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Abstract15

Generalized Linear Latent Variable Models (GLLVMs) are a powerful class of models16

for understanding the relationships among multiple, correlated responses. Estimation how-17

ever presents a major challenge, as the marginal likelihood does not possess a closed form for18

non-normal responses. We propose a variational approximation (VA) method for estimating19

GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive20

fully closed form approximations to the marginal log-likelihood function in each case. Com-21

pared to other methods such as the expectation-maximization algorithm, estimation using VA22

is fast and straightforward to implement. Predictions of the latent variables and associated23

uncertainty estimates are also obtained as part of the estimation process. Simulations show24

that VA estimation performs similar to or better than some currently available methods, both at25

predicting the latent variables and estimating their corresponding coefficients. They also show26

that VA estimation offers dramatic reductions in computation time particularly if the number of27

correlated responses is large relative to the number of observational units. We apply the varia-28

tional approach to two datasets, estimating GLLVMs to understanding the patterns of variation29

in youth gratitude and for constructing ordination plots in bird abundance data. R code for30

performing VA estimation of GLLVMs is available online.31

Keywords: Factor analysis, Item response theory, Latent Trait, Multivariate analysis, Or-32

dination, Variational approximation.33

1 Introduction34

In many areas of applied science, data on multiple, correlated responses are often collected, with35

one of the primary aims being to understand the latent variables driving these correlations. For36

instance, in psychometrics, subjects are given a series of questions that all relate to some latent37

trait/s such as gratitude. Another example is in ecology, where the abundances of many, inter-38

acting species are collected at each site, and ordination is commonly applied to visualize patterns39

between sites on a latent species composition space (??). Generalized linear latent variable models40



3

(GLLVMs, ?) offer a general framework for analyzing multiple, correlated responses. This is done41

by extending the basic generalized linear model to incorporate one or more latent variables. Spe-42

cific cases of GLLVMs include factor analysis where all the responses are normally distributed,43

and item response theory models where the responses are binary or ordinal.44

Estimating GLLVMs presents a major challenge since the marginal likelihood function, which in-45

volves integrating over the latent variables, does not posses a closed form when the responses are46

non-normal. In this paper, we focus on maximum likelihood estimation of GLLVMs, for which47

several methods have been proposed. These include Laplace’s approximation (??), numerical in-48

tegration methods such as adaptive quadrature (?), and the expectation-maximization (EM) algo-49

rithm or some variant of it (??); see ? for a thorough review of estimation methods for GLLVMs.50

Many of these methods however remain computationally burdensome to use, especially the case51

when the number of correlated responses is large and more than one latent variable is considered.52

In this article, we propose a variational approximation (VA) approach for estimating GLLVMs. A53

comprehensive summary of the VA approach can be found in ?, but briefly, VA belongs to a rich54

class of approximations for converting a difficult optimization problem to a simpler one, whose55

roots begin in quantum mechanics (?) and were subsequently taken up in computer science to fit56

graphical models (?). With regards to statistical estimation, one attractive way of thinking about57

variational approximations, as discussed in Section 3, is as a means of obtaining a more tractable58

(potentially closed form) yet optimal approximation to an intractable likelihood (optimal in the59

sense of minimizing the Kullback-Leibler divergence). Over the past decade, variational methods60

have become increasingly popular for approximating posterior distributions in Bayesian modeling61

(e.g. ?). By contrast, their use in maximum likelihood estimation for dealing with intractable like-62

lihoods has received little attention. ? proposed a Gaussian VA approach to maximum likelihood63

estimation of generalized linear mixed models, while ? demonstrated attractive asymptotic prop-64

erties of using a Gaussian VA method for Poisson mixed models. Variational EM algorithms have65

also been proposed specifically for random effects item response theory models (?) and factor66

analysis (?), but none so far have considered the broader GLLVM framework.67
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Motivated by examples in psychometrics and ecology we proposed a VA approach to estimating68

GLLVMs, with a focus on common cases of binary, ordinal, and overdispersed count data. In each69

case, we derive optimal forms for the variational distributions and a closed form for the VA log-70

likelihood. Estimation of GLLVMs is then straightforward, involving iterative updates of the model71

and variational parameters which can be performed using standard optimization routines such as72

iterative reweighted least squares. Predictions of the latent variables, their standard errors, as well73

as uncertainty estimates are also obtained as part of the estimation process. Simulations show74

that the VA approach performs similar to or better than some of the currently available methods,75

both in predicting the latent variables and estimating the parameters of the model, with potentially76

substantial reductions in computation time. We apply the proposed VA method to datasets in77

psychometrics and ecology, demonstrating in both examples how GLLVMs offer a model-based78

framework to understanding the major patterns of variation behind the correlated data on a latent79

space.80

2 Generalized Linear Latent Variable Models81

Let y = (y1 . . .yn)T denote an n × m response matrix, where rows i = 1, . . . , n are the ob-82

servational units, and columns j = 1, . . . ,m are correlated responses. A vector of p covari-83

ates, xi, may also be recorded for each observation. For a GLLVM, conditional on a vector84

of d � m underlying latent variables, ui and parameter vector Ψ (defined shortly), the re-85

sponses yij are assumed to come from the exponential family of distributions, f(yij|ui,Ψ) =86

exp [{yijθij − b(θij)}/φj + c(yij, φj)], where b(·) and c(·) are known functions, θij are canonical87

parameters, and φj is the dispersion parameter. For simplicity, we assume all responses come from88

the same distribution, although the developments below can be extended to handle mixed response89

types through column dependent functions bj(·) and cj(·). The mean response, denoted as µij , is90
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regressed against ui, along with the p covariates if appropriate via,91

g(µij) = ηij = τi + β0j + xT
i βj + uT

i λj, (1)

where g(·) is a known link function, b′(θij) = µij , β0j is a column-specific intercept, and λj and βj92

are coefficients related to the latent variables and covariates respectively. The above model allows93

for the case where all responses have the same regression coefficients, β1 = . . . = βm = β,94

although we keep the developments more general. Also, a row effect, τi, may be included in (1),95

e.g., to standardize for site total abundance with multivariate abundance data, ensuring that the96

ordination is in terms of species composition. Let λ = (λ1 . . .λd)
T and β = (β1 . . .βp)

T denote97

the m× d and m× p matrices of regression coefficients corresponding to the latent variables and98

covariates respectively. Finally, let Ψ = {τ1, . . . , τn, β01, . . . , β0m, φ1, . . . , φm, vec(λ), vec(β)}99

denote all the parameters in the model.100

We assume that the latent variables are drawn from independent, standard normal distributions,101

ui ∼ Nd(0, Id) where Id denotes a d×d identity matrix. The use of a zero mean and unit variance102

act as identifiability constraints to avoid location and scale invariance. We also impose constraints103

on the latent variable coefficient matrix to avoid rotation invariance. Specifically, we set all the104

upper triangular elements of λ to zero, and constrain its diagonal elements to be positive. Note105

that the assumption of independent latent variables is commonly applied (e.g. ?), and is made106

without loss of generality, i.e., the independence assumption does not constrain the capacity to107

model the correlations between the columns of y, and the model as formulated still covers the set108

of all rank-d covariance matrices.109

3 Variational Approximation for GLLVMs110

Conditional on the latent variables, the responses for each observational unit are assumed to be111

independent in a GLLVM, f(yi|ui,Ψ) =
∏m

j=1 f(yij|ui,Ψ). The marginal log-likelihood is then112
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obtained by integrating over ui,113

`(Ψ) =
n∑

i=1

log{f(yi,Ψ)} =
n∑

i=1

log

(∫ m∏
j=1

f(yij|ui,Ψ)f(ui) dui

)
, (2)

where f(ui) is a multivariate, standard normal distribution, as discussed in Section 2. As reviewed114

in Section 1, numerous methods have been proposed for performing the integration in (2), although115

many are computationally burdensome to implement. To overcome this, we propose applying a116

variational approximation to obtain a closed form approximation to `(Ψ). For a generic marginal117

log-likelihood function `(Ψ) = log
∫
f(y|u,Ψ)f(u) du, a commonly applied VA approach uti-118

lizes Jensen’s inequality to construct a lower bound,119

log

{∫
f(y|u,Ψ)f(u)q(u|ξ)

q(u|ξ)

}
du ≥

∫
log

{
f(y|u,Ψ)f(u)

q(u|ξ)

}
q(u|ξ)du ≡ `(Ψ, ξ), (3)

for some variational density q(u|ξ) with parameters ξ. The VA log-likelihood `(Ψ, ξ) can thus be120

interpreted as the Kullback-Leibler distance between q(u|ξ) and the joint likelihood f(y,u|Ψ).121

Evidently, this is minimized by choosing the posterior distribution q(u|ξ) ≡ f(u|y,Ψ), but in122

order to obtain a tractable form for `(Ψ, ξ), we choose a parametric form for q(u|ξ). Specifically,123

we use independent normal VA distributions for the latent variables, such that for i = 1, . . . , n, we124

have q(ui) ≡ Nd(ai,Ai) such that ξi = {ai, vech(Ai)}, where Ai is an unstructured covariance125

matrix (although in our simulations in Section 5, we consider both unstructured and diagonal126

forms for Ai). In Appendix ??, we show that, in the family of multivariate normal distributions,127

the choice of independent VA distributions is indeed the optimal one.128

With independent normal VA distributions for ui, we obtain the following result.129

Lemma 1. For the GLLVM as defined in (1), the VA log-likelihood is given by130

`(Ψ, ξ) =
n∑

i=1

m∑
j=1

{
yij η̃ij − Eq{b(θij)}

φj

+ c(yij, φj)

}
+

1

2

n∑
i=1

(
log det(Ai)− tr(Ai)− aT

i ai

)
,

where η̃ij = τi + β0j + xT
i βj + aT

i λj , and all quantities constant with respect to the parameters131



7

have been omitted.132

Estimation of the GLLVM is performed by maximizing the VA log-likelihood simultaneously over133

the variational parameters ξ and model parameters Ψ. Note however that there remains an ex-134

pectation term, Eq{b(θij)}, which is not guaranteed to have a closed form. In ?, this was dealt135

with using adaptive Gauss-Hermite quadrature. By contrast, in the next section, we show that fully136

explicit forms for `(Ψ, ξ) can be derived for some common cases of GLLVMs through a repa-137

rameterization of the models. Three responses types are of particular relevance to this article: 1)138

Bernoulli responses, 2) overdispersed counts, and 3) ordinal data, and in each case we obtain a139

closed form VA log-likelihood.140

Finally, we propose that the estimator of Ψ based on maximizing Lemma 1 is estimation consistent141

(as in ?). That is, let (Ψ̂, ξ̂) denote the maximizer of `(Ψ, ξ). Then as n → ∞ and m → ∞, we142

have Ψ̂
p−→ Ψ0 where Ψ0 denotes the true parameter point and Ψ̂ is the VA estimator. A heuristic143

proof of this is provided in Appendix ??. Logically, consistency of the estimators depends critically144

on the accuracy of the VA log-likelihood approximation to the true marginal likelihood (?). In145

brief, a central limit theorem based argument shows that the posterior distribution f(u|y,Ψ) is146

asymptotically normally distributed as m → ∞, and therefore with q(u|ξ) chosen as a normal147

distribution then the VA log-likelihood is expected to converge to the true likelihood, i.e., the148

lower bound in (3) gets sharper as m→∞.149

3.1 Bernoulli Responses150

When the responses are binary, we assume a Bernoulli distribution and use the probit link func-151

tion. Equivalently, we introduce an auxiliary variable, zij , which is normally distributed with152

mean ηij and unit variance, and set yij = 1 if zij ≥ 0 and yij = 0 otherwise. We thus have153

f(yij|zij,ui,Ψ) = I(zij ≥ 0)yij I(zij < 0)1−yij where zij ∼ N(ηij, 1), where I(·) denotes the154

indicator function. Under this parameterization, the marginal log-likelihood requires integrating155

over both ui and zij , that is, `(Ψ) =
∑n

i=1 log
(∫ ∫ ∏m

j=1 f(yij|zij,ui,Ψ)f(zij)f(ui) dzijdui

)
.156

However, the key advantage with introducing the auxiliary variable is that it leads to a closed157
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form for `(Ψ; q). To show this, we first choose a VA distribution q(zij), which we assume to be158

independent of q(ui). The following guides this choice.159

Lemma 2. The optimal choice of q(zij), in the sense of maximizing the lower bound `(Ψ, ξ), is160

a truncated normal distribution with location parameter η̃ij = τi + β0j + xT
i βj + aT

i λj , scale161

parameter 1, and limits (−∞, 0) if yij = 0, and (0,∞) if yij = 1.162

All proofs may be found in Appendix ??. Combining the above result with our choice of q(ui) as163

a normal distribution leads to the result below.164

Theorem 1. The VA log-likelihood for the Bernoulli GLLVM with probit link is given by the fol-165

lowing expression166

`(Ψ, ξ) =
n∑

i=1

m∑
j=1

[yij log{Φ(η̃ij)}+ (1− yij) log{1− Φ(η̃ij)}]−
1

2

n∑
i=1

m∑
j=1

λT
j Aiλj

+
1

2

n∑
i=1

(
log det(Ai)− tr(Ai)− aT

i ai

)
,

where η̃ij = τi + β0j + xT
i βj + aT

i λj and all other quantities that are constant with respect to the167

parameters have been omitted.168

Note the first summation in Theorem 1 is independent of Ai, meaning the estimates of Ai are169

the same for all observations. Maximizing `(Ψ, ξ) in Theorem 1 is straightforward, since the VA170

log-likelihood involves only separate summands over i and j, and can be performed, for instance,171

by iterating the following steps until convergence:172

1. For j = 1, . . . ,m, update (β0j,βj) by fitting a probit Generalized Linear Model (GLM) with173

xi as covariates and τi + aT
i λj entered as an offset.174

2. For j = 1, . . . ,m, update λj by fitting a penalized probit GLM, where ai are treated as175

covariates, τi + β0j + xT
i βj is entered as an offset, and the ridge penalty (1/2)

n∑
i=1

λT
j Aiλj176

is used. The GLM fitting process must also account for constraints on λj .177
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3. For i = 1, . . . , n, update τi and ai by fitting a penalized probit GLM, where λj are treated178

as covariates, β0j + xT
i βj is entered as an offset, and the ridge penalty aT

i ai is used. Then a179

closed form update can be used forAi, specifically,Ai =

(
Id +

m∑
j=1

λjλ
T
j

)−1
.180

Note that rather than updating the column or row specific parameters separately, we could instead181

apply optimization routines to update all parameters at once, i.e. update all182

{β01, . . . , β0m, vec(λ), vec(β)}, then update all (τ1, . . . , τn,a1, . . . ,an), and thenAi.183

Finally, we point out that had we used the logit link instead, then by Lemma 1 the resulting VA184

log-likelihood would involve a term Eq[log{1 + exp(ηij)}], and therefore would involve numerical185

integration to calculate and optimize. By contrast, using a probit link and thus Lemma 2 offers a186

fully closed form VA log-likelihood.187

3.2 Overdispersed Counts188

For count data, a standard option is to assume a Poisson distribution with log link function. In such189

a case, the VA log-likelihood for a Poisson GLLVM is given by the following190

`(Ψ, ξ) =
n∑

i=1

m∑
j=1

{
yij η̃ij − exp

(
η̃ij +

1

2
λT

j Aiλj

)}
+

1

2

n∑
i=1

(
log det(Ai)− tr(Ai)− aT

i ai

)
,

where η̃ij = τi + β0j + xT
i βj + aT

i λj , and all quantities constant with respect to the parameters191

are omitted. The proof of the above is similar to the derivation of the VA log-likelihood for the192

Poisson mixed model in ?, and is omitted here. In many settings however, count data are overdis-193

persed. A prime example of this is multivariate abundance data in ecology, where many species194

tend to be found in large numbers or not at all. To handle this, one could assume a negative bi-195

nomial distribution with quadratic mean-variance relationship, Var(yij) = µij + µ2
ij/φj , where196

φj is the response-specific overdispersion parameter. From Lemma 1 however, it can be shown197

this results in the expectation term Eq[log{1 +φj exp(ηij)}], which requires numerical methods to198

deal with. To overcome this, we propose using a Poisson-Gamma random effects model instead,199

f(yij|νij,ui,Ψ) = exp(−νij)(νij)yij/yij!, where νij ∼ Gamma(φj, φj/µij), and log(µij) =200
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ηij . The parameterization produces the same quadratic mean-variance relationship as the negative201

binomial distribution. However, it can be shown that the optimal VA distribution for νij is a Gamma202

distribution with shape (yij +φj) and rate {1 +φj exp(−τi− β0j −xT
i βj −aT

i λj +λT
j Aiλj/2)}.203

Combining this result with choice of q(ui) leads to the following fully closed form.204

Theorem 2. The VA log-likelihood for Poisson-Gamma GLLVM with log link is given by the fol-205

lowing expression206

`(Ψ, ξ) =
n∑

i=1

m∑
j=1

(
yij

(
η̃ij −

1

2
λT

j Aiλj

)
− (yij + φj) log

{
φj + exp

(
η̃ij −

1

2
λT

j Aiλj

)}
+ log Γ(yij + φj)−

φj

2
λT

j Aiλj

)
+ n{φj log(φj)− log Γ(φj)}

+
1

2

n∑
i=1

(
log det(Ai)− tr(Ai)− aT

i ai

)
,

where η̃ij = τi + β0j + xT
i βj + aT

i λj , Γ(·) is the Gamma function, and all other quantities that207

are constant with respect to the parameters have been omitted.208

To update the VA log-likelihood above, we can iterate the following steps until convergence:209

1. For j = 1, . . . ,m, update (β0j,βj, φj) by fitting a negative binomial GLM, with xi as co-210

variates and τi + aT
i λj − (1/2)λT

j Aiλj entered as an offset.211

2. For j = 1, . . . ,m, update λj using a optimization routine such as the Quasi-Newton method.212

3. For i = 1, . . . , n, update τi and ai by fitting a penalized negative binomial GLM, where213

λj are treated as covariates, β0j + xT
i βj − (1/2)λT

j Aiλj is entered as an offset, and the214

ridge penalty aT
i ai is used. Then a fixed–point algorithm can be used to update Ai, specif-215

ically, using the formula Ai =

(
Id +

m∑
j=1

λjλ
T
j Wij

)−1
, where Wij = φj(yij + φj)/(φj +216

exp
(
η̃ij − (1/2)λT

j Aiλj

)
.217
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3.3 Ordinal Data218

Ordinal responses can be handled by extending the Bernoulli GLLVM in Section 3.1 to use cumu-219

lative probit regression. Suppose yij can take one of Kj possible levels, {1, 2, . . . , Kj}. Then for220

each i = 1, . . . , n; j = 1, . . . , p, we define the vector (y∗ij1, . . . , y
∗
ijKj

) where y∗ijk = 1 if yij = k and221

zero otherwise. Next, we introduce an auxiliary variable zij that is normally distributed with mean222

ηij and unit variance, and define a vector of cutoffs ζj0 < ζj1 < . . . < ζjKj
for each response col-223

umn, with ζj0 = −∞ and ζjKj
= +∞, such that y∗ijk = 1 (equivalently, yij = l) if ζj(k−1) < zij <224

ζjk. Under this parameterization, the conditional likelihood of the responses follows a multinomial225

distribution, f(yij|zij,ui,Ψ) =
Kj∏
k=1

I(ζj(k−1) < zij < ζjk)y
∗
ijk where zij ∼ N(ηij, 1).226

With both the cutoffs and the intercept β0j included, the model is unidentifiable due to location227

invariance. We thus set ζj1 = 0, and freely estimate the remaining cutoffs ζj2 < . . . < ζj(Kj−1).228

Setting ζj1 = 0 and keeping the intercept in the model ensures that in the case of Kj = 2, the229

parameterizations of the ordinal and Bernoulli GLLVMs are equivalent. The following guides the230

choice of q(zij).231

Lemma 3. The optimal choice of q(zij), in the sense of maximizing the lower bound `(Ψ, ξ), is a232

truncated normal distribution with mean η̃ij = τi + β0j + xT
i βj + aT

i λj , variance 1, and limits233

(ζj(k−1), ζjk) if y∗ijk = 1.234

The above is a straightforward extension of Lemma 2. We therefore have the following result.235

Theorem 3. The VA log-likelihood for ordinal GLLVM using cumulative probit regression is given236

by the following expression237

`(Ψ, ξ) =
n∑

i=1

m∑
j=1

Kj∑
k=1

y∗ijl
[
log
{

Φ(ζjk − η̃ij)− Φ(ζj(k−1) − η̃ij)
}]
− 1

2

n∑
i=1

m∑
j=1

λT
j Aiλj

+
1

2

n∑
i=1

(
log det(Ai)− tr(Ai)− aT

i ai

)
,

where η̃ij = τi +β0j +xT
i βj +aT

i λj , ζj0 = −∞ and ζjKj
= +∞, ζj1 = 0, and all other quantities238

that are constant with respect to the parameters have been omitted.239
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Maximizing the VA log-likelihood in Theorem 3 follows the same approach as the iterative steps240

provided for the binary response case at the end of Section 3.1, with the only difference between241

that instead of probit GLMs, we fit cumulative probit regression models in steps one and two242

instead. Note that cumulative probit regression models will also provide estimates of the cutoffs243

ζjk, or alternatively, a Quasi-Newton optimization routine can be used to update the cutoffs as an244

additional step.245

4 Inference and Prediction246

After fitting the GLLVM, we are often interested in interpretation and analysis of the model param-247

eters Ψ, as well prediction and ordination of the latent variables ui. For the former, we can treat248

`(Ψ, ξ) as a log-likelihood function, with (Ψ̂, ξ̂) as the maximum likelihood estimates (MLEs),249

and base inference around this. For instance, approximate asymptotic standard errors may be ob-250

tained based on the observed information matrix evaluated at the MLEs, given by251

I(Ψ̂, ξ̂) = −
{

∂2`(Ψ, ξ)

∂(Ψ, ξ)∂(Ψ, ξ)T

}
Ψ̂,ξ̂

.

Note I(Ψ̂, ξ̂) consists of three blocks corresponding to the negative Hessian matrices with respect252

to Ψ̂, ξ̂, as well as their cross derivatives. The Hessian matrix with respect to ξ̂ exhibits a block di-253

agonal structure due to the independence of ui with respect to the VA distribution. If row effects τi254

are not included, then the Hessian matrix with respect to Ψ̂ also exhibits a block diagonal structure.255

In summary, the three blocks can be calculated in O(max(m,n)) operations, after which block-256

wise inversion can be used to obtain the covariance matrix. Confidence intervals and approximate257

Wald tests for the model parameters Ψ̂ can then be implemented.258

For ordination, the two most common methods of constructing predictions for the latent variables259

are empirical Bayes and maximum a-posteriori, which correspond respectively to the mean and260

mode of the posterior distribution f(u|y,Ψ). For estimation methods such as numerical integra-261

tion, constructing these predictions and estimates of their uncertainty require additional computa-262
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tion after the GLLVM is fitted. In the Gaussian VA framework however, maximizing with respect263

to ξ is equivalent to minimizing the Kullback-Leibler distance between q(u|ξ) and f(u|y,Ψ).264

Therefore with the normality assumption on q(u|ξ), it follows that for the cluster i, the vector265

âi is both the variational versions of the empirical Bayes and maximum a-posteriori predictors of266

the latent variables and Âi provides an estimate of the posterior covariance matrix. Importantly,267

both âi and Âi are obtained directly from the estimation algorithm, as was seen in Section 3. In268

summary, the Gaussian VA approach quite naturally lends itself to the problem of predicting latent269

variables and constructing ordination plots, with âi can be used as the point predictions and Âi270

can be used to construct prediction regions around these points.271

5 Simulation Study272

We performed a simulation study to compare our proposed VA approach to several currently avail-273

able methods for fitting GLLVMs. Two settings were considered: the first simulated binary re-274

sponse datasets resembling those in item response theory, while the second setting simulated275

datasets resembling overdispersed species counts in ecology. In both settings, we assessed per-276

formance based on computation time, and the difference between the true and estimated parameter277

values/latent variables as calculated using the symmetric Procrustes error (see Chapter 8.4, ?). The278

Procrustes error is commonly used as a method of comparing different methods of ordination, and279

can be thought of as the mean squared error of two matrices after accounting for differences in280

rotation and scale. It is an appropriate method of evaluating performance in this simulation, given281

we are interested in an overall measure of how well the latent variables and parameters from the282

fitted model matched those of the true model, while accounting for potential differences in scaling283

and rotation that have no bearing on a model’s performance given their arbitrariness. We calculated284

the Procrustes error via the procrustes function in the R package vegan (?).285
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5.1 Setting 1286

Binary datasets were simulated from GLLVMs with d = 2 latent variables and assuming the probit287

link, considering different combinations of n = {50, 100, 200} and m = {10, 40}. Each true288

model was constructed by first simulating a n × 2 matrix of true latent variables, such that 50%289

of the values were generated from a bivariate normal distribution with mean (−2,2), 30% from a290

bivariate normal distribution with mean (0,−1), and the remaining 20% from a bivariate normal291

distribution with mean (1,1). In all three normal distributions, the covariance matrix was set to292

the identity matrix. This leads to a three-cluster pattern, although overall the groups are not easily293

distinguished (see Figure ?? in Appendix ??). Next, a m× 2 matrix of latent variable coefficients294

was generated, with the first column consisting of an evenly spaced ascending sequence from −2295

to 2, and the second column consisting of an evenly spaced descending sequence from 1 to −1.296

Finally, an intercept for each item was simulated from a uniform distribution U [−1, 1]. For each297

true GLLVM, we simulated 1000 datasets.298

Six methods for fitting item response models were compared: 1) the VA method in Theorem 1 and299

assuming a diagonal form for Ai, 2) the VA method in Theorem 1 and assuming an unstructured300

form for Ai, 3) the Laplace approximation (?), where we wrote our own code to compute the301

estimates (see supplementary material), 4) the ltm function in the R package ltm (?), which uses302

a hybrid algorithm combining EM and quasi-Newton optimization, with the integration performed303

using Gauss-Hermite quadrature and the default of 15 quadrature points, 5) the EM algorithm of ?304

with the integration performed using fixed point quadrature with 21 quadrature points, and 6) The305

Metropolis-Hastings Robbins-Monro algorithm (MHRM, ?). Both methods 5 and 6 are available306

in the mirt function in the R package mirt (?), with their respective default settings used.307

Overall, the two VA methods and the Laplace approximation performed best in estimation and308

prediction (Table 1A). The most telling difference was at m = 40 and n = 50, 100, where the309

large number of items relative to the number of observations caused the hybrid, standard EM,310

and MHRM algorithms to suffer from instability in estimating the coefficients λ. By contrast,311

assuming a normal posterior distribution for the ui’s as VA does led to significantly lower mean312
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Procrustes error for the λ’s in these settings. The VA method assuming an unstructured form for313

Ai performed slightly better than the VA method assuming a diagonal form, although we empha-314

size that the differences in mean Procrustes error between these two versions were minor. Finally,315

while its performance was similar to the two VA approaches, the Laplace approximation tended to316

suffer from convergence problems, with updates between successive iterations not always produc-317

ing an increase in the log-likelihood and there being a strong sensitivity to starting points. Similar318

convergence problems were also encountered in ?, who compared the Laplace approximation to319

several extensions they proposed for estimating GLLVMs, and may be a result of the joint likeli-320

hood, i.e. the integrand in equation (2), being far from normally distributed for when the responses321

are binary.322

Table 1: Results for (A) mean Procrustes error (latent variables u/latent variable coefficients λ),
and (B) computation time in seconds for simulation Setting 1. Methods compared included the two
VA methods assuming either diagonal or unstructured forms for Ai, the Laplace approximation,
and methods in the ltm and mirt packages. Computation time includes prediction for the latent
variables and calculation of standard errors for the model parameters.

m n VA-diag VA-unstruct Laplace ltm-hybrid mirt-EM mirt-MHRM

A: Mean Procrustes error
50 0.320/0.136 0.320/0.136 0.305/0.143 0.323/0.394 0.317/0.375 0.314/0.278

10 100 0.317/0.090 0.315/0.089 0.373/0.080 0.328/0.299 0.310/0.184 0.306/0.196
200 0.278/0.074 0.277/0.076 0.346/0.075 0.311/0.172 0.288/0.093 0.289/0.114

50 0.145/0.131 0.140/0.116 0.153/0.119 0.213/0.472 0.136/0.400 0.144/0.242
40 100 0.168/0.077 0.161/0.069 0.170/0.072 0.156/0.313 0.160/0.215 0.161/0.197

200 0.160/0.053 0.150/0.046 0.155/0.053 0.152/0.186 0.152/0.102 0.153/0.088

B: Mean computation time
50 6.56 9.88 8.57 6.69 6.59 19.52

10 100 11.65 19.15 13.27 8.66 7.90 25.08
200 21.80 33.61 26.71 15.30 9.02 32.07

50 17.57 41.19 27.84 10.10 82.04 42.98
40 100 27.65 63.30 35.84 17.90 126.79 69.01

200 61.46 126.90 72.94 29.20 188.42 83.48

With the usual caveats regarding implementation in mind, our implementation of the VA method323
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assuming a diagonal matrix for Ai was slightly faster than the Laplace approximation, with both324

methods not surprisingly being substantially quicker than the VA method assuming an unstructured325

Ai (Table 1B). The standard EM algorithm from mirtwas the fastest method atm = 10, but by far326

the slowest method at m = 40. The hybrid EM algorithm also performed strongly in computation327

time, although it was the worst performer in terms of estimating λ (Table 1A). Finally, both VA328

methods and the Laplace approximation scaled worse than the other methods with increasing n, a329

result which is not surprising given that these methods introduce an additional set of parameters330

for each new observation: VA explicitly introduces (ai,Ai) for each i = 1, . . . , n, while for the331

Laplace approximation the posterior mode is estimated for each observation.332

In addition to the simulation above, we also assessed VA estimation for a larger number of latent333

variables. Specifically we simulated binary datasets from GLLVMs with d = 5 latent variables,334

with a three-cluster pattern in the latent variables and coefficients generated in a similar manner335

to the design above. Details are presented in Appendix ??, and again demonstrate the strong336

performance of the two VA methods in terms of estimation of coefficients, prediction of latent337

variables, and computation time.338

5.2 Setting 2339

We simulated overdispersed count data by modifying one of the models fitted to the birds species340

dataset (see Appendix ?? for the details of the example) and treating it as a true model. Specifically,341

we considered a GLLVM which assumed a Poisson-Gamma model, d = 2 latent variables, no342

covariates and included site effects. We then modified it to include two covariates, by generating343

a n × 2 matrix of covariates with elements simulated from the standard normal distribution, and344

a corresponding m × 2 matrix of regression coefficients with elements simulated from a uniform345

distribution U [−2, 2]. This modified GLLVM was then treated as the true model. Datasets were346

simulated with the same number of sites as in the original dataset (n = 37) and with a varying the347

numbers of species, m = {30, 50, 100}. Since the original dataset consisted of 96 species, then for348

the cases of m = 30 and 50 we took a random sample from the 96 set of species coefficients, while349
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for the case of m = 100 we randomly sampled four additional species coefficients for inclusion.350

Note this simulation setting focused on datasets with m/n close to or exceeding 1 – such wide351

response matrices are a common attribute of multivariate abundance data in ecology. For each true352

GLLVM, we simulated 200 datasets.353

We compared the following four methods of estimation: 1) the VA method in Theorem 2 and354

assuming a diagonal form for Ai, 2) the VA method in Theorem 2 and assuming an unstructured355

form for Ai, 3) the Laplace approximation (?) assuming negative binomial counts, and 2) the356

Monte Carlo EM (MCEM, ?) algorithm used in ? assuming negative binomial counts, where357

2000 Monte Carlo samples were used to perform the integration involved in the E-step. Due to its358

long computation time (see results Table 2), we limited the maximum number of iterations for the359

MCEM algorithm to 100 iterations. We also considered the three estimation methods assuming360

Poisson counts, but not surprisingly their performances were considerably worse than assuming361

overdispersed data, and so their results have been omitted. More generally, we are unaware of any362

non-proprietary software available for fitting GLLVMs to overdispersed count data.363

Table 2: Results for (A) mean Procrustes error (latent variables u/latent variable coefficients
λ/covariate coefficients β) and (B) computation time in seconds for simulation Setting 2. Methods
compared included the two VA methods assuming either diagonal or unstructured forms for Ai,
the Laplace approximation, and the MCEM algorithm. Computation time includes prediction for
the latent variables and calculation of standard errors for the model parameters.

m VA-diag VA-unstruct Laplace MCEM

A: Mean Procrustes error
30 0.551/0.802/0.066 0.562/0.797/0.066 0.580/0.807/0.071 0.587/0.807/0.080
50 0.394/0.815/0.070 0.408/0.820/0.070 0.403/0.823/0.073 0.450/0.828/0.074

100 0.274/0.819/0.068 0.295/0.819/0.068 0.291/0.818/0.071 0.335/0.828/0.071

B: Mean computation time (secs.)
30 26.53 74.35 75.56 8413.53
50 28.62 63.19 145.07 13905.12

100 53.10 102.18 362.19 26605.92

Overall, the VA method assuming a diagonal form for Ai performed best both in terms of mean364

Procrustes errors and computation time, followed by the VA method assuming an unstructured365
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form for Ai and the Laplace approximation (Table 2). It should be noted though that, similar to366

Setting 1, the differences in mean Procrustes error between the two versions of VA were minor.367

The MCEM algorithm performed worst, having the highest mean Procrustes errors for both the368

latent variables u and for the covariate coefficients β, while also taking significantly longer to fit369

the model than the approximation methods. This dramatic difference in computation time could be370

attributed to the fact that the M-step in MCEM estimation (effectively) involves fitting models to371

a dataset of nmB observations, compared to both the VA methods and the Laplace approximation372

that involve fitting models to a dataset with nm observations. Finally, we note that unlike setting 1,373

the Laplace approximation did not suffer from any convergence problems here with count response374

datasets. This was most likely due to the joint likelihood being relatively normally distributed375

compared to the more discrete, binary response setting.376

6 Application: Gratitude in Youths377

We illustrate the application of the proposed VA method a cross-sectional dataset on several grat-378

itude scales for youths. The dataset is available from the R package psychotools (?), and379

consists of ratings (ordinal responses) on m = 25 gratitude scales from n = 1327 youths. We380

also note that the scales have differing numbers of levels, with maximum number of levels ranging381

from five to nine. The age of each youth (to the nearest integer year) was also available. Details on382

the psychometric background of the dataset may be found in ?.383

We fitted a GLLVM assuming ordinal responses, d = 2 latent variables, and no covariates. We384

chose to use d = 2 latent variables in both examples for the purposes of ordination, to visualize385

the main patterns between youths of various ages. For the VA method, estimation was performed386

assuming an unstructured form for the covariance matrix Ai; we also considered a diagonal form387

forAi, and similar results were obtained.388

A scatterplot of the predicted latent gratitude scores for each youth (ai) showed a separation be-389

tween children (10–13 years old) and adolescents (14–19 years old), as seen in Figure 1A. The390
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Figure 1: Results for the gratitude in youths dataset: (A), unconstrained ordination using a GLLVM
with d = 2 LVs and no covariates, (B) residual ordination using the same model but with an binary
predictor included to differentiate between child versus adolescent. The coordinates for each youth
are represented by different symbols, as based on their age classification to child or adolescents.
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B: Residual ordination of youths
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elements of the estimated coefficient matrix λ were all greater than zero except for the second391

coefficient in five of the gratitude scales, which were significantly less than zero (LOSD 2 to 6; see392

estimates and standard errors in Table ?? of Appendix ??). This was not surprising, given these393

five scales were reverse scored, i.e., a lower score reflected a higher sense of gratitude. More im-394

portantly though, it indicated that LOSD 2 to 6 were the most effective at differentiating between395

the levels of gratitude in children versus adolescents.396

Given the above results, we therefore constructed a “residual ordination” plot by fitting a GLLVM397

with the setup as above, except a categorical predictor was now included to indicate whether the398

youth was a child or adolescent (10–13 versus 14–19 years old). From the resulting fit, the coeffi-399

cients β for this covariate showed adolescents scored significantly higher for LOSD 2 to 6 as well400

as significantly lower for three other gratitude scales (GAC 1 to 3) compared to children (see Ta-401

ble ?? in Appendix ??). Moreover, the residual ordination plot no longer presented any substantial402

pattern for age (Figure 1B), although the lack of any other covariates available in the dataset meant403

that we could verify whether the residual pattern was perhaps driven by other covariates.404
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Finally, to assess the goodness of fit for the d = 2 model, we performed Monte-Carlo cross-405

validation, where for each of iteration we randomly sampled 10% of the rows (youths) out to act406

as a test observations, with the remaining 90% constituting the training dataset. GLLVMs (with no407

covariates included) ranging from d = 1 to 5 were then fitted to each training dataset, using the VA408

approach, and then the predictive marginal log-likelihood of the test observations was calculated.409

This procedure was repeated 50 times. Results definitively showed that d = 1 latent variables was410

insufficient, while the predictive performance improved marginally as we transitioned from d = 2411

to 5 (see Figure ?? in Appendix ??). This suggested d = 2 latent variables was successful in412

capturing most of the correlation between the responses.413

Aside from the above example, we also considered a second dataset comprising counts of bird414

species collected at sites across Indonesia. Results for this application are found in Appendix ??.415

In particular, the design of simulation setting 2 in Section 5.2 was based off this example.416

7 Discussion417

In this article, we have proposed a variational approximation method for estimating GLLVMs,418

deriving fully closed form approximations to the log-likelihood for the common cases of binary,419

ordinal, and overdispersed count data. Estimation is straightforward to implement compared to420

other methods such as numerical quadrature. The VA approach also returns predictions of the421

latent variables and uncertainty estimates as part of the estimation procedure. Simulations showed422

that the VA approach performs similar to or better than some of popular methods used for fitting423

GLLVMs, with potentially significant reductions in computation time. The R code for performing424

VA estimation of GLLVMs is available in the supplementary material of this article, and in future425

work we plan to integrate (even faster versions of) these functions into the mvabund package (?).426

In this simulations, the VA method performed especially well in settings where m/n is non-427

negligible. Such data are common in ecology, and thus the VA approach shows a lot of promise428

for fast fitting of community-level models (such of those of ??) that also account for inter-species429
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correlation. Since species tend to respond to the environment in rather complex ways however,430

the VA approach considered in this paper would need to be extended to handle flexible methods of431

modeling the linear response, e.g. replacing xT
i βj and uT

i λj in (1) with smoothing terms.432

Many applications of item response theory models assume a discrete instead of continuous distri-433

bution for the latent variables, and extending the VA approach to such cases would prove useful434

not only for psychometrics data, but may also have strong potential in collaborative filtering and435

latent class models where the datasets are often very high-dimensional (e.g., ??). Finally, we only436

offered a heuristic argument for the estimation consistency of the VA estimators for GLLVMs, and437

substantial research remains to be done to broaden the results of ? and ? to show that variational438

approximations in general produces estimators that are consistent and asymptotically normal, and439

what these rates of convergence are.440

Acknowledgements441

FKCH supported by the Australian Research Council discovery project grant DP140101259. ST442

was supported by the Academy of Finland grant 251965. DIW was supported by an Australian443

Research Council Future Fellowship (FT120100501).444

Supplementary Material445

Appendices: Appendix A contains proofs for all theorems and lemmas. Appendix B contains446

additional simulation results. Appendix C contains additional results for the applications.447

Appendix D contains the additional application to the birds species count dataset.448

R code: The R code for estimating GLLVMs using the VA method and the Laplace approximation,449

performing simulation Setting 1 and Example 2, and a “readme” file describing each of the450

files, are contained in a zip file (ms-VAGLLVM.zip).451


