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Abstract

Consider a multivariate time series where each component series is assumed to be a
linear mixture of latent mutually independent stationary time series. Classical indepen-
dent component analysis (ICA) tools, such as fastICA, are often used to extract latent
series, but they don’t utilize any information on temporal dependence. Also financial time
series often have periods of low and high volatility. In such settings second order source
separation methods, such as SOBI, fail. We review here some classical methods used for
time series with stochastic volatility, and suggest modifications of them by proposing a
family of vSOBI estimators. These estimators use different nonlinearity functions to cap-
ture nonlinear autocorrelation of the time series and extract the independent components.
Simulation study shows that the proposed method outperforms the existing methods when
latent components follow GARCH and SV models. This paper is an invited extended ver-
sion of the paper presented at the CDAM 2016 conference.

Keywords: blind source separation, GARCH model, nonlinear autocorrelation, multivariate
time series.

1. Introduction

In this paper we assume that the observed p-variate time series € = (2¢)i=0,+1,+2,... follows
the basic independent component (IC) model

x,=p+ Nz, t=0,+1,4+2,...,

where p is a p-variate location vector, € is a full-rank p X p mixing matrix and z =
(2¢)t=0,41,42,... is an unobservable p-variate stationary time series such that

(i) E(z)=0, (i) COV(z)=1I, and

(7i7) the component series of z are independent.

Then @« is also stationary with E(z;) = p and COV(z;) = ¥ = Q. In independent
component analysis (ICA) the goal is to find, using the observed time series x1,..., 2y, an
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estimate of an unmixing matrix W such that Wa = (Wx;);=0 +1,+2,.. has independent
component series.

The IC model has recently received a lot of attention in financial time series analysis as
complicated p-variate time series models can then be replaced by p simple univariate (e.g.
ARMA or GARCH) models in parameter estimation and prediction problems. The model
also serves as a dimension reduction tool as often only few component series in z are relevant
while the rest just present noise. For some recent contributions, see Broda and Paolella (2009);
Chen, Hérdle, and Spokoiny (2007); Garcia-Ferrer, Gonzélez-Prieto, and Pena (2012); Lu, Wu,
and Lee (2009); Oja, Kiviluoto, and Malaroiu (2000).

In the literature standard ICA methods, such as fastICA, are often used to estimate an un-
mixing matrix W in a time series context although such methods only use the marginal distri-
bution of &; and make no use of the information on temporal dependence. On the other hand,
there exist second order source separation methods, like SOBI (Belouchrani, Abed Meraim,
Cardoso, and Moulines 1997), which are particularly popular for analyzing biomedical data.
Such methods use autocovariances and cross-autocovariances for the estimation. They are
capable of separating time series with nonzero linear autocorrelations, but they do not utilize
nonlinear autocorrelations.

Volatility clustering is a common feature in economic and financial time series, i.e. there are
periods of lower and higher volatility. As the transitions between such periods do not typically
have any clear pattern, they are treated as random occurrences. There are a vast amount of
different models that have been invented for such situations. In our simulations we consider
two popular choices, the GARCH model (Bollerslev 1986) and the SV model (Taylor 1982).
For further information on stochastic volatility and a recent overview of stochastic volatility
models, see for example Matteson and Ruppert (2011).

In this paper we review various independent component estimators that use nonlinear auto-
correlations, and compare their performance to that of fastICA in a simulation study where
independent time series components follow GARCH and SV models. The paper has the
following structure. First, in Section 2 we define the aforementioned univariate stochastic
volatility models. In Section 3 we discuss the ICA methods which are considered in this
paper and suggest our extension. In Section 4 we show that this extension has the important
affine equivariance property. Section 5 consists of the simulation study.

2. Stochastic volatility models for univariate series

There are several different stochastic volatility models. Here we concentrate on two widely
used ones. The first one is GARCH (Generalized Autoregressive Conditional Heteroscedastic-
ity) process (Bollerslev 1986) defined as follows. A univariate GARCH(p, q) process is given
by

Tt = Ot€g,

where ¢; is an independent white noise process and o7 is a conditional variance process

p q
02 = Var(zizy,u <t) =w+ Z T+ Zﬁjaf_j,
i=1 j=1

with w > 0 and «;, 8; > 0 Vi, j. For (second order) stationarity, we require that > ©_; o; +

Z?:l Bj < 1.
Another popular model is the SV (Stochastic Volatility) model (Taylor 1982), defined as

Ty = eht/?

hi =+ ¢(he—1 — p) + ony,

€t,
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where ¢; and 7y are two independent white noise innovation processes. The parameter p is
the level, ¢ is the persistence and o is the volatility of the log-variance. The process h; is
called the volatility process and it is strongly stationary with N (0, 1) innovations and initial
state hg ~ N(u,0%/(1 — ¢?)). For stationarity, we require |¢| < 1 and u € R.

3. Source separation for multivariate time series

Under our model assumption, the standardized multivariate series of x; is given by x;' =
E_I/Q(xt — ). One of the key results in ICA states that there exists an orthogonal matrix
U = (uq,...,u,) such that z; = Uz’ (up to signs and order of the components) (Miettinen,
Taskinen, Nordhausen, and Oja 2015). Here z; denotes the vector of independent series. The
final unmixing matrix functional is then given by W = UX Y2, The estimate of W is then
obtained by replacing 3 and U by their sample counterparts. For finding U, we next list the
criterion functions in different approaches.

In the symmetric fastICA (Hyvérinen and Oja 1997) approach U maximizes

Z |E [G(ujzi")]],

and in the symmetric squared fastICA (Miettinen, Nordhausen, Oja, Taskinen, and Virta

2017a) U maximizes
P

3 (E[Gluls)])”.

i=1
Here a twice continuously differentiable, nonlinear and nonquadratic function G is chosen
so that E[G(y)] = 0 if y ~ N(0,1). Two common choices for G are G(z) = z* — 3 and
G(z) = log(cosh(z)) — E[log(cosh(y))], where y ~ N(0,1). Notice that both utilize only the
stationary (marginal) distribution of ;.

The estimators presented below make use of the joint distributions of (x¢, ®14k), k =1,2,....
The classical SOBI uses only second moments and it was originally defined as a method which
jointly diagonalizes several autocovariance matrices. However, SOBI can be reformulated so

that U maximizes
p K
SO (E [(was") (w)at)])?
i=1 k=1
The solution is unique if, for all pairs i # j there exists a k, 1 < k < K, such that E(z;;2¢45:) #
E(2t,j2t4+k,5)- SOBI fails to separate GARCH and SV time series as all lagged autocovariances
are in such cases zero.

The gFOBI procedure proposed in Matilainen, Nordhausen, and Oja (2015) maximizes a sum

of fourth moments «

SN (E (it ll=5112)°

i=1 k=0

where ||-|| is the Frobenius (matrix) norm. For K = 0, the regular ICA method FOBI (Cardoso
1989) is obtained.

The gJADE procedure (Matilainen et al. 2015), in turn, uses a much richer sum of fourth
cumulants and maximizes

>y

i=1r=1

K

/,..st /,..st st st 2
E ( uwt—l—k?uxt—i-k’wtrths)) )
1 k=0

NE

V)
I

where

k(z1, 22, 23, 24) = E(21222324) — E(2122)E(2324) — E(2123)E(2224) — E(2124)E(2223).
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Again, for K = 0, the regular ICA method JADE (Cardoso and Souloumiac 1993) is obtained.
Both, gFOBI and gJADE, were created having stochastic volatility models in mind.

FastICA does not use any knowledge of temporal dependence, but there exists some fixed-
point algorithms aimed for a time series context. The FizNA (Fixed-point algorithm for
maximizing the nonlinear autocorrelation) method was introduced in Shi, Jiang, and Zhou
(2009), and its criterion function to be maximized is

p K
=" E[Glujz) G ujat )]

=1 k=1

where G is a twice continuously differentiable function. The G-functions suggested in Shi
et al. (2009) are G(z) = log(cosh(z)) and G(z) =

A similar function to be maximized is of the form

Z Z ‘E (wjz{")G(uixi,)] — E [G(u'mft)]2

i=1 k=1

)

and we will denote it as FizNA2. It was first proposed in Hyvérinen (2001), however only
with G(z) = 22 and K = 1. We further similarly suggest a natural extension of SOBI with
the criterion function

K
2
— ZZ ( Gujz]")G(uixi,)] — E [G(u’wft)f)

i=1 k=1
As a variant of SOBI, we call this estimator vSOBIL
The term E [G(u] wft)]z in Dy(U) and D3(U) is used to normalize the summands. Notice
that in SOBI, G(z) = 2, and hence the aforementioned term equals to 0. When G(z) = 22,
the term equals to 1.

Remark 1. Instead of using lags k£ = 1,2,..., K, also more flexible lag combinations could
be used (see Taskinen, Miettinen, and Nordhausen 2016, for example).

To obtain the estimating equations for matrix U, the Lagrangian multiplier technique can be
used as in Miettinen, Illner, Nordhausen, Oja, Taskinen, and Theis (2016). The Lagrangian
function to be optimized is

L(U,A) = Z Z )\Uu uj — Z)\“ wu; — 1), forr=1,2,3,

1=1j5=1+1
where A = (\;;) is a symmetric matrix that contains the p(p + 1)/2 Lagrangian multipliers.
Write next
T’I’i - TT,Z(U) = 7DT’(U)) 1= 17 ey P, T = 172737

)

and T, =T,(U) = (Tr1,...,Trp)". Now

ai LU, A) =Tpi — > Moy — Y Nijttj — 2Xi5t; = 0.
t 7<i >t

Then multiplying this by u; from the left side gives

j>1: u;-T,n,i—)\ij:O
j<i: ’u;TT,i—)\ji:O

Now notice that u;-Tm- — Xji = u/T,; — \ij. Then
wiTy;=wTrj, i 735, i,j=1,...,p.

From here the estimating equations for an orthogonal U can be obtained.
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Result 2. The estimating equations for an orthogonal matrix U are
UT,=T,U" and UU' =1,

or, equivalently,
U = (T, T.)"'?T,.

For vSOBI for example, to maximize D3(U), we need to calculate T3 = (T'31,...,T3,),
where

p K
T;, = ZZ < G(ujz{")G(ujzi ;)] — E [G(u’mft)]Q)
i=1 k=1
(E[G (wim") G (ujmy )zt + E [G(ujxf") G (ujxf ) )z ]
—2E [Gula!)] E [G' (wlzt)ast]) |
fori=1,...,p.
Therefore in all three cases r = 1,2,3 the computation of U which maximizes D,(U) can

be done iteratively given some initial orthogonal matrix Uy and some tolerance limit ¢ as
described in the algorithm below.

Data: Standardized time series @' = $72(z; — p)
Result: W =UX™!/?
Uoia = Uy;
A = oc;
while A > ¢ do
T, = TT(Uold);
Unew = (TTT;)_1/2TT;
A= HUnew - UoldH;
Uoda = Unew;
end
U= Unew;

4. Affine equivariance

In blind source separation it is desirable that an unmixing matrix estimator is affine equiv-
ariant, which means that the separation performance does not depend on the actual value
of the mixing matrix 2. Let f = Az, + b be an affine transformation of x;, where A is a
non-singular p X p matrix and b is a p-vector. Then a method is called affine equivariant if
W* = WA™! and Wa; = W*z}, up to location shifts, sign changes and the order of the
components.

Result 3. FixNA, FixNA2 and vSOBI algorithms are affine equivariant.

As an example, consider the affine equivariance of vSOBI algorithm: As COV(z}) = X* =
AX A’ then by Theorem 2.1 in Ilmonen, Oja, and Serfling (2012), (£*)~1/2 = vx~1/24~1
and therefore ;%" = V ;' for some orthogonal p x p matrix V. Let U = (uy,...,u,) be the
orthogonal matrix which maximizes

K

Dy(U) =33 (E [Gluia)Glujai )] - E[G(u'mgt)]2)2
i=1 k=1

Next write U* = UV’ = (uj,...,u;)’, where uj = Vuy, fori = 1,...,p. Now U is an
orthogonal matrix and

G(uz(™) = G(Vu) (V")) = Gluiay").
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*/ kSt

Clearly also G(u'x;$%) = G(ui'z}" ), where k = 1,..., K. Then D3(U") is the maximum
of the criterion function for xj, and

W =U*Z)"2=uv'vE12A = wA

Using the same arguments it can be shown that also FixNA and FixNA2 algorithms are affine
equivariant. Notice also that the fastICA versions discussed here, SOBI, gFOBI and gJADE
are all affine equivariant.

5. Simulation study

The following simulations are conducted using R 3.2.2 (R Core Team 2016) with the pack-
ages fGarch (Wuertz and Rmetrics Core Team 2013), fICA (Miettinen, Nordhausen, Oja,
and Taskinen 2014), JADE (Miettinen, Nordhausen, and Taskinen 2017b), stochvol (Kast-
ner 2016) and tsBSS (Matilainen, Miettinen, Nordhausen, Oja, and Taskinen 2016). In our
simulation studies we compare the following methods:

e FixNA, FixNA2 and vSOBI with both G(z) = 2% and G(z) = log(cosh(z)) and lags
k=1,...,12

e symmetric fastlCA and symmetric squared fastICA with both G(z) = 2* — 3 and
G(z) = log(cosh(z)) — E[log(cosh(y))], where y ~ N(0, 1)

e gFOBI, gJADE with lags £ =0,1,...,12 and SOBI with lags k =1,...,12

In the following we refer to G-functions as pow and lcosh. Hence the methods are denoted as
vSOBI(pow) or FixNA2(lcosh), for example.

As a performance measure we use the Minimum Distance Index (Ilmonen, Nordhausen, Oja,
and Ollila 2010), which is defined as

N -~

D=D(W)=

1 -
inf ||CWQ -1
\/m cee | | P‘ |7
where C is the set of all matrices with exactly one non-zero element in each row and column,
and || - || is the Frobenius (matrix) norm. The index has the range 0 < D < 1, where zero
indicates perfect separation.

For time series of lengths 7" = 100, 200, 400, . . . , 25600 we report the averages T'(p— 1)l§2 based
on 2000 repetitions. Such an average represents a global measure of variation of an unmixing
matrix, see Ilmonen et al. (2010) for details. As all the methods are affine equivariant, we can
choose €2 = I, without loss of generality and consider the following two 4-variate settings:

¢ GARCH setting: The sources are four GARCH(1,1) processes with normal innova-
tions. The parameters (a1, 1) are chosen so that the first eight moments are finite, and
are: (i) (0.05, 0.9), (ii) (0.1, 0.7), (iii) (0.1, 0.8) and (iv) (0.2, 0.5).

e SV setting: In the second setup the four sources are SV processes with normal innova-
tions and (u, ¢, o)-parameter vectors (—10,0.8,0.1), (—10,0.9,0.2), (—10,0.9,0.3) and
(—10,0.95,0.4). Again, all the first eight moments exist.

Performance Figure 1 summarizes the results for both settings. Notice that for clarity we
omitted the results for SOBI as it, as expected, failed to find any latent sources. From the four
different fastICA versions only the best one is presented, and for FixNA only the pow version
is shown as FixNA(lcosh) was much worse than any other FixNA method. FixNA (lcosh)
also exhibited a strange convergence pattern as it was deteriorating when the sample sizes
increased.
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Figure 1: Comparison of performance of algorithms in the GARCH setting (left panel) and
in the SV setting (right panel).

It is seen in Figure 1 that the proposed vSOBI estimator works very well both in GARCH and
in SV settings and, when using G(z) = log(cosh(z)) as the nonlinearity function, it clearly
outperforms all the other estimators. Squared fastICA algorithms produce slightly better
results than the original fastICA algorithms. In GARCH setting the symmetric squared
fastICA with G(z) = 2* — 3 produces better results that other fastICA algorithms, but
compared to other algorithms its performance is still not good, as only gFOBI and SOBI have
poorer performance. In the SV setting however, while regular fastICA and squared fastICA
algorithms with G(z) = 2* — 3 are not among the best, both versions with log(cosh(z)) type
nonlinearities give good results. The squared version is the better one and, when compared to
other algorithms, we can see that only vSOBI with G(z) = log(cosh(z)) is better. Notice that
unlike the other estimators, fastICA algorithms do not utilize any information on temporal
dependence.

In general it seems better to use FixNA2 instead of FixNA, perhaps due to FixNA2 having
the more natural centering part in the objective function. The performance of gFOBI is poor
in both settings, but gJADE seems to work decently in SV setting.

Convergence The convergence percentages of the proposed vSOBI algorithms are good,
and in time series of length 800 onwards very close to 100 %. SOBI has no converge issues,
but as stated before, it has very poor performance. Also gFOBI and gJADE have very few
convergence issues, and only when the time series is very short.

On the other hand, FixNA2 algorithms have lots of convergence problems in short time series,
as they converged in less than 25 % of repetitions in time series of length 100. As the time
series length increases, the convergence rate approaches 100 %. FastICA algorithms have
more issues in the GARCH setting (less than 50 % of repetitions converging in the beginning)
than in the SV setting.

FixNA(pow) has only some convergence issues in short time series. On the other hand,
convergence of FixNA algorithm when using G(z) = log(cosh(z)) as the nonlinearity function
is surprising in SV setting, as there are more convergence issues when time series length
increases, contrary to what is expected (not shown in figures). For time series length 100 its
convergence percentage is 98.5, while with time series length 25600 it is only 76.2. The reason
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Figure 2: Comparison of convergence percentages of algorithms in the GARCH setting (left
panel) and in the SV setting (right panel)

behind this behaviour is not yet known. In GARCH setting this behaviour is not seen after
time series length of 800.

Converge results are summarized in Figure 2. Except for FixNA(lcosh) in the SV setting,
convergence percentages of all algorithms are larger than 99.4 % in time series of length 25600.

6. Discussion

In this paper we surveyed different blind source separation methods suitable for multivariate
time series with stochastic volatility features. Such methods were earlier quite scattered in the
literature. We suggested a small modification to existing methods yielding the family of vSOBI
estimators. The simulations were used to compare the vSOBI estimators with previously
proposed methods using stochastic volatility models. The proposed vSOBI estimator with
G(z) = log(cosh(z)) as the nonlinearity function showed the best performance among its
competitors.

SOBI as a second order method was designed to function on time series with nonzero linear
autocovariances, such as ARMA processes. In stochastic volatility models linear autocovari-
ances are zero, and therefore SOBI is useless. On the other hand, the methods which exploit
nonlinear autocorrelations, considered in this paper, are far from optimal in separating ARMA
processes. In practical situations one can easily imagine a time series independent component
model where some components are ARMA processes and others exhibit stochastic volatility
features. Therefore it is desirable to derive methods which work in such cases.

In our future research we will consider a weighted combination of SOBI and vSOBI yielding
for example the objective function

K

>3 (a € lwatuiati)])’ + (- o) (E[Glua)Gluiaity)] - € [Guiai)])*)).

1=1 k=1

with some suitable weight a € [0, 1] and function G. This could still be generalized to case
where SOBI and vSOBI parts use different combinations of lags.
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