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1 Introduction

The purpose of canonical correlation analysis (CCA) is to describe the linear
interrelations between p- and q-variate (p ≤ q) random vectors. New coordi-
nate systems are found for both vectors in such a way that, in both systems,
the marginals of the random variables are uncorrelated and have unit variances,
and that the covariance matrix between the two random vectors is (R, 0), where
R is a diagonal matrix with descending positive diagonal elements. The new
variables and their correlations are called canonical variates and canonical corre-
lations, respectively. Moreover, the rows of the transformation matrix are called
canonical vectors. Canonical analysis is one of the fundamental contributions to
multivariate inference by Harold Hotelling (1936).

To be more specific, assume that x and y are p- and q-variate random vectors,
p ≤ q and k = p + q. Let F be the cumulative distribution function of the k-
variate variable z = (xT , yT )T . Decompose its covariance matrix (if it exists)
as

Σ = Σ(F ) =

(
Σxx Σxy

Σyx Σyy

)

where Σxx and Σyy are nonsingular. In canonical analysis, one thus finds a p× p
matrix A = A(F ), a q×q matrix B = B(F ) and p×p diagonal matrix R = R(F )
= diag(ρ1, . . . , ρp), ρ1 ≥ . . . ≥ ρp, such that

(
AT 0
0 BT

)(
Σxx Σxy

Σyx Σyy

)(
A 0
0 B

)
=

(
Ip (R, 0)

(R, 0)T Iq

)
. (1)

The diagonal elements of R are called the canonical correlations, the columns
of A and B the canonical vectors and the random vectors

AT x and BT y

give the canonical variates.
Simple calculations show that

Σ−1
xx ΣxyΣ

−1
yy ΣyxA = A(R, 0)(R, 0)T

and
Σ−1

yy ΣyxΣ
−1
xx ΣxyB = B(R, 0)T (R, 0).

Therefore A and (the first p columns of ) B contain the eigenvectors of the
matrices

MA = Σ−1
xx ΣxyΣ

−1
yy Σyx and MB = Σ−1

yy ΣyxΣ
−1
xx Σxy, (2)

respectively. The eigenvalues of MA and MB are the same and are given by the
diagonal elements of R2, so by the squared canonical correlations. We will assume
throughout the paper that ρ1 > . . . > ρp to avoid multiplicity problems. From
(1) we see that the eigenvectors need to be chosen such that

AT ΣxxA = Ip and BT ΣyyB = Iq. (3)
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Alternatively, one can also find eigenvalues and orthonormal eigenvectors A0 and
B0 of symmetric matrices as

Σ−1/2
xx ΣxyΣ

−1
yy ΣyxΣ

−1/2
xx A0 = A0(R, 0)(R, 0)T

and
Σ−1/2

yy ΣyxΣ
−1
xx ΣxyΣ

−1/2
yy B0 = B0(R, 0)T (R, 0),

with AT
0 A0 = Ip and BT

0 B0 = Iq. The regular canonical vectors are then A =

Σ
−1/2
xx A0 and B = Σ

−1/2
yy B0. For more information on the canonical analysis

problem, see e.g. Johnson and Wichern (1998, chapter 10).
To estimate the population canonical correlations and vectors one typically

estimates Σ by the sample covariance matrix, and computes afterwards the eigen-
values and eigenvectors of the sample counterparts of the matrices MA and MB

given in (2). This procedure is optimal for a multivariate normal distribution F ,
but it turns out to be less efficient at heavier tailed model distributions. More-
over, the sample covariance matrix is highly sensitive to outliers, and a canonical
analysis based on this matrix will then give unreliable results. For these reasons,
it can be appropriate to estimate Σ by other, more robust estimator. As such,
Karnel (1991) proposed to use M-estimators and Croux and Dehon (2002) the
Minimum Covariance Determinant estimator. However, no asymptotic theory
has been developed yet for canonical analysis based on robust covariance matrix
estimators.

It was only quite recently that Anderson (1999) completed the asymptotic
theory for canonical correlation analysis based on the sample covariance matrix.
In this paper we study the asymptotic distribution of estimates of canonical corre-
lations and canonical vectors based on more general estimators of the population
covariance matrix, the so called scatter matrices. The results will not be re-
stricted to the normal case, but are valid for the class of elliptically symmetric
model distributions. Moreover, also the asymptotic distribution for canonical
analysis based on shape matrices has been derived.

The plan of the paper is as follows. In Section 2, we review scatter matri-
ces and define the canonical correlation and vector functionals based on scatter
functionals. We also treat shape matrices, which are estimating the form of the
underlying elliptical distribution, but have no size information. In Section 3,
we give the expressions for the influence functions of canonical correlation and
vector functionals based on any regular scatter and shape matrix functional and
in Section 4, the limiting distributions and the limiting efficiencies of canonical
correlations and vectors are derived. Numerical values for the asymptotic efficien-
cies at normal distributions are presented for shape matrices based on the Sign
Covariance Matrix (Ollila et al., 2003b), the Minimum Covariance Determinant
estimators (Rousseeuw 1985) and S-estimator (Davies 1987). We also consider
Tyler’s shape matrix (Tyler 1987) estimator. By means of a simulation study,
the finite sample efficiencies are compared with the limiting ones in Section 5 and
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a real data example will illustrate the methods. The Appendix collects all the
proofs and additional lemmas.

2 Canonical correlations and vectors based on

scatter and shape matrices

Let us first define the scatter and shape functionals. A k × k matrix valued sta-
tistical functional C = C(F ) is a scatter matrix if it is positive definite and
symmetric (PDS(k)) and affine equivariant. We can denote C(F ) alternatively
as C(z) if z ∼ F . Affine equivariance then means that C(DTz + b) = DT C(z)D
for all nonsingular k × k matrices D and k-vectors b. This implies that, for a
spherically symmetric distribution F0, C(F0) = c0Ik with some constant c0 > 0
depending on C and F0. If F is the cdf of an elliptically distributed random
vector z = DT z0 + b, where z0 ∼ F0, then C(F ) = c0D

T D. Therefore a correc-
tion factor is needed for Fisher consistency of C(F ) towards Σ(F ). Introducing
such a correction factor also allows comparisons between different scatter matrix
estimates at a specific model.

A functional V = V (F ), or alternatively V (z), is a shape matrix if it is
PDS(k) with Det(V ) = 1 and affine equivariant in the sense that

V (DT z + b) = {Det[DTV (z)D]}−1/k DTV (z)D.

The condition Det(V ) = 1 is sometimes replaced by the condition Tr(V ) = k
but the former one is more convenient here. See Ollila et al. (2003a) and Hallin
and Paindaveine (2004). If C(F ) is a scatter matrix then

V (F ) = {Det[C(F )]}−1/k C(F )

is the associated shape matrix. It can be seen as a standardized version of C(F ).
However, a shape matrix can be given without any reference to a scatter matrix;
the Tyler’s shape matrix (1987) serves as an example. For the above elliptical
distribution F , V (F ) = [Det(DT D)]−1/kDTD. This means that in the elliptic
model, shape matrices estimate the same population quantity and are directly
comparable without any modifications. Note that in several multivariate inference
problems, the test and estimation procedures may be based on the shape matrix
only.

Finally note that if C(F ) is a scatter matrix, the functional S(F ) = Det(C(F ))
is a global scalar valued scale measure. The scale measure Det(Σ(F )) given by
the regular covariance matrix is the well-known Wilks’ generalized variance. In
general, we will say that S(F ) is a scale measure if it is nonnegative and affine
equivariant in the sense that S(Gz) = Det(G)2S(z) for all nonsingular k×k ma-
trices G. Note that the shape and scale information may be combined to build a
scatter matrix since

C(F ) = [S(F )]1/kV (F ).
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Canonical correlation and vector functionals based on scatter and shape ma-
trices are now defined as follows. We assume that the k-variate distribution of
z = (xT , yT )T is elliptic with cumulative distribution function F and that p ≤ q.
Consider the scatter matrix

C = C(F ) =

(
Cxx Cxy

Cyx Cyy

)
.

with nonsingular Cxx and Cyy. The matrices A = A(F ), B = B(F ) and R = R(F )
chosen so that

C

((
AT x

BT y

))
= C

((
AT x

(B1, B2)
T y

))
=

(
Ip (R, 0)

(R, 0)T Iq

)

then yield the canonical vectors and correlations. The canonical correlations in
R keep unchanged for all scatter matrices C. If the p canonical correlations are
distinct, then the p × p matrix A and q × p matrix B1 are unique up to a sign
and the q × (q − p) matrix B2 is unique up to multiplication on the right by an
orthogonal (q − p) × (q − p) matrix. The values of the canonical vectors A and
B will depend on the used scatter functional C via the constant c0. If, however,
the scatter functional is such that C(F ) = Σ, then the canonical vectors become
comparable over different scatter matrix estimators used.

Now let A(F ), B(F ) and R(F ) be determined by a shape matrix functional
V = V (F ) such that

V

((
AT x

BT y

))
= Det

((
Ip (R, 0)

(R, 0)T Iq

))−1/k (
Ip (R, 0)

(R, 0)T Iq

)
.

Also now the canonical correlations in R keep unchanged for all V . The canonical
vectors are unique up to a constant. We therefore make the choice to take A∗

and B∗ such that A∗T VxxA
∗ = Ip and B∗T VyyB

∗ = Iq. If the shape functional V
is associated to a scatter functional C, then

A∗ = [Det(C)]1/2kA and B∗ = [Det(C)]1/2kB.

We call A∗ and B∗ the standardized canonical vectors. These standard-
ized canonical vectors are comparable between any two scatter or shape matrix
functionals used, whether a correction factor has been used or not.

3 Influence functions

Influence functions are often used for robustness considerations. The influence
function measures the robustness of a functional T against a single outlier, that
is, the effect of an infinitesimal contamination located at a single point z on
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the estimator (see Hampel et al., 1986). Consider hereafter the contaminated
distribution

Fε = (1 − ε)F + ε∆z,

where ∆z is the cdf of a distribution with probability mass one at a singular point
z. Then the influence function of T is defined as

IF (z; T, F ) = lim
ε→0

T (Fε) − T (F )

ε
.

Lemma 1 in Croux and Haesbroeck (2000) states that, for any scatter func-
tional C(F ), there exist two real valued functions γC and δC such that the in-
fluence function of C at a spherical F0, symmetric around the origin and with
C(F0) = Ik, is given by

IF (z; C, F0) = γC(||z||) zzT

||z||2 − δC(||z||)Ik. (4)

Using the definition of determinant and basic derivation rules, the influence func-
tion of scale functional associated with scatter functional is seen to be

IF (z; Det(C), F0) = γC(||z||) − kδC(||z||), (5)

and by chain rule, the influence function of associated shape functional is

IF (z; V, F0) = IF (z; [Det(C)]−1/kC, F0) = γV (||z||)
[

zzT

||z||2 − 1

k
Ik

]
, (6)

where γV = γC, see Ollila et al. (2003a). The influence functions of scatter, shape
and scale functionals at elliptical F are given in Lemma 1 in the Appendix.

To derive the influence functions of canonical correlation and vector function-
als R(F ), A(F ) and B1(F ) based on C(F ), we introduce the following notation.
Write the canonical variates as

z′ =

(
AT 0
0 BT

)
z =

(
AT x

BT y

)
= r

(
u

v

)

where r stands for the length of the vector z′ and (uT , vT )T is the direction
vector, that is, the unit vector in the direction of z′. Throughout the paper the
cumulative distribution function of z ′ is denoted by F ′. The influence functions
at the elliptical F are now as follows (all proofs are found in the Appendix):

Theorem 1. Let C be the affine equivariant scatter matrix functional used to
obtain the canonical correlations R and the canonical vectors A and B1. Then
the influence functions of the functionals R, A and B1 at the k-variate elliptical
distribution F are

IF (z; R, F ) = γC(r)H1(u, v; R),
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IF (z; A, F ) = A(F )

[
γC(r)H2(u, v; R) +

1

2
δC(r)Ip

]

and

IF (z; B1, F ) = B(F )

[
γC(r)H3(u, v; R) +

1

2
δC(r)

(
Ip

0

)]
.

Here H1 is a diagonal matrix with diagonal elements

[H1(u, v; R)]jj = ujvj −
1

2
ρju

2
j −

1

2
ρjv

2
j , j = 1, . . . , p.

The elements of H3 are

[H3(u, v; R)]ij =
ρj(uj − ρjvj)vi + ρi(vj − ρjuj)ui

ρ2
j − ρ2

i

,

for i = 1, . . . , q, j = 1, . . . , p, i 6= j and ρi = 0 as i > p, and

[H3(u, v; R)]jj = −1

2
v2

j , j = 1, . . . , p.

Finally, the elements of H2 are

[H2(u, v; R)]ij = [H3(v, u; R)]ij, i, j = 1, . . . , p.

The influence functions of the canonical correlations R, and the standardized
canonical vectors A∗ and B∗

1 based on a shape matrix functional V are obtained
using the fact that

A∗ = [Det(C)]1/2kA and B∗
1 = [Det(C)]1/2kB1,

where C is a related scatter matrix constructed as C(F ) = S(F )1/kV (F ) for a
given scale measure S, as described in Section 2.

Theorem 2. Let V be the affine equivariant shape matrix functional used to
obtain the canonical correlations R and the standardized canonical vectors A∗

and B∗
1 . Then the influence functions of the functionals R, A∗ and B∗

1 at the
k-variate elliptical distribution F are

IF (z; R, F ) = γV (r)H1(u, v; R),

IF (z; A∗, F ) = A∗(F )γV (r)

[
H2(u, v; R) +

1

2k
Ip

]

and

IF (z; B∗
1 , F ) = B∗(F )γV (r)

[
H3(u, v; R) +

1

2k

(
Ip

0

)]
,

with H1, H2 and H3 as in Theorem 1.

7



Note that the above influence functions factorize in a product of a func-
tion of r and a function of (u, v), where we know that the distribution of r
and (u, v) are statistically independent (see the proof of Theorem 1). Since
H1(u, v, R), H2(u, v, R) and H3(u, v, R) are continuous functions on the periph-
ery of an ellipsoid, it follows that the influence functions for the canonical corre-
lations and standardized canonical vectors are bounded as soon as the associated
γV is bounded. Figure 1 illustrates functions γV for the shape estimators used in

0 1 2 3 4

0
2

4
6

8
10

12

Tyler

S

RMCDMCD

Cov

SCM

Figure 1: Examples of the function γV for some shape estimators at the bivariate
(k = 2) standard normal distribution.

efficiency and robustness comparisons in Sections 4 and 5 at the bivariate stan-
dard normal distribution. The influence functions can be found from Ollila et
al. (2003a) for Tyler’s M-estimator, from Ollila et al. (2003b) for affine equiv-
ariant sign covariance matrix (SCM) and from Lopuhaä (1989) for S-estimator.
The influence functions of Minimum Covariance Determinant (MCD) estimator
and Reweighted MCD-estimator (RMCD) are given in Croux and Haesbroeck
(1999). As seen in Figure 1, function γV is bounded for Tyler’s M-estimator,
MCD-estimators and S-estimator.

4 Limiting distributions and efficiencies

Assume next that z1, . . . , zn is a random sample from an elliptical distribution
F with corresponding spherical distribution F0 and that a correction factor is
used to adjust the estimate so that C(F0) = Ik. Let then Ĉ be the estimator

associated to the functional C(F ), that is Ĉ = C(Fn), where Fn is the empirical
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distribution function computed from the sample. We will assume throughout the
paper that the limiting distribution of

√
n vec(Ĉ−C) is multivariate normal with

zero mean vector and covariance matrix

E[vec{IF (z; C, F )}vec{IF (z; C, F )}T ],

(cfr. Huber, 1981). Here “vec” vectorizes a matrix by stacking the columns on
top of each other. Tyler (1982) showed that the above covariance matrix may be
written as

ASV (Ĉ12; F0)(Ik2 + Ik,k)(C ⊗ C) + ASC(Ĉ11, Ĉ22; F0)vec(C)vec(C)T ,

where Ik,k is a k2 × k2 matrix with (i, j)-block being equal to a k× k matrix that

has 1 at entry (j, i) and zero elsewhere. ASV (Ĉ12; F0) represents the variance

of any off-diagonal element of Ĉ at spherical F0 and ASC(Ĉ11, Ĉ22; F0) is the

covariance between any two distinct diagonal elements of Ĉ at F0. Note also that

ASC(Ĉ11, Ĉ22; F0) = ASV (Ĉ11; F0) − 2ASV (Ĉ12; F0).

Similarly, we assume that the limiting distribution of
√

n (V̂ −V ) is k2-variate
normal with zero mean vector and covariance matrix

ASV (V̂12; F0)

[
Ik2−1

k
vec(V )vec(Ik)

T

][
(Ik2+Ik,k)(V ⊗V )

][
Ik2−1

k
vec(Ik)vec(V )T

]
,

where ASV (V̂12; F0) is the variance of any off-diagonal element of V̂ at F0. The
limiting distribution of the shape matrix estimator is thus characterized by one
single number, while the limiting distribution of a scatter matrix estimator is
completely determined by 2 numbers. Limiting variances are derived in Lemma 5
in the Appendix.

Write now R̂, Â and B̂1 for the canonical correlation and vector estimators
based on Ĉ and let R, A and B1 be the corresponding functional values. If
ρ1 > . . . > ρp > 0, then at elliptical F , the limiting distributions of R̂, Â and B̂1

are multivariate normal. See Lemma 3 in the Appendix for the exact expressions.
To compute the marginal distributions of canonical correlations and vectors at
elliptical F , the following covariances of the elements of R̂, Â and B̂1 at canonical
distribution F ′ of z′ are needed.

Theorem 3. Let C12 be any off-diagonal and C11 any diagonal element of the
scatter matrix C. At the canonical distribution F ′ we have that:
(i) For 1 ≤ i ≤ p, the asymptotic covariance matrix of [r̂i, âii, b̂ii]

T is

1

4




0 0 0
0 1 1
0 1 1


ASV (Ĉ11; F0) + (1 − ρ2

i )




(1 − ρ2
i ) −1

2
ρi −1

2
ρi

−1
2
ρi 0 −1

2

−1
2
ρi −1

2
0


ASV (Ĉ12; F0).
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(ii) For 1 ≤ i 6= j ≤ p, the asymptotic covariance matrix between [âii, b̂ii]
T and

[âjj, b̂jj]
T is

1

4

[
1 1
1 1

]
ASV (Ĉ11; F0) −

1

2

[
1 1
1 1

]
ASV (Ĉ12; F0).

(iii) For 1 ≤ i 6= j ≤ p, the asymptotic covariance matrix of [(ρ2
j − ρ2

i ) âij, (ρ
2
i −

ρ2
j) âji]

T and also of [(ρ2
j − ρ2

i ) b̂ij, (ρ
2
i − ρ2

j) b̂ji]
T , is given by

[
(1 − ρ2

j)(ρ
2
i + ρ2

j − 2ρ2
i ρ

2
j) (1 − ρ2

i )(1 − ρ2
j)(ρ

2
i + ρ2

j)
(1 − ρ2

i )(1 − ρ2
j)(ρ

2
i + ρ2

j) (1 − ρ2
i )(ρ

2
i + ρ2

j − 2ρ2
i ρ

2
j)

]
ASV (Ĉ12; F0).

(iv) For 1 ≤ i 6= j ≤ p, the asymptotic covariance matrix between [(ρ2
j −

ρ2
i ) âij, (ρ

2
i − ρ2

j) âji]
T and [(ρ2

j − ρ2
i ) b̂ij, (ρ

2
i − ρ2

j) b̂ji]
T is given by

[
ρiρj(2 − ρ2

i − 3ρ2
j + ρ2

i ρ
2
j + ρ4

j) 2ρiρj(1 − ρ2
i )(1 − ρ2

j)
2ρiρj(1 − ρ2

i )(1 − ρ2
j) ρiρj(2 − ρ2

j − 3ρ2
i + ρ2

i ρ
2
j + ρ4

i )

]
ASV (Ĉ12; F0).

(v) For j = 1, . . . , p, and with q ≥ i > p, the asymptotic variance of b̂ij is given
by

(ρ−2
j − 1)ASV (Ĉ12; F0).

All the other limiting covariances between elements of R̂, Â or B̂1 are equal to
zero.

The special case of the sample covariance matrix Ĉov at normal distribution
gives the limiting covariances obtained by Anderson (1999). In this special case

ASV (Ĉov11; F0) = 2 and ASV (Ĉov12; F0) = 1, and expressions (i), (iii) and (iv)
correspond with those of Anderson (1999). Note that the second statement of

Theorem 3 gives then a zero asymptotic covariance matrix between [âii, b̂ii]
T and

[âjj, b̂jj]
T . Anderson (1999) also assumed p = q, and therefore did not report the

last statement of Theorem 3 for Ĉov.
From Theorem 3 and affine equivariance (as stated in Lemma 3 in the Ap-

pendix) one easily obtains the marginal distributions of canonical correlation

and vector estimates at elliptical F . Here â1, . . . , âp and b̂1, . . . , b̂p denote the

columns of Â and B̂1, and a1, . . . , ap and b1, . . . , bp are the columns of A and B1,
respectively.

Corollary 1. Let F be an elliptical distribution, then
√

N(r̂j − ρj),
√

N(âj −
aj) and

√
N(b̂j − bj) have limiting normal distributions with zero mean and

asymptotic variances

ASV (r̂j; F ) = (1 − ρ2
j)

2ASV (Ĉ12; F0),
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ASV (âj; F ) =
1

4
ASV (Ĉ11; F0)aja

T
j

+ ASV (Ĉ12; F0)

p∑

k=1
k 6=j

(ρ2
k + ρ2

j − 2ρ2
kρ

2
j)(1 − ρ2

j)

(ρ2
j − ρ2

k)
2

aka
T
k

and

ASV (b̂j; F ) =
1

4
ASV (Ĉ11; F0)bjb

T
j

+ ASV (Ĉ12; F0)

q∑

k=1
k 6=j

(ρ2
k + ρ2

j − 2ρ2
kρ

2
j)(1 − ρ2

j)

(ρ2
j − ρ2

k)
2

bkb
T
k ,

for every 1 ≤ j ≤ p. For q ≥ k > p, we put ρk = 0.

Note that the multiplication of B2 = (bp+1, . . . , bq) by an orthogonal matrix

does not affect the value of the asymptotic variances ASV (b̂j; F ) of the first p
canonical vectors. Moreover, Corollary 1 implies that the asymptotic relative
efficiency of the estimate r̂j,C based on a scatter matrix Ĉ with respect to r̂j,C∗

based on a scatter matrix Ĉ∗ at elliptical F is simply

ARE(r̂j,C , r̂j,C∗; F ) =
ASV (Ĉ∗

12; F0)

ASV (Ĉ12; F0)
,

and the asymptotic relative efficiencies of two canonical vector estimates âj,C and
âj,C∗ are determined by the following ratios

ARE(âjj,C , âjj,C∗; F ) =
ASV (Ĉ∗

11; F0)

ASV (Ĉ11; F0)

and

ARE(âij,C , âij,C∗; F ) =
ASV (Ĉ∗

12; F0)

ASV (Ĉ12; F0)
.

The above relative efficiencies thus equal relative efficiencies of diagonal and off-
diagonal elements of the scatter matrices at spherical F0.

Now let R̂, Â∗ and B̂∗
1 be the canonical correlation and standardized canonical

vector estimators based on a shape matrix estimator V̂ . Again, if ρ1 > . . . >
ρp > 0, then at elliptical F , the limiting distributions of R̂, Â∗ and B̂∗

1 are
multivariate normal (see Lemma 4 in the Appendix). At canonical distribution
F ′ all asymptotic covariances of canonical correlation and standardized vector
estimates are as follows.

Theorem 4. Let V12 be any off-diagonal and V11 any diagonal element of the
shape matrix V . Denote cR = |Ip −R2|−1/2k. At the canonical distribution F ′, we
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have that:
(i) For 1 ≤ i ≤ p, the asymptotic covariance matrix of [r̂i, cR â∗

ii, cR b̂∗ii]
T is




(1 − ρ2
i )

2 −1
2
ρi(1 − ρ2

i ) −1
2
ρi(1 − ρ2

i )
−1

2
ρi(1 − ρ2

i )
1
2
− 1

2k
−1

2
( 1

k
− ρ2

i )
−1

2
ρi(1 − ρ2

i ) −1
2
( 1

k
− ρ2

i )
1
2
− 1

2k


ASV (V̂12; F0).

(ii) For 1 ≤ i 6= j ≤ p, the asymptotic covariance matrix between cR [â∗
ii, b̂∗ii]

T

and cR [â∗
jj, b̂∗jj]

T is

− 1

2k

[
1 1
1 1

]
ASV (V̂12; F0).

(iii) For 1 ≤ i 6= j ≤ p, the asymptotic covariance matrix of cR[(ρ2
j −ρ2

i ) â∗
ij, (ρ

2
i −

ρ2
j) â∗

ji]
T and also of cR [(ρ2

j − ρ2
i ) b̂∗ij, (ρ

2
i − ρ2

j) b̂∗ji]
T , is given by

[
(1 − ρ2

j)(ρ
2
i + ρ2

j − 2ρ2
i ρ

2
j) (1 − ρ2

i )(1 − ρ2
j)(ρ

2
i + ρ2

j)
(1 − ρ2

i )(1 − ρ2
j)(ρ

2
i + ρ2

j) (1 − ρ2
i )(ρ

2
i + ρ2

j − 2ρ2
i ρ

2
j)

]
ASV (V̂12; F0).

(iv) For 1 ≤ i 6= j ≤ p, the asymptotic covariance matrix between cR [(ρ2
j −

ρ2
i ) â∗

ij, (ρ
2
i − ρ2

j) â∗
ji]

T and cR [(ρ2
j − ρ2

i ) b̂∗ij, (ρ
2
i − ρ2

j) b̂∗ji]
T is given by

[
ρiρj(2 − ρ2

i − 3ρ2
j + ρ2

i ρ
2
j + ρ4

j) 2ρiρj(1 − ρ2
i )(1 − ρ2

j)
2ρiρj(1 − ρ2

i )(1 − ρ2
j) ρiρj(2 − ρ2

j − 3ρ2
i + ρ2

i ρ
2
j + ρ4

i )

]
ASV (V̂12; F0).

(v) For j = 1, . . . , p, and with q ≥ i > p, the asymptotic variance of cR b̂∗ij is
given by

(ρ−2
j − 1)ASV (V̂12; F0),

All the other limiting covariances between elements of R̂, Â∗ or B̂∗
1 are equal to

zero.

Combining Lemma 4 and Theorem 4 one again easily obtains the marginal
distributions of the canonical correlations and standardized canonical vectors
based on a shape matrix estimator.

Corollary 2. Let F be an elliptical distribution, then
√

N(r̂j −ρj),
√

N(â∗
j −a∗

j)

and
√

N(b̂
∗

j−b∗
j) have limiting normal distribution with zero mean and asymptotic

variances
ASV (r̂j; F ) = (1 − ρ2

j)
2ASV (V̂12; F0),

ASV (â∗
j ; F ) =

((
1

2
− 1

2k

)
a∗

ja
∗T
j

+

p∑

k=1
k 6=j

(ρ2
k + ρ2

j − 2ρ2
kρ

2
j)(1 − ρ2

j)

(ρ2
j − ρ2

k)
2

a∗
ka

∗T
k

)
ASV (V̂12; F0).
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and

ASV (b̂
∗

j ; F ) =

((
1

2
− 1

2k

)
b∗

jb
∗T
j

+

q∑

k=1
k 6=j

(ρ2
k + ρ2

j − 2ρ2
kρ

2
j)(1 − ρ2

j)

(ρ2
j − ρ2

k)
2

b∗
kb

∗T
k

)
ASV (V̂12; F0),

where ρk = 0, as k > p.

Note that now all the asymptotic efficiencies of canonical correlation and
vector estimates based on V̂ relative to estimates based on V̂ ∗ are given by

ASV (V̂ ∗
12; F0)

ASV (V̂12; F0)
.

Table 1 lists these asymptotic relative efficiencies of canonical correlation and
vector estimates based on robust shape matrices with respect to the estimates
based on classical shape matrix at k-variate normal distribution. Considered ro-
bust shape matrices are based on affine equivariant sign covariance matrix (SCM),
a 25% breakdown S-estimator with biweight loss-functions, a 25% breakdown
Reweighted Minimum Covariance Determinant (RMCD), Tyler’s M-estimator
and the 25% breakdown MCD-estimator.

Table 1: Asymptotic Relative Efficiencies of the canonical correlation and vector
estimates based on several robust shape matrices relative to the estimates based
on the classical sample covariance matrix at a k-variate normal distribution.

k SCM S RMCD Tyler MCD
4 0.982 0.953 0.786 0.667 0.284
6 0.991 0.975 0.837 0.750 0.356
8 0.994 0.984 0.864 0.800 0.403
10 0.996 0.988 0.881 0.833 0.438
20 0.999 0.995 0.917 0.909 0.529

Asymptotic distribution of the SCM was obtained by Ollila et al. (2003b).
Davies (1987) and Lopuhaä (1989) showed that under general assumptions, the
S-estimator of scatter has a limiting normal distribution. For the MCD and
RMCD scatter estimators asymptotic normality has been shown by Butler et al.
(1993) and by Lopuhaä (1999). Their limiting variances have been computed by
Croux and Haesbroeck (1999). Finally, Tyler (1987) showed the limiting nor-
mality of Tyler’s M-estimator. The asymptotic variance of Tyler’s M-estimator
equals k/(k + 2). Other examples of asymptotically normal scatter estimators
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which could be used here include for example the projection depth weighted scat-
ter estimator by Zuo and Cui (2004). Recently, Hallin and Paindaveine (2004)
and Hallin et al. (2004) have developed optimal nonparametric tests and corre-
sponding estimates for shape.

The SCM estimator, being a covariance matrix build from affine equivariant
sign vectors, has a very high efficiency at the normal model. S-estimators have a
slightly lower efficiency, but in contrast to the SCM they have a high breakdown
point. The other high breakdown point estimators RMCD and MCD suffer from
larger losses in efficiency. Tyler’s M-estimator has a low breakdown point, but
is very fast to compute (see Hettmansperger and Randles, 2002), and has good
efficiency properties in larger dimensions. For the efficiencies at heavy-tailed
distributions, see Ollila et al. (2003a;2003b) and Croux and Haesbroeck (1999),
for example.

5 Small sample studies

5.1 Finite-sample efficiencies

In this section we compare by means of a modest simulation study finite-sample
efficiencies of canonical correlation and vector estimates based on the robust shape
matrices with corresponding estimates based on the classical shape matrix. At
first, a number of M = 1000 samples of sizes n = 20, 50, 100, 300 were generated
from three different 2p-variate normal distributions with fixed covariance matrices

Σ =

(
Ip R
R Ip

)
,

where R = diag(ρ1, . . . , ρp). Our choices for canonical correlations were (a) ρ1 =
0.8, ρ2 = 0.2 (b) ρ1 = 0.6, ρ2 = 0.4 and (c) ρ1 = 0.9, ρ2 = 0.6, ρ3 = 0.3.
The estimated quantities were the canonical correlations and the standardized
canonical vectors. The estimated values were compared with the theoretical ones
by the following mean squared errors (MSE). The MSE of the jth canonical
correlation is given by

MSE(r̂j) =
1

M

M∑

m=1

(r̂
(m)
j − ρj)

2,

where ρj is the true canonical correlation and r̂
(m)
j the corresponding estimate

computed from the mth generated sample. Further, the MSE of the jth canonical
vector is measured by

MSE(â∗
j) =

1

M

M∑

m=1

(
cos−1

(
|a∗T

j â
∗(m)
j |

‖a∗
j‖ · ‖â

∗(m)
j ‖

))2

,
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where a∗
j is the theoretical vector and â

∗(m)
j the estimate obtained from the mth

generated sample. Thus, this MSE is the average squared angle between the
estimated and the true standardized canonical vectors. Working with the angle
has the advantage that the same MSEs are obtained, whether one works with
the standardized or unstandardized canonical vectors. The estimated efficiencies
were then computed as ratios of the simulated MSEs and are listed in Tables 2-4.

Table 2: Finite-sample efficiencies of the canonical correlation and vector es-
timates based on five robust shape matrices. Samples were generated from a
4-variate normal distribution. The quantities to be estimated were ρ1 = 0.8,
ρ2 = 0.2, a∗T

1 = (1, 0)T and a∗T
2 = (0, 1)T .

SCM S RMCD Tyler MCD
r̂1 : n = 20 1.008 0.950 0.614 0.747 0.512

n = 50 0.985 0.955 0.606 0.633 0.345
n = 100 0.946 0.975 0.753 0.698 0.323
n = 300 0.973 0.959 0.746 0.660 0.308

r̂2 : n = 20 1.077 0.960 0.641 0.767 0.523
n = 50 1.044 0.972 0.741 0.726 0.482
n = 100 0.983 0.936 0.741 0.668 0.420
n = 300 0.965 0.947 0.758 0.675 0.313

â
∗
1 : n = 20 1.102 0.942 0.381 0.592 0.283

n = 50 1.032 0.957 0.495 0.637 0.226
n = 100 0.988 0.948 0.685 0.651 0.265
n = 300 1.072 0.955 0.757 0.694 0.289

â
∗
2 : n = 20 1.088 0.946 0.523 0.696 0.405

n = 50 0.995 0.944 0.562 0.650 0.290
n = 100 0.987 0.936 0.720 0.661 0.313
n = 300 1.098 0.969 0.766 0.692 0.312
n = ∞ 0.982 0.953 0.786 0.667 0.284

As seen in Table 2, the finite-sample efficiencies converge to the asymptotic
ones listed in the previous section. For the SCM and the S-estimator the finite-
sample efficiencies are very stable over the different sample sizes. For the other
estimators, the convergence to the limiting variance is slower. The MCD is more
efficient and the RMCD is less efficient at small sample sizes than one would
expect from the asymptotic results. This finding, at least for the canonical cor-
relation coefficients, is consistent over all considered simulation setups. For small
samples (n = 20, n = 50), Tyler’s estimator seems to be more efficient than
RMCD, but for larger sample sizes the RMCD is of course more precise, given
its larger asymptotic efficiency.

In the second case samples were generated from a 4-variate normal distribu-
tion, such that the true canonical correlations were closer to each other than in
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the previous case. Corresponding finite-sample efficiencies are given in Table 3.

Table 3: Finite-sample efficiencies of the canonical correlation and vector esti-
mates. Samples were generated from a 4-variate normal distribution. The quan-
tities to be estimated were ρ1 = 0.6, ρ2 = 0.4, a∗T

1 = (1, 0)T and a∗T
2 = (0, 1)T .

SCM S RMCD Tyler MCD
r̂1 : n = 20 1.081 0.942 0.513 0.655 0.403

n = 50 0.933 0.934 0.582 0.628 0.294
n = 100 1.016 0.928 0.701 0.693 0.302
n = 300 1.034 0.977 0.782 0.672 0.291

r̂2 : n = 20 0.975 0.986 0.738 0.786 0.688
n = 50 1.001 0.956 0.645 0.717 0.399
n = 100 0.996 0.956 0.715 0.642 0.324
n = 300 0.936 0.972 0.759 0.647 0.287

â
∗
1 : n = 20 1.054 0.952 0.775 0.860 0.716

n = 50 0.962 0.915 0.646 0.704 0.471
n = 100 1.088 0.984 0.677 0.658 0.339
n = 300 1.004 0.965 0.696 0.635 0.202

â
∗
2 : n = 20 1.075 0.960 0.812 0.859 0.745

n = 50 0.959 0.905 0.681 0.708 0.506
n = 100 1.093 0.979 0.693 0.672 0.381
n = 300 1.022 0.961 0.719 0.652 0.222
n = ∞ 0.982 0.953 0.786 0.667 0.284

As compared to the earlier case, now the differences between the finite-sample
and asymptotic efficiencies are more pronounced especially for small sample sizes.
This holds in particular for the canonical vectors: even in the case n = 300, the
efficiencies are still quite different from the asymptotical ones for some estimators.
This simulation experiment suggests that, when the canonical correlations are
closer to each other, the convergence to the limit distribution for the canonical
vectors is slower. This is because the canonical vectors of different orders are
harder to distinguish. Comparing the different estimators reveals again that also
at finite samples the SCM and S estimator outperform the other estimators in
terms of statistical efficiency. The RMCD estimator behaves now much better at
the small sample sizes.

In the third case samples were generated from a 6-variate normal distribu-
tion, so p = q = 3. Efficiencies of the first canonical correlation and vector
estimates are reported in Table 4. Again, as n increases, the efficiencies converge
to the asymptotic ones. Note that, by comparing Table 4 with Tables 2 and 3,
the asymptotic efficiencies are indeed larger in the higher dimensional setting.
However, this does not systematically carry over all finite sample sizes.
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Table 4: Finite-sample efficiencies of the first canonical correlation and vector
estimates. Samples were generated from a 6-variate normal distribution. The
quantities to be estimated were ρ1 = 0.9 and a∗T

1 = (1, 0, 0)T .

SCM S RMCD Tyler MCD
r̂1 : n = 20 1.025 0.996 0.493 0.729 0.454

n = 50 0.987 0.961 0.675 0.724 0.422
n = 100 0.970 0.964 0.758 0.706 0.394
n = 300 0.991 0.940 0.793 0.688 0.350

â
∗
1 : n = 20 1.043 0.922 0.281 0.691 0.270

n = 50 0.955 0.931 0.477 0.690 0.301
n = 100 0.966 0.969 0.656 0.698 0.316
n = 300 0.972 0.952 0.783 0.701 0.345
n = ∞ 0.991 0.975 0.837 0.750 0.356

Finally, the finite-sample efficiencies of canonical correlation and vector es-
timates were compared in the case of heavy-tailed distribution. Samples were
then generated from 6-variate t-distribution with 5 degrees of freedom and fixed
covariance matrix

Σ =

(
Ip R
R Ip

)
,

with R = diag(0.9, 0.6, 0.3). Resulting efficiencies are given in Table 5.

Table 5: Finite-sample efficiencies of the first canonical correlation and vector
estimates. Samples were generated from a 6-variate t-distribution with 5 degrees
of freedom. The quantities to be estimated were ρ1 = 0.9 and a∗T

1 = (1, 0, 0)T .

SCM S RMCD Tyler MCD
r̂1 : n = 20 1.118 1.066 0.642 0.964 0.606

n = 50 1.136 1.371 0.873 1.228 0.740
n = 100 1.222 1.557 1.002 1.457 0.788
n = 300 1.396 1.668 1.132 1.588 0.809

â
∗
1 : n = 20 0.960 1.032 0.529 0.991 0.519

n = 50 1.234 1.489 0.682 1.356 0.595
n = 100 1.394 1.562 0.880 1.331 0.775
n = 300 1.390 1.666 1.162 1.551 0.854
n = ∞ 1.887 2.766 2.096 2.250 1.276

As compared to the multinormal case, now the convergence to the asymp-
totic efficiencies is much slower. This slow convergence occurs now also for the
SCM and S estimators. Especially for small sample sizes the loss in efficiency is
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remarkable, but also in the case n = 300, the efficiencies are substantially be-
low the asymptotical ones. This holds for all considered estimators. Comparing
the different estimators, we see that the SCM is not the most efficient estimator
anymore, while the more robust estimators behave much better. Among the esti-
mators considered here, S-estimator seems to give the best compromise between
efficiency and robustness.

To compute the estimators, the FAST-MCD algorithm of Rousseeuw and Van
Driessen (1999) was used for computation of the 25% breakdown point MCD
and RMCD estimators. The S-estimator has been computed with the surreal
algorithm of Ruppert (1992). For the computation of the SCM, the same ap-
proximations as in Ollila et al (2003b, Section 7) were used.

5.2 An example

In this section we apply the proposed methods through a simple example. We con-
sider the Linnerud data (Tenenhaus, p. 15) consisting of 20 observations and wish
to describe the relationships between two sets of variables, namely x1=weight,
x2=waist measurement, x3=pulse and y1=pull-ups, y2=bendings, y3=jumps. In
order to compare the methods proposed above, we consider canonical correlation
and vector estimates obtained from different shape matrices. Estimates as well as
corresponding standard deviations, obtained using the asymptotic results given
in Corollary 2, are listed in Table 6.

The coefficients of the different canonical vectors are often used to interpret
the canonical variates, since they give the weight of every variable. By report-
ing the standard error around these coefficients, one can quickly see whether
these coefficients are significantly different from zero or not. Although report-
ing these standard errors is no common practice in canonical analysis (probably
also because the asymptotic distribution of the canonical vectors has only been
established recently, even in the classical case), it helps to detect non-significant
coefficients and it helps to avoid overinterpretation. For example, one sees that
for all shape matrices considered a∗

1
is mainly determined by x2, and to a lesser

extend by x1. On the other hand, for none of the considered shape estimators, b∗

1

is not significantly affected by y1. Note that standard errors are larger for the less
efficient estimators, like the MCD. Differences between the different estimation
procedures do not seem to be substantial. A more detailed look is revealed by the
plot of the the first canonical variates (x′

1, y
′
1) in the Figure 2. The fitted lines are

resulting from the canonical analysis, having as equation y ′
1 = ρ̂1x

′
1. We see that

the Classical and the SCM approach, both having a zero breakdown point, have
been attracted by the outliers in the upper right and lower left corner of the plot.
The MCD and RMCD have been more resistant with respect to these outliers,
and the data cloud is more concentrated around the linear fit, as is also witnessed
by the higher values for the first correlation coefficent of these estimators.
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Table 6: Canonical correlation and vector estimates for the Linnerud data given
by the classical shape matrix, the SCM-, the S-, the RMCD- based, Tyler’s, and
the MCD-based shape matrix. The standard deviations are reported between
parentheses.

Classical SCM S

r̂ 0.796 0.201 0.073 0.774 0.168 0.010 0.768 0.122 0.036
(0.082) (0.215) (0.222) (0.090) (0.218) (0.225) (0.093) (0.223) (0.226)

â∗
1 0.332 -5.213 0.087 0.336 -5.432 0.128 0.336 -5.552 0.112

(0.154) (1.069) (0.271) (0.163) (1.141) (0.287) (0.176) (1.228) (0.318)
â∗

2 -0.807 3.897 -0.339 -0.741 4.247 0.355 -0.562 3.518 0.813
(0.186) (2.750) (2.050) (0.475) (1.988) (2.004) (1.444) (7.155) (3.086)

â∗
3 0.082 -1.670 -1.540 -0.342 0.733 -1.516 -0.682 3.290 -1.462

(1.097) (5.485) (0.510) (0.998) (5.906) (0.526) (1.202) (7.664) (1.741)

b̂
∗

1 0.699 0.178 -0.148 0.719 0.178 -0.150 0.584 0.182 -0.150
(0.476) (0.044) (0.047) (0.495) (0.044) (0.052) (0.484) (0.044) (0.055)

b̂
∗

2 -0.751 0.021 0.219 -0.956 0.036 0.221 -1.415 0.052 0.213
(3.457) (0.283) (0.127) (3.228) (0.260) (0.164) (4.361) (0.373) (0.327)

b̂
∗

3 2.592 -0.209 0.086 2.436 -0.192 0.117 2.063 -0.175 0.153
(1.101) (0.065) (0.300) (1.345) (0.076) (0.299) (3.026) (0.126) (0.455)

RMCD Tyler MCD

r̂ 0.826 0.431 0.110 0.801 0.084 0.014 0.868 0.442 0.144
(0.078) (0.199) (0.241) (0.092) (0.256) (0.258) (0.092) (0.302) (0.367)

â∗
1 0.432 -7.402 0.275 0.271 -5.825 -0.006 0.328 -6.479 0.443

(0.192) (1.676) (0.352) (0.192) (1.465) (0.325) (0.225) (2.112) (0.426)
â∗

2 0.715 4.963 -1.581 0.741 -4.406 1.633 -0.552 3.668 -1.516
(0.347) (3.206) (0.333) (1.965) (11.533) (1.157) (0.634) (5.217) (0.481)

â∗
3 0.523 -3.114 -0.355 -0.611 3.542 0.351 -0.683 4.629 0.255

(0.465) (3.799) (0.977) (2.386) (14.307) (5.253) (0.577) (4.672) (1.480)

b̂
∗

1 0.154 0.191 -0.195 0.304 0.187 -0.200 0.362 0.161 -0.157
(0.343) (0.036) (0.077) (0.382) (0.045) (0.076) (0.430) (0.049) (0.093)

b̂
∗

2 0.675 0.030 -0.315 -1.650 0.080 0.179 0.341 0.054 -0.312
(1.026) (0.090) (0.097) (3.331) (0.482) (0.976) (1.657) (0.130) (0.118)

b̂
∗

3 1.825 -0.109 0.087 1.035 -0.149 0.304 1.877 -0.117 0.055
(0.507) (0.062) (0.203) (5.310) (0.266) (0.583) (0.583) (0.092) (0.309)
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Figure 2: Scatterplot of the first canonical variates based on classical and robust
shape matrices.
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6 Conclusion

The asymptotic behaviour of canonical correlations has been widely studied in
the literature (e.g. Hsu, 1941; Eaton and Tyler, 1994), but less attention has been
given to the limiting distribution of canonical vectors. Anderson (1999) reviews
previous work on the asymptotics of canonical analysis, and clearly states the
asymptotic variances and covariances of both canonical correlations and vectors
derived from the sample covariance matrix. It is not without interest to have
information on the asymptotic variance of the canonical vectors since it allows,
for example, to compute (asymptotic) standard errors around the coefficients
of the canonical vectors. Since these coefficients are often interpreted as the
contributions of the original marginal variables to the canonical vectors, it is
useful to check on their significance.

In this paper a full treatment of the asymptotic distribution of the canoni-
cal correlations and canonical vectors derived from any regular affine equivariant
scatter matrix estimator is given. Results do not only hold at the normal, but at
any elliptical distribution where the scatter matrix being used is well defined and
asymptotically normal. Moreover, we allow for a different dimension of the two
multivariate variables x and y, a situation often occuring in practice. The advan-
tage of working with shape matrices, yielding standardized canonical vectors, has
also been pointed out. Also here, a full treatment of the asymptotic distribution
of the canonical correlations and standardized canonical vectors derived from any
regular affine equivariant shape matrix estimator has been presented. In the pa-
per we have considered five shape estimators in more detail. We have shown that
the canonical correlations and vectors based on SCM- and S-estimators have good
limiting and finite-sample efficiencies and as illustrated by an example, especially
MCD-based estimators are resistant to outliers.

Appendix

The influence functions of scatter, scale and shape functionals at elliptical distri-
bution F of z = DTz0 + b, where z0 ∼ F0, are given in following Lemma. The
influence functions are found easily using the equivariance properties of function-
als, therefore the proofs are not included here.

Lemma 1. At elliptical distribution F , the influence functions of scatter, scale
and shape functionals are

IF (z; C, F ) = DT [γC(r)uuT − δC(r)Ik]D,

IF (z; Det(C), F ) = Det(D)2[γC(r) − kδC(r)],

and

IF (z; V, F ) =
γC(r)

Det(D)2/k
DT

[
uuT − 1

k
Ik

]
D,
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where

r2 = (z − b)T (DTD)−1(z − b) and u =
1

r
(DT D)−1/2(z − b).

To prove Theorems 1 and 2 , we use the following affine invariance property
of canonical correlation functional R(F ) and affine equivariance properties of
canonical vector functionals A(F ), B(F ), A∗(F ) and B∗(F ). The proofs are
straightforward and follow from the affine equivariance properties of C(F ) and
V (F ).

Lemma 2. Let z = (xT , yT )T follow the k-dimensional distribution F and write
R(F ), A(F ) and B(F ) alternatively as R(xT , yT )T , A(xT , yT )T and B(xT , yT )T .
Then for every nonsingular p × p and q × q matrices Ã and B̃.

R(xT Ã, yT B̃)T = R(xT , yT )T

A(xT Ã, yT B̃)T = Ã−1 A(xT , yT )T

B(xT Ã, yT B̃)T = B̃−1 B(xT , yT )T ,

and similarly for standardized canonical vectors A∗(F ) and B∗(F ),

A∗(xT , yT )T =
∣∣Ip − R2

∣∣−1/2k
Ã A∗(xT Ã, yT B̃)T

B∗
1(x

T , yT )T =
∣∣Ip − R2

∣∣−1/2k
B̃ B∗

1(x
T Ã, yT B̃)T .

Proof of Theorem 1 Let F ′ be the cdf of the canonical variates

z′ =

(
AT x

BT y

)
.

Due to Lemma 2, it is enough to compute the influence functions at F ′, where

R(F ′) = diag(ρ1, . . . , ρp), A(F ′) = Ip and B(F ′) =

(
Ip 0
0 B22

)
,

and B22 is an orthogonal (q−p)×(q−p) matrix. Then Cxx(F
′) = Ip, Cyy(F

′) = Iq

and Cxy(F
′) = CT

yx(F
′) = (R, 0).

The influence functions of A, B and R at F ′ are obtained as follows. From
the conditions AT CxxA = Ip and BT CyyB = Iq we have that

IF (z′; AT , F ′) + IF (z′; Cxx, F
′) + IF (z′; A, F ′) = 0 (7)

and

IF (z′; BT , F ′)

(
Ip 0
0 B22

)
+

(
Ip 0
0 BT

22

)
IF (z′; Cyy, F

′)

(
Ip 0
0 B22

)

+

(
Ip 0
0 BT

22

)
IF (z′; B, F ′) = 0.

(8)
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Further, the conditions AT CxyB = (R, 0) and BT CyxA = (R, 0)T yield

IF (z′; AT , F ′)(R, 0) + IF (z′; Cxy, F
′)

(
Ip 0
0 B22

)

+ (R, 0)IF (z′; B, F ′) = IF (z′; (R, 0), F ′)

(9)

and

IF (z′; BT , F ′)(R, 0)T +

(
Ip 0
0 BT

22

)
IF (z′; Cyx, F

′)

+ (R, 0)T IF (z′; A, F ′) = IF (z′; (R, 0)T , F ′).

(10)

The diagonal elements of (7) and (8), for i = 1, . . . , p, then give

IF (z′; Aii, F
′) = −1

2
IF (z′; [Cxx]ii, F

′)

and

IF (z′; Bii, F
′) = −1

2
IF (z′; [Cyy]ii, F

′).

From the diagonal elements of (9) and (10) one gets

IF (z′; Rii, F
′) = ρiIF (z′; Aii, F

′) + IF (z′; [Cxy]ii, F
′) + ρiIF (z′; Bii, F

′),

for i = 1, . . . , p. Combining equations (7), (8), (9) and (10), one obtains for the
off-diagonal elements of A ( i, j = 1, . . . , p, i 6= j ) that

(ρ2
j − ρ2

i )IF (z′; Aij, F
′) = −IF (z′; [Cxx]ij, F

′)ρ2
j + IF (z′; [Cxy]ij, F

′)ρj

+ ρiIF (z′; [Cyx]ij, F
′) − ρiIF (z′; [Cyy]ij, F

′)ρj.

And for off-diagonal elements of B, i = 1, . . . , q, j = 1, . . . , p, i 6= j one has

(ρ2
j − ρ2

i )IF (z′; Bij, F
′) = −IF (z′; [Cyy]ij, F

′)ρ2
j + IF (z′; [Cyx]ij, F

′)ρj

+ ρiIF (z′; [Cxy]ij, F
′) − ρiIF (z′; [Cxx]ij, F

′)ρj,

where ρi = 0 as q ≥ i > p.
Since the canonical variates z′ follow an elliptical distribution F ′ with C(F ′)

as described at the beginning of the proof, then there exists a symmetric positive
definite matrix H = C(F ′)−1/2 such that z0 = Hz′ follows a spherical distribution
F0. Write now r2 = ‖z0‖2 = z′T C(F ′)−1z′ and z0||z0||−1 = (sT , tT )T . Then z0 =
r(sT , tT )T and the sphericity of z0 implies that r and (sT , tT )T are independent
and the latter variable is uniformly distributed at the periphery of the k-variate
unit-sphere. It turns out to be convenient to write canonical variates as functions
of spherical variables:

z′ = rH−1(sT , tT )T , (11)
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where

H−1 =

(∑p
i=1 Hi 0
0 Iq−p

)

and Hi is a 2p×2p matrix with four non-zero elements namely [Hi]i,i = [Hi]p+i,p+i =
(1+∆2

i )
−1/2 and [Hi]i,p+i = [Hi]p+i,i = ∆i(1+∆2

i )
−1/2, where ρi = 2∆i(1+∆2

i )
−1.

The direction vector of z′ equals then (uT , vT )T = H−1(sT , tT )T . (Thus also r
and (uT , vT )T are independent).

Now equation (4) gives

IF (z0; C, F0) = γC(r)

(
s

t

)
(sT , tT ) − δC(r)Ik

and affine equivariance of C yields

IF (z′; C, F ′) = H−1IF (Hz′; C, F0)(H
−1)T

= γC(r)

(
u

v

)
(uT , vT ) − δC(r)

(
Ip (R, 0)

(R, 0)T Iq

)
.

(12)

Combining (12) with the formulas for influence functions yield the expressions
for the influence functions at F ′. Then by the definition of the influence function
and Lemma 2 we have

IF (z; R, F ) = IF (z′; R, F ′),

IF (z; A, F ) = lim
ε→0

A(Fε) − A(F )

ε
= lim

ε→0

A((1 − ε)F + ε∆z) − A(F )

ε

= A(F ) lim
ε→0

A((1 − ε)F ′ + ε∆
z

′) − A(F ′)

ε
= A(F )IF (z′; A, F ′)

and similarly
IF (z; B1, F ) = B(F )IF (z′; B1, F

′).

From the above relations between the influence functions at F and F ′, the desired
influence functions follow.

Proof of Theorem 2 First note that the canonical correlations derived from
V or the associated scatter matrix C are the same. Therefore it follows from
Theorem 1 and (6) that

IF (z′; R, F ′) = γV (r)H1(u, v; R).

The influence functions of A∗ = [Det(C)]1/2kA and B∗
1 = [Det(C)]1/2kB1 are by
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Theorem 1

IF (z′; A∗, F ′) = [Det(C(F ′))]1/2kIF (z′; A, F ′) + A(F ′)IF (z′; [Det(C)]1/2k, F ′)

=
∣∣Ip − R2

∣∣1/2k
[
IF (z′; A, F ′) +

1

2k

∣∣Ip − R2
∣∣−1

IF (z′; Det(C), F ′)Ip

]

=
∣∣Ip − R2

∣∣1/2k
[
γC(r)H2(u, v; R) +

1

2
δC(r)Ip +

1

2k
γC(r)Ip −

1

2
δC(r)Ip

]

=
∣∣Ip − R2

∣∣1/2k
γV (r)

[
H2(u, v; R) +

1

2k
Ip

]
,

where IF (z′; Det(C), F ′) = Det(C(F ′))IF (z0; Det(C), F0) was used together
with (5). Similarly

IF (z′; B∗
1 , F

′) =
∣∣Ip − R2

∣∣1/2k
γV (r)

[
H3(u, v; R) +

1

2k

(
Ip

0

)]
.

So by Lemma 2 at elliptical F the influence functions become

IF (z; R, F ) = IF (z′; R, F ′) = γV (r)H1(u, v; R),

IF (z; A∗, F ) =
∣∣Ip − R2

∣∣−1/2k
A∗(F ) IF (z′; A∗, F ′)

= A∗(F )γV (r)

[
H2(u, v; R) +

1

2k
Ip

]

and

IF (z; B1, F ) = B∗(F )γV (r)

[
H3(v, v; R) +

1

2k

(
Ip

0

)]
.

The next Lemma states the limiting distributions of the canonical correlation
and vector estimators R̂, Â and B̂1 based on scatter matrix estimator Ĉ.

Lemma 3. Assume that ρ1 > . . . > ρp > 0 then at an elliptical distribution F ,

the limiting distribution of
√

n vec(R̂−R) is multivariate normal with zero mean
matrix and covariance matrix

ASV (R̂; F ) = E[vec{IF (z; R, F )}vec{IF (z; R, F )}T ]

= E[γ2
C(r)]E[vec{H1(u, v; R)}vec{H1(u, v; R)}T ],

where H1 is given in Theorem 1. Further, the limiting distribution of
√

n vec(Â−
A) is multivariate normal with zero mean matrix and covariance matrix

ASV (Â; F ) = E[vec{IF (z; A, F )}vec{IF (z; A, F )}T ]

= (Ip ⊗ A)ASV (Â; F ′)(Ip ⊗ AT ).
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and the limiting distribution of
√

n vec(B̂1 −B1) is multivariate normal with zero
mean matrix and covariance matrix

ASV (B̂1; F ) = E[vec{IF (z; B1, F )}vec{IF (z; B1, F )}T ]

= (Ip ⊗ B)ASV (B̂1; F
′)(Ip ⊗ BT ).

Proof of Lemma 3 The asymptotic normality of R̂, Â and B̂1 follows simply
by the delta-method, see for example Anderson (1999). The asymptotic vari-
ances are obtained using Theorem 1 and the following property of vec-operator:
vec(BCD) = (DT ⊗ B)vec(C). Consider for example the asymptotic variance of
A(F ). Write

IF (z; A, F ) = A(F )

[
γC(R)H2(u, v; R) +

1

2
δC(r)Ip

]
= AJ.

Then

ASV (Â; F ) = E
[
vec{AJIp}vec{AJIp}T

]

= E
[
(Ip ⊗ A)vec{J} [(Ip ⊗ A)vec{J}]T

]

= (Ip ⊗ A)E
[
vec{J}vec{J}T

]
(Ip ⊗ AT )

= (Ip ⊗ A)ASV (Â; F ′)(Ip ⊗ AT ).

Further, the limiting distributions of canonical correlation and standardized
vector estimators R̂, Â∗ and B̂∗

1 based on shape matrix estimator V̂ are as follows.
The proof is as the proof of Lemma 3.

Lemma 4. At an elliptical distribution F , the limiting distribution of
√

n vec(R̂−
R) is multivariate normal with zero mean matrix and covariance matrix

ASV (R̂; F ) = E[vec{IF (z; R, F )}vec{IF (z; R, F )}T ]

= E[γ2
V (r)]E[vec{H1(u, v; R)}vec{H1(u, v; R)}T ].

Further, the limiting distribution of
√

n vec(Â∗ −A∗) is multivariate normal with
zero mean matrix and covariance matrix

ASV (Â∗; F ) = E[vec{IF (z; A∗, F )}vec{IF (z; A∗, F )}T ]

= c2
R (Ip ⊗ A∗)ASV (Â∗; F ′)(Ip ⊗ A∗T )

and the limiting distribution of
√

n vec(B̂∗
1 −B∗

1) is multivariate normal with zero
mean matrix and covariance matrix

ASV (B̂∗
1 ; F ) = E[vec{IF (z; B∗

1 , F )}vec{IF (z; B∗
1 , F )}T ]

= c2
R (Ip ⊗ B∗)ASV (B̂∗

1 ; F
′)(Ip ⊗ B∗T ),

where cR = |Ip − R2|−1/2k.
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To prove Theorems 3 and 4, we use the following Lemma. The results follow
from (4) and (6).

Lemma 5. At spherical distribution F0, the limiting variances of any diagonal
and off-diagonal elements of Ĉ are

ASV (Ĉ11; F0) =
2(k − 1)

k2(k + 2)
E[γ2

C(r)] +
1

k2
E[(γC(r) − kδC(r))2]

and

ASV (Ĉ12; F0) =
E[γ2

C(r)]

k(k + 2)
.

Further, the limiting variance of any off-diagonal element of V̂ is

ASV (V̂12; F0) =
E[γ2

V (r)]

k(k + 2)
.

Proof of Theorem 3 Consider for example the limiting variance of r̂i, for
1 ≤ i ≤ p. Lemma 3 gives

ASV (r̂i; F
′) = E[IF (z′; Rii, F

′)2] = E
[
γ2

C(r) [H1(u, v, R)]2ii
]

= E

[
γ2

C(r)

(
uivi −

1

2
ρiu

2
i −

1

2
ρiv

2
i

)2
]

.

Use now the transformation (11), then

ui =
si + ∆iti√

1 + ∆2
i

and vi =
∆isi + ti√

1 + ∆2
i

,

where si and ti are different marginals of a vector distributed uniformly on the
periphery of the k-dimensional unit-sphere, and also independent of r. Then,
after some tedious calculations,

ASV (r̂i; F
′) = (1 − ρ2

i )
2E[γ2

C(r)]E[s2
i t

2
i ] = (1 − ρ2

i )
2E[γ2

C(r)]

k(k + 2)

= (1 − ρ2
i )

2ASV (C12; F0).

When carrying out the calculations, symmetry properties of si and ti can be used
together with E[s2

i ] = 1/k, E[s4
i ] = 3/(k(k + 2)) and E[s2

i t
2
i ] = 1/(k(k + 2)) (see

Lemma 5 in Ollila et al., 2003b). Other limiting variances and covariances are
obtained in a more or less similar way, by carefully carrying out computations
along the lines above.

Proof of Theorem 4 As the proof of Theorem 3.
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