
than the AMUSE estimates. Notice also that, in practice, the best lag
for AMUSE is not known.

(ii) The number of autocovariance matrices used in SOBI affects the per-
formance: In Figure 2, estimates using different numbers of autocovari-
ance matrices are compared in model (B). Since the source components
are MA(50) processes, the autocovariances are zero for lags larger than
50. Hence, by Corollary 2, the asymptotic variances of the SOBI esti-
mates are equal when K ≥ 50. For small sample sizes, the use of too
many matrices seems to have a deteriorating effect.

(iii) The order in which the components are found affects the performance:
First notice that the order is mainly determined by the initial val-
ues given to the algorithm. In our simulations studies, the order is
controlled by selecting different permutations as initial values in the
algorithm. Figure 3 illustrates the influence of this choice when esti-
mating the unmixing matrix using the deflation-based SOBI with ten
autocovariance matrices in case of model (C). The two initial values
are chosen to yield estimates with the lowest and highest values of the
averages of T (p− 1)D̂2. In Table 1, the expected values of the limiting
distributions of T (p − 1)D̂2 for all six different extraction orders are
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Figure 1: The averages of T (p − 1)D̂2 for the SOBI estimate (K = 10) and the AMUSE
estimates with lags 1 and 4 over 10 000 repetitions of the observed time series with length T
from model (A). The horizontal lines give the expected values of the limiting distributions
of T (p− 1)D̂2.

listed using models (A)-(C). Finally notice that finding an easy rule for
the choice of the initial value to obtain the optimal order (as for ex-
ample in the case of deflation-based fastICA was done in Nordhausen
et al. (2011b)) seems difficult. Luckily, our simulations have shown
that in practice the algorithm seems to find the components mainly in
a “good” order, even if the initial values are random, and the averages
of T (p− 1)D̂2 are relatively close to the expected value corresponding
to the optimal order.

Table 1: The expected values of the limiting distributions of T (p−1)D̂2 for SOBI estimates
with K = 10. All six different extraction orders were considered.

order
model 123 132 213 231 312 321

(A) 47.7 12.6 49.2 50.8 14.2 15.7
(B) 13.7 14.1 11.4 9.8 12.5 10.2
(C) 7.9 8.6 9.5 21.9 21.0 22.7

(iv) The choice of G affects the efficiency: In Figure 4 and Table 2 we
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Figure 2: The averages of T (p− 1)D̂2 for the SOBI estimates using 5, 10, 20, 30, 40, 50,
60, 80 and 100 autocovariance matrices over 10 000 repetitions of observed time series
with length T from model (B).

compare the estimates corresponding to different choices of G (and
its derivative g). We use g-functions g1(x) = 2x, g2(x) = 4x3 and
g3(x) = arctan(50x), respectively. In models (A)-(C) the estimate
based on g1 yields the best results of the three alternatives, but in
models (D) and (E) functions g3 and g2, respectively, are better.

Table 2: The expected values of the limiting distributions of T (p−1)D̂2 for SOBI estimates
with K = 10 and selected g-functions. The components are found in the optimal order.

model g(x) = 2x g(x) = 4x3 g(x) = arctan(50x)
(A) 12.6 14.3 14.8
(B) 9.8 14.1 11.3
(C) 7.9 8.5 12.1
(D) 23.2 40.3 19.1
(E) 96.7 49.9 161.0
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Figure 3: The averages of T (p − 1)D̂2 for two SOBI estimates (K = 10) with different
initial values over 10 000 repetitions of observed time series with length T from model (C).
The horizontal lines give the expected values of the limiting distributions of T (p− 1)D̂2.

6. Concluding remarks

In this paper we presented a thorough analysis of the deflation-based
SOBI estimate by rigorously developing its asymptotic distribution. For large
sample sizes, the asymptotic results then provided a nice approximation of
the average criterion values for the estimates. It is not difficult to argue that
SOBI is a safer choice in practical applications than AMUSE. Nevertheless
the choice of the number of lags and which lags to choose is still an open
problem for SOBI. The results in this paper show that for large sample sizes
it may be wise to use as many autocovariance matrices as possible but that
for small sample sizes one must be more careful. There are no clear guidelines
in the literature. Belouchrani et al. (1997) for example considered estimates
based on up to 10 lags, whereas Tang et al. (2005) investigate much larger
lag sets in the analysis of EEG data. Further research is needed here.

In this paper the autocovariance matrices were jointly diagonalized using
a deflation-based algorithm. Other algorithms have been used in practice,
however, and our future research will investigate the statistical properties of
these estimates which naturally differ from the properties of deflation-based
SOBI estimates. It is worth mentioning that Ziehe & Müller (1998) suggested
a BSS method which simultaneously diagonalizes the covariance matrix and
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Figure 4: The averages of T (p − 1)D̂2 for three SOBI estimates (K=10) with different
choices of function G from 10 000 repetitions of observed time series with length T from
models (D) (the right panel) and (E) (the left panel). The horizontal lines give the expected
values of the limiting distributions of T (p− 1)D̂2.

a weighted sum of several autocovariance matrices which can then be seen as
some kind of compromise between AMUSE and SOBI. They furthermore also
suggested a joint diagonalization of several autocovariance matrices together
with higher-order moment matrices in the case of possibly identical marginal
autocovariances.

In our approach the covariance matrix plays a special role while all other
autocovariance matrices are treated symmetrically. Some procedures like
WASOBI (Yeredor, 2000) try to optimize the performance of SOBI by weight-
ing the autocovariance matrices and also by removing the special role of the
covariance matrix.
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Appendix A: Joint diagonalization algorithm

The algorithm for computing unmixing matrix estimate Γ̂ can be easily
derived using the estimating equation (4) (Nordhausen et al., 2012). We first
use Ŝ0 to whiten the data and then find the rows of an orthogonal matrix
Ŵ = (ŵ1, . . . , ŵp)

′ one-by-one so that K sample autocovariance matrices of
the whitened data become jointly diagonalized.

To be more precise, we write the estimating equation for the whitened
data as

T̂ (ŵj) = (

j−1∑
r=1

ŵrŵ
′
r + ŵjŵ

′
j)T̂ (ŵj). (11)

Then

(Ip −
j−1∑
r=1

ŵrŵ
′
r)T̂ (ŵj) = (ŵ′jT̂ (ŵj))ŵj,

that is, ŵj that solves the estimating equation (11) must satisfy

ŵj ∝ (Ip −
j−1∑
r=1

ŵrŵ
′
r)T̂ (ŵj).

This yields to following simple iteration steps for the jth row of Ŵ :

step 1. ŵj ← T̂ (ŵj)

step 2. ŵj ← (Ip −
j−1∑
r=1

ŵrŵ
′
r)ŵj (orthogonalization)

step 3. ŵj ← ŵj/||ŵj|| (standardization),
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and the final unmixing matrix estimate is then Γ̂ = Ŵ Ŝ
−1/2
0 .

Notice that an initial value for Ŵ is needed. The choice of the initial value
determines the order of the rows of Ŵ , and hence it affects the performance
of the unmixing matrix estimate Γ̂.

Since 2T̂ (ŵj) is the gradient of
∑K

k=1(ŵ
′
jŜkŵj)

2, the described algorithm
is a fixed-point algorithm. It is based on the same idea as the gradient
algorithm, which is derived by replacing step 1 with

step 1∗. ŵj ← ŵj + 2T̂ (ŵj).

The fixed-point algorithm takes longer steps and is usually faster. Unfortu-
nately, it does not always convergence. Therefore we recommend the use of
a mixture of the two algorithms, where step 1 is applied, for example, four
times and step 1∗ is then applied once.

Appendix B: Proofs of the results

Proof of Corollary 2 Notice first that

√
T (γ̂j − ej) =

j−1∑
r=1

γ̂jrer + γ̂jjej +

p∑
t=j+1

γ̂jtet.

Then

ASV (γ̂j) = T E[(γ̂j − ej)(γ̂j − ej)′]

=

j−1∑
r=1

E[(
√
T γ̂jr)

2]ere
′
r + E[(

√
T (γ̂jj − 1)2]eje

′
j +

p∑
t=j+1

E[(
√
T γ̂jt)

2]ete
′
t,

where the asymptotic variances can be derived using Theorem 1 and Corol-
lary 1.

Proof of Theorem 2. The limiting distributions of the symmetrized sample
autocovariance matrices are given in Miettinen et al. (2012). Notice then
that as γ̂j →p ej, then T̂ (γ̂j) →p µjjej, where µjj =

∑
k g(λkj)λkj. The

estimating equation (4) then yields to

√
T (T̂ (γ̂j)− µjjej) =

√
T (Ŝ0 Ûj T̂ (γ̂j)− µjjej), (12)
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where Ûj =
∑j

r=1 γ̂rγ̂
′
r. Now as Ûj →p Uj =

∑j
r=1 ere

′
r, the right-hand side

of the equation can be written as
√
T (Ŝ0 Ûj T̂ (γ̂j)− µjjej) =

√
T (Ŝ0 − Ip)ÛjT̂ (γ̂j) +

√
T (Ûj − Uj)T̂ (γ̂j)

+
√
T (Uj(T̂ (γ̂j)− µjjej)).

Thus (12) yields to

(Ip − Uj)
√
T (T̂ (γ̂j)− µjjej) =

√
T (Ŝ0 − Ip)ÛjT̂ (γ̂j) +

√
T (Ûj − Uj)T̂ (γ̂j)

=
√
T (Ŝ0 − Ip)µjjej +

√
T (Ûj − Uj)µjjej + op(1).

(13)

Now

√
T (Ûj − Uj)µjjej =

j∑
r=1

√
T (γ̂rγ̂

′
r − ere′r)µjjej

=

j∑
r=1

√
T ((γ̂r − er)γ̂ ′r + er(γ̂r − er)′)µjjej

= µjj(
√
T (γ̂j − ej) +

j∑
r=1

√
T (γ̂r − er)′ejer) + op(1).

(14)

And by Taylor???s expansion, we get
√
T (T̂ (γ̂j)− µjjej) =

∑
k

(g(λkj)− g′(λkj)λkj)
√
T ŜSk γ̂j

+
∑
k

g′(λkj)λkjΛk

√
T (γ̂j − ej) +

∑
k

g′(λkj)λkj
√
T (ŜSk − Λk)ej

+ 2
∑
k

g′(λkj)λ
2
kje
′
j

√
T (γ̂j − ej)ej +

∑
k

g′(λkj)λkj(e
′
j

√
T (ŜSk − Λk)ej)ej,

where
√
T ŜSk γ̂j =

√
T (ŜSk − Λk)γ̂j +

√
TΛk(γ̂j − ej) +

√
Tλkjej

After some tedious computations this reduces to
√
T (T̂ (γ̂j)− µjjej) = Aj

√
T (γ̂j − ej) +

∑
k

Bkj

√
T (ŜSk − Λk)ej

−
∑
k

√
Tg′(λkj)λ

2
kjej,

(15)
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where

Aj =
∑
k

(g(λkj)Λk + 2g′(λkj)λ
2
kjeje

′
j)

Bkj = g(λkj)Ip + g′(λkj)λkjeje
′
j

The result is then obtained by plugging (14) and (15) into (13).
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