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Abstract10

In this paper we consider generalized linear latent variable models that can handle overdispersed11

counts and continuous but non-negative data. Such data are common in ecological studies when mod-12

elling multivariate abundances or biomass. By extending the standard generalized linear modelling13

framework to include latent variables, we can account for any covariation between species not accounted14

for by the predictors, notably species interactions and correlations driven by missing covariates. We show15

how estimation and inference for the considered models can be performed efficiently using the Laplace16

approximation method, and use simulations to study the finite-sample properties of the resulting esti-17

mates. In the overdispersed count data case, the Laplace approximated estimates perform similarly to the18

estimates based on variational approximation method, which is another method that provides a closed19

form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation20

between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used21

in unconstrained ordination and in making inference on environmental variables, we apply them to two22

ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances23

of coral reef species in Indonesia.24
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1 Introduction26

In many studies in community ecology, multivariate abundance data are often collected, comprising the27

records of a large number of interacting species at a set of observational units or sites. Such data are28

characterized by two main features. First, the data are high-dimensional in that the number of species,29

many of which may interact, is often close to or exceeding the number of sites. Second the data almost30

always are not or cannot be suitably transformed to be normally distributed. Instead, the most common31

types of responses recorded include presence-absence records, overdispersed species counts, biomass (non-32

negative, continuous data often with large number of zeros, representing the total mass of a species found33

at a site), and heavily discretized percent cover data.34

As a motivating example, we consider data on diversity of plant-associated bacteria (Nissinen et al.,35

2012). The data consists of counts of 1276 interacting bacteria species measured from different habitats36

(bulk soil) in 56 sites across three locations. The study design is explained in Section 5.1 in detail. This37

example, which is by no means an extreme case, exhibit both of the above characteristics, with the number38

of species approximately 23 times that of the number of sites, and the counts being highly overdispersed39

with nearly half of the species present at ten or fewer sites.40

Multivariate abundance data are often collected to answer a number of key questions concerning the41

species community. In our motivating dataset for instance, Nissinen et al. (2012) were interested in perform-42

ing an ordination to visualize whether sites are similar in terms of their species composition, which could43

be helpful in planning future sampling designs as well as identifying the drivers of microbial community44

composition such as soil physiochemical properties. They were also interested in conducting multivariate45

inference on the associations between climate zone, environment and soil microflora on microbial commu-46

nities associated with plant or with particular plant species. Such analyses have important implications to47

help in interpreting drivers of biological associations (bacteria-plant) as well as abiotic factors (Männistö48

et al., 2007; Chu et al., 2010). A model-based analysis of such data poses some major challenges not just due49

to the high-dimensionality and non-normality of the data, as previously discussed, but also because of the50

(potentially) complex between species interactions. Analogous to longitudinal data, while the observational51

units (sites) are often independent by design, we cannot assume that species within a unit are independent:52

species responses are likely to be correlated due to a host of ecological reasons, such as biotic interactions,53

phylogeny and missing covariates (Araújo and Luoto, 2007; Morales-Castilla et al., 2015). Ignoring the cor-54

relation between species responses may result in inflated Type I errors and too narrow confidence intervals55

when assessing the significance of one or more predictors in the model, and too narrow prediction intervals56

when extrapolating key community quantities such as species richness into new sites and/or under various57
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climate scenarios (Warton et al., 2015, 2016).58

Over the past few years, the above challenges have spurred a variety of work into model-based joint59

analysis of multivariate abundance data. One promising approach, as reviewed by Warton et al. (2015), is60

generalized linear latent variable models (GLLVMs, Moustaki and Knott, 2000). This rich class of models61

extend the basic generalized linear model framework by including one or more latent variables, with corre-62

sponding factor loadings, as a parsimonious method of modeling any residual correlation between species not63

accounted by the covariates. Warton et al. (2015) showed how GLLVMs overcome the challenges discussed64

above to offer a viable approach for analyzing multivariate abundance data. Specifically, by using a factor65

analytic type approach based on rank reduction to model the high-dimensional between species covariance66

matrix, GLLVMs offer a viable method of constructing model-based (residual) ordination and biplots, as well67

as conducting multivariate inference such as hypothesis testing of environmental and/or treatment effects,68

environment-by-trait interactions, and how species interactions vary at different spatial and temporal scales;69

see Letten et al. (2015) and Ovaskainen et al. (2016a) for recent applications of GLLVMs to multivariate70

abundance data.71

While a promising approach, one of the major and outstanding challenges with using GLLVMs is compu-72

tationally efficient estimation and inference. Since the responses are not normally distributed, the marginal73

likelihood, which involves integrating out the unknown latent variables, does not possess a closed form. This74

problem in general has attracted much attention in the statistical literature, and below we review several75

of the well-known methods proposed to overcome this issue. In Moustaki (1996) and Moustaki and Knott76

(2000), GLLVMs for mixtures of binary and normal responses were fitted using Gauss-Hermite quadrature.77

This was expanded upon by Rabe-Hesketh et al. (2002), who proposed adaptive Gauss-Hermite quadrature78

to fit GLLVMs, allowing for normal, binomial, gamma, and Poisson distributed responses. While quadra-79

ture in general works well for simple latent variable models, the method scales poorly with the number of80

latent variables, and becomes computationally impractical if the number of latent variables is moderate e.g.,81

exceeds two. Another drawback is that the method of Rabe-Hesketh et al. (2002) is only available in the82

proprietary software STATA. More recently, Hui et al. (2016) proposed a fast variational approximation83

method to approximate the likelihood in the case of binary, ordinal and overdispersed count data. While84

quick, the method is rather case specific, offering only a closed approximation for specific combinations of85

response distributions and link functions. Furthermore, little is known about the theoretical properties of86

variational approximations as a framework e.g., the convergence rate and asymptotic normality of Gaussian87

variational approximation estimates has been derived in only specific cases such as Poisson mixed models88

with a random intercept (Hall et al., 2011a,b).89

The most well-known approach for estimating GLLVMs is to apply an Expectation Maximization (EM)90
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algorithm or some variant of it, as in Sammel et al. (1997) and Hui et al. (2015). In the ecology literature91

however, with the growing popularity in hierarchical approaches to community level modeling (Cressie et al.,92

2009; Ovaskainen et al., 2016b), most of the applications of GLLVMs have instead employed Bayesian Markov93

Chain Monte Carlo estimation based on the complete likelihood function (Blanchet, 2014; Ovaskainen et al.,94

2016a; Hui, 2016). A major downside of both Markov Chain Monte Carlo and the EM algorithm estimation95

though is that they are computationally very intensive: the E-step in the EM algorithm (still) does not96

possess a closed form, and so some form of Monte-Carlo integration is still necessary.97

Computational efficiency is a key requirement of methods of parameter estimation, given the sizes of98

datasets now encountered in practice in ecology. While historically most multivariate abundance datasets99

had a few hundred variables, modern lab-based sampling and classification techniques, such as metabarcoding100

in Yu et al. (2012) commonly result in datasets exceeding a thousand response variables, as in our microbial101

application. As such, the most feasible maximum likelihood approaches for fitting GLLVMs in the foreseeable102

future are those that approximate the marginal likelihood as a closed form, in particular, a variational103

approximation (where applicable), or as in this paper, a Laplace approximation.104

In this paper, we propose estimating and performing inference with GLLVMs using the Laplace approx-105

imation for overdispersed count and biomass data, motivated by multivariate abundance data in ecology.106

Although the Laplace method is a special case of adaptive Gauss-Hermite quadrature with only one quadra-107

ture point, one of the major advantages of the Laplace approximation is that it provides a general but108

fully closed form approximation of the likelihood, which can be maximized efficiently even for very complex109

models applied to high-dimensional data such as overdispersed species counts in our motivating example.110

This article is not the first to propose the Laplace approximation for GLLVMs, but the key innovation is our111

extension particularly to handle overdispersed counts and biomass data in ecology. Huber et al. (2004) pre-112

viously provided a Laplace approximation of the likelihood function in the general exponential family case,113

with mixtures of binomial and normal responses serving as examples. This was extended by Bianconcini114

and Cagnone (2012), who proposed a fully exponential Laplace approximation method for fitting GLLVMs.115

They also treated the general exponential family case, but focused on ordinal data in simulation studies.116

This article differs from these previous works though in that we are motivated specifically by multivariate117

abundance data in ecology, and provides the first Laplace approximated likelihood forms for response dis-118

tributions appropriate for overdispersed count and biomass data. More precisely, we derive forms in the119

case of negative binomial or zero-inflated Poisson distributions for overdispersed counts and the Tweedie120

distribution for biomass data. To our knowledge, the Laplace approximation method has not been formally121

considered for any of these distributions so far. Notice that the two other important response types in ecol-122

ogy, that is, presence-absence records and heavily discretized percent cover data, can be handled with the123

4



tools provided by Huber et al. (2004) for binary responses and Bianconcini and Cagnone (2012) for ordinal124

responses, respectively.125

The paper is organized as follows. In Section 2, we formulate the generalized linear latent variable model126

framework and response distributions of interest for multivariate abundance data. In Section 3, Laplace127

approximations of the likelihood functions are derived, and estimation and inference based on these are128

discussed. Section 4 provides a simulation study to compare the performance of Laplace approximation129

estimates to variational approximation estimates in the case of overdispersed count data. In the case of130

biomass data, we empirically illustrate the detrimental effect of ignoring the correlation inherent in the131

responses on parameter estimates. Finally, Section 5 applies the proposed Laplace approximated GLLVMs132

to the microbial community data (Nissinen et al., 2012) and coral community data (Warwick et al., 1990),133

in both cases demonstrating how common aspects of inference such as ordination can be performed within134

a model-based framework via the Laplace approximation.135

2 GLLVMs for Multivariate Abundance Data136

Let Y denote a n×m response matrix, where rows i = 1, . . . , n are observational units (sites) and columns137

j = 1, . . . ,m consist of m-variate correlated responses (species). For each site yi = (yi1, . . . , yim)�, a k-vector138

of environmental covariates, denoted here as xi, may also be recorded.139

In GLLVMs, the mean response µij = E(yij) is regressed against a vector of d � m latent variables,140

denoted as ui, along with the vector of k covariates if available. That is,141

g(µij) = ηij = αi + β0j + x�
iβj + u�

iγj , (1)

where g(·) is a known link function, and αi are β0j denote row effects and species-specific intercepts respec-142

tively. While optional, row and column effects may be included to account for differences in site and species143

total abundance. For example, a row effect is included to ensure that the latent variables quantify differences144

in species composition only, as opposed to species abundance (a combination of composition and site total145

abundance; see Hui et al., 2015, for more details). The vectors βj and γj denote species-specific regression146

coefficients and loadings, that is, coefficients related to the covariates and latent variables, respectively.147

In model (1), the term u�
iγj captures any residual correlation across species not accounted for by the148

observed covariates xi. We assume that the latent variables are drawn from independent, standard normal149

distributions, ui ∼ Nd(0, Id), where Id denotes a d× d identity matrix. The purpose of the zero mean and150

unit variance assumption is to fix the locations and scales of the latent variables (see Chapter 5, Skrondal151
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and Rabe-Hesketh, 2004). Also, to avoid rotation invariance and ensure parameter identifiability, we set all152

the upper triangular elements of m× d matrix Γ = (γ1 · · ·γm)� to zero, and constrain its diagonal elements153

to be positive (Huber et al., 2004). It is important to emphasize that these constraints do not limit the154

flexibility of the GLLVM to model between species correlation: there are no restrictions on the form of the155

residual covariance matrix induced by (1), namely Σres = ΓΓ�, aside from it being of reduced rank d.156

We now study specific cases of GLLVMs of key relevance to multivariate abundance data in ecology,157

namely, overdispersed species counts and biomass (a continuous, non-negative value typically obtained as158

total mass of a species at a site).159

2.1 Species Counts160

Species counts are often overdispersed due to their clustered nature i.e., species tend to be found in large161

numbers or not at all. A standard approach is to assume a negative binomial distribution for the response,162

yij ∼ NegBin(µij ,φj), where φj is a species-specific dispersion parameter, and choose g(·) to be the log link163

function. The probability density function is given by164

f(yij |ui,Ψ) =
Γ(yij + 1/φj)

yij !Γ(1/φj)

�
µij

1/φj + µij

�yij
�

1

1 + µijφj

�1/φj

, (2)

such that E(yij) = µij and the quadratic mean-variance relationship V (µij) = µij + µ2
ijφj . When φj → 0,165

the response variable approaches the Poisson distribution.166

The negative binomial distribution is often appropriate when the zeros (species absences) in the data can167

be explained via the same environmental filtering mechanism as the non-zero counts (Warton, 2005). But168

if the ecological process governing most species absences is believed to be independent of the mechanism169

driving the non-zero counts, then a more appropriate and common choice is a zero-inflated Poisson (ZIP)170

model (Welsh et al., 1996; Martin et al., 2005). A ZIP model assumes that responses are either structural171

zeros obtained with probability p or Poisson distributed count values obtained with probability 1 − p. If172

yij ∼ ZIP (pj , µij), the probability distribution function is173

f(yij |ui,Ψ) =

�
pj + (1− pj) exp(−µij), if yij = 0,

(1− pj) exp(−µij)µ
yij

ij /yij !, if yij > 0.
, (3)

where µij is modelled as in (1) with log link function. Here we assume the probability of extra zeros174

is modelled for each species separately and without reference to the covariates. Under the ZIP model,175

E(yij) = µij(1 − pj) and V ar(yij) = E(yij)(1 + pjµij). When pj = 0, the ZIP model reduces to the176

Poisson model. Finally, notice the negative binomial distribution could also be extended to account for177
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extra zeros (e.g., Welsh et al., 1996). Zero-inflated negative binomial models however can often fit poorly to178

overdispersed count data and can suffer from convergence problems (Warton, 2005; Rodrigues-Motta et al.,179

2013), and so we do not pursue such a model in this article.180

2.2 Biomass Data181

For biomass data, which take continuous but non-negative values, an often appropriate assumption is the182

Tweedie distribution (Jorgensen, 1997). For a comprehensive discussion on Tweedie models and their suit-183

ability for biomass data, see Foster and Bravington (2013). If yij follows a Tweedie distribution, then184

E(yij) = µij and V ar(yij) = φjµ
ν
ij , where φj is a species-specific dispersion parameter and ν is a power185

parameter controlling the shape of the distribution. The mean-variance relationship is thus explicitly defined186

by Taylor’s power law (Taylor, 1961), which empirically arises under a range of ecological processes (Kendal,187

2004).188

The Tweedie distribution does not possess an explicit analytic form, but the density function can be189

evaluated numerically. For a typical power parameter value, 1 < ν < 2, a Tweedie random variable follows190

a compound Poisson distribution, and the probability distribution function can be written as191

f(yij ;ui,Ψ) =





exp

�
− µ2−ν

ij

φj(2−ν)

�
, y = 0

W (yij ,φj , ν) exp

��
yijµ

1−ν
ij

1−ν − µ2−ν
ij

2−ν

�
/φj

�
/yij , y > 0

, (4)

where W (yij ,φj , ν) =
�∞

k=1 Wk, and192

Wk =
y−kα
ij (ν − 1)αk

φ
k(1−α)
j (2− ν)kk!Γ(−kα)

with α = (2−ν)/(1−ν). The function W (yij ,φj , ν) can be evaluated numerically using the method described193

in Dunn and Smyth (2005). Foster and Bravington (2013) and Dunstan et al. (2013) noted that a Tweedie194

distribution is equivalent to the distribution obtained by summing a Poisson number of gamma random195

variables. Such a parametrization makes it particularly suitable for example in analyzing marine data, e.g.,196

the total weight of a fish species at a site can be considered as the sum of the individual fish weights, where197

the number of fish caught is given by a Poisson random variable and the weight of each fish follows a gamma198

distribution.199
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3 The Laplace approximation for GLLVMs200

Consider again a n × m matrix, Y , of observed responses and GLLVMs as defined in equation (1). Write201

α = (α1, . . . ,αn)
�, β0 = (β01, . . . ,β0m)�, B = (β1 . . .βm)� and Γ = (γ1 . . .γm)�, and collect all the model202

parameters as a vector Ψ = (α,β0, vec(B), vec(Γ),Φ), where without loss of generality Φ is used to denote203

any nuisance parameters depending on the assumed distribution, i.e., φ1, . . . ,φm for the negative binomial204

and Tweedie distributions and p1, . . . , pm for the ZIP distribution. Here vec(·) is the vectorizing operator,205

which stacks the columns of a matrix in a column vector. Conditionally on latent variables ui, the responses206

yi1, . . . , yim at site i are assumed to be independent, such that f(yi,ui,Ψ) =
�m

j=1 f(yij |ui,Ψ)h(ui), where207

h(ui) = Nd(0, Id). The marginal distribution of yi is obtained by integrating over the distribution of ui,208

leading to the log-likelihood function209

l(Ψ) =

n�

i=1

log{f(yi,Ψ)} =

n�

i=1

log




� m�

j=1

f(yij |ui,Ψ)h(ui) dui


 . (5)

For the distributions discussed in Section 2, as well as for non-normally distributed responses in general,210

the marginal likelihood in (5) involves a d-dimensional integral, which cannot be solved analytically. We211

propose to overcome this by applying a Laplace approximation to l(Ψ). The Laplace approximation for the212

log-likelihood in the case of the general exponential family is given in Huber et al. (2004), and is reviewed213

in the Appendix A. Here we focus on response types and distributions discussed in Section 2, which are214

frequently collected in ecology.215

Consider first the negative binomial distribution which, for fixed dispersion parameters φj , is a member of216

the exponential family. Thus a Laplace approximation for the log-likelihood function can be derived directly217

from the general result of Huber et al. (2004).218

Theorem 1. The Laplace approximation l̃ of the log-likelihood function in negative binomial GLLVM in (2)

is given by

l̃(Ψ, ûi) =

n�

i=1

�
− 1

2
log det {Γ(Ψ, ûi)}+

m�

j=1

�
yij η̂ij −

�
yij +

1

φj

�
log {1 + φj exp(η̂ij)}

+ yij log(φj) + logΓ

�
yij +

1

φj

�
− log(yij !)− logΓ

�
1

φj

��
− û�

iûi

2

�
,

where

Γ(Ψ, ûi) =

m�

j=1

(φjyij + 1) exp(η̂ij)

{1 + φj exp(η̂ij)}2
γjγ

�
j + Id,

8



with η̂ij = αi + β0j + x�
iβj + ûi

�γj, and ûi is the maximum of

Q(Ψ,ui) =

m�

j=1

�
yijηij + yij log(φj)−

�
yij +

1

φj

�
log {1 + φj exp(ηij)}+ logΓ

�
yij +

1

φj

�

− log(yij !)− logΓ

�
1

φj

��
− u�

iui

2
.

If the dispersion parameters φj are unknown as is usually the case, they can be estimated jointly with219

the other model parameters by maximizing l̃(Ψ, ûi).220

Next, for a ZIP model, the Laplace approximation of the log-likelihood function is given as follows. Note221

that this is not part of the exponential family and so we cannot directly use results from Huber et al. (2004).222

Theorem 2. The Laplace approximation l̃ of the log-likelihood function for the zero-inflated Poisson GLLVM

in (3) is given by

l̃(Ψ, ûi) =

n�

i=1

�
− 1

2
log det {Γ(Ψ, ûi)}+

m�

j=1

�
log(pj + (1− pj)Âij)I(yij=0)

+ {log(1− pj)− exp(η̂ij) + yij η̂ij − log(yij !)}I(yij>0)

�
− û�

iûi

2

�
,

where Aij = exp{− exp(ηij)},

Γ(Ψ, ûi) =

m�

j=1

�
exp(η̂ij)I(yij>0) −

�
(1− pj)Âij exp(η̂ij)(exp(η̂ij)− 1)

pj + (1− pj)Âij

−
(1− pj)

2Â2
ij exp(2η̂ij)

(pj + (1− pj)Âij)2

�
I(yij=0)

�
γjγ

�
j + Id,

with η̂ij = αi + β0j + x�
iβj + ûi

�γj and Âij = exp{− exp(η̂ij)}, and ûi is the maximum of

Q(Ψ,ui) =

m�

j=1

�
log(pj + (1− pj)Aij)I(yij=0)

+ {log(1− pj)− exp(ηij) + yijηij − log(yij !)}I(yij>0)

�
− u�

iui

2
.

Finally for the Tweedie distribution, we have the following result.223

Theorem 3. A Laplace approximation l̃ of the log-likelihood function in Tweedie GLLVM in (4),224
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is given by

l̃(Ψ, ûi) =

n�

i=1


−1

2
log det {Γ(Ψ, ûi)}+

m�

j=1

��
log Ŵ (yij ,φj , ν)− log(yij)

�
I(yij=0)

+
1

φj

�
yij exp{(1− ν)η̂ij}

1− ν
− exp{(2− ν)η̂ij}

2− ν

��
− û�

iûi

2

�
,

where

Γ(Ψ, ûi) =

m�

j=1

1

φj
[(2− ν) exp{(2− ν)η̂ij}− yij(1− ν) exp{(1− ν)η̂ij}]γjγ

�
j + Id

with η̂ij = αi + β0j + x�
iβj + ûi

�γj, and ûi is the maximum of

Q(Ψ,ui) =

m�

j=1

��
log Ŵ (yij ,φj , ν)− log(yij)

�
I(yij=0) +

1

φj

�
yij exp{(1− ν)ηij}

1− ν
− exp{(2− ν)ηij}

2− ν

��

− u�
iui

2
.

Note a common power parameter ν is used for all species. This is done mainly for reasons of stability, as225

there is typically very little information within each species to estimate the power parameter, and previous226

studies have shown that most species tend to have very similar values of ν (Dunstan et al., 2013).227

3.1 Estimation and Inference228

In all of the cases above, the Laplace approximated likelihood has a fully closed form, and therefore parameter229

estimates, Ψ̂, and predictions of the latent variables, ûi for the GLLVM are easily obtained by using standard230

quasi-Newton optimization routines available in R and alternately maximizing l̃(Ψ, ûi) and Q(Ψ,ui) until231

convergence. For this, we have developed an R package gllvm, which is now available on GitHub and232

implements the framework proposed in this paper among other functionalities.233

For Laplace’s method, the asymptotic error is of order O(m−1), where m is the number of species. The234

method is therefore well suited and provides a good approximation for high-dimensional abundance data235

where m/n is often close to or exceeds one. As discussed in Huber et al. (2004) the Laplace approximated236

estimates solve the M -estimation equations, thus their consistency and asymptotic normality follow under237

general assumptions (Chapters 6.2-6.3, Huber and Ronchetti, 2009). Furthermore, the asymptotic standard238

errors for Ψ̂ are easy to compute as the observed information matrix (negative Hessian) is obtained as part239

of the estimation process. This allows us to construct confidence intervals as well as conduct Wald tests240

for the model parameters. Likelihood ratio tests are also readily available, although with the small sample241
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sizes as well as the fact that removing a covariate from the model actually removes m coefficients, their use242

requires careful consideration. In our examples, we use instead the corrected Akaike information criterion243

for variable selection, although this is by no means the only information criterion one could employ.244

Regarding ordination, similar to Hui et al. (2015) we can construct an ordination plot using predicted245

latent variables from the fitted GLLVM. The asymptotic standard errors for ûi are easily obtained in a similar246

fashion as those for Ψ̂, and can be used for example in constructing prediction regions around ordination247

points. In particular if d = 2, then ûi is a pair of coordinates representing the position of the site i in a latent248

two-dimensional indirect gradient space. Furthermore, the coefficients γj quantify how each species response249

relates to the latent variables. Therefore, we can construct a model-based biplot, where the site ordinations250

give an indication of how species composition differs across sites, while plotting the species loadings identify251

the indicator species characterizing the sites.252

In Section 5, we illustrate how the model-based inference discussed above using GLLVMs can be applied,253

using two ecological datasets.254

4 Simulation studies255

To evaluate the finite-sample properties of estimates obtained using the Laplace approximation method, we256

performed two simulation studies on overdispersed count and biomass data. Details on the simulation setups257

as well as example R code are given in Appendix C.258

4.1 Overdispersed counts259

In the overdispersed count data case, we compared the Laplace approximation estimates to those given by260

variational approximation method (Hui et al., 2016). To our knowledge, this is the only other maximum261

likelihood based method currently available which can handle negative binomial GLLVMs in a computation-262

ally feasible manner. In Hui et al. (2015, 2016), MCMC based methods and the EM algorithm were used in263

estimation and inference respectively, but we found these methods to be computationally so intensive that264

they could not be included for comparison. For instance, in our initial testing with the simulation setup (d)265

below, MCMC based method took approximately 12 hours to fit the negative binomial GLLVM.266

The simulation setup was as follows. We simulated K = 1500 datasets according to the negative binomial267

model using four different sample sizes and dimensions: (a) n = 100 and m = 50, (b) n = 50 and m = 100,268

(c) n = 50 and m = 500 and (d) n = 50 and m = 1000. Note that especially response matrices with269

m � n typically arise with multivariate abundance data in ecology. As a mean model, we used log(µij) =270

αi + β0j + u�
iγj , meaning no covariates were included in the model. The true latent variables, ui, were271
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generated from the mixture of bivariate normal distributions all having covariance matrices 0.5I2, means272

(−1, 1), (2, 1.5) and (0.5,−1.5), and proportions 0.4, 0.3 and 0.3, respectively. The sites thus exhibit a273

clustering on a latent variable space. The population parameters γj were generated so that all the elements274

in both columns were generated independently from a uniform distribution U(−2, 2). The population row275

parameters αi and species-specific parameters β0j were generated from a uniform distribution U(−1, 1), and276

the dispersion parameters were set to φj = 1 for all species j.277

Table 1: Average biases, root mean squared errors (RMSEs), coverage probabilities of 95% confidence
intervals and mean CI widths for GLLVM estimates based on Laplace approximation and variational ap-
proximation methods. The true models were negative binomial GLLVMs with (a) n = 100 and m = 50, (b)
n = 50 and m = 100, (c) n = 50 and m = 500 and (d) n = 50 and m = 1000.

Laplace Variational

Bias RMSE Coverage CI width Bias RMSE Coverage CI width
β0 0.07 0.23 0.86 0.68 0.07 0.20 0.96 0.92

(a) α -0.11 0.51 0.72 1.14 -0.11 0.39 0.85 1.14
φ -0.08 0.32 0.96 1.26 -0.03 0.30 0.96 1.16
β0 0.10 0.30 0.88 0.97 0.10 0.30 0.95 1.27

(b) α -0.19 0.30 0.95 1.21 -0.19 0.29 0.95 1.08
φ -0.12 0.42 0.97 2.30 -0.09 0.40 0.99 2.33
β0 0.13 0.32 0.87 1.02 0.13 0.32 0.93 1.29

(c) α -0.22 0.28 0.95 1.12 -0.22 0.27 0.96 1.12
φ -0.10 0.41 0.98 2.30 -0.10 0.40 0.98 2.31
β0 0.15 0.32 0.84 0.99 0.15 0.33 0.86 1.15

(d) α -0.24 0.45 0.74 1.11 -0.25 0.41 0.60 1.11
φ -0.10 0.41 0.98 2.30 -0.10 0.40 0.98 2.31

Table 1 lists the average biases, root mean squared errors, coverage probabilities of 95% confidence inter-278

vals and mean confidence interval widths for estimates of αi, β0j and φj , when the Laplace and variational279

approximation methods were used to fit the models assuming negative binomial distributed responses. Re-280

sults indicate that both methods performed similarly, with slight but noticeable biases especially for the row281

parameter αi when n � m. In some cases the coverage probabilities were a lot smaller or higher than the282

designated level 0.95. Notice that instead of using here large-sample theory, more accurate intervals could283

have be obtained using, for instance, resampling based methods. This approach was however not considered284

due to large computational burden, and we reserve this for avenue for future empirical research.285

To evaluate the performance of estimated γj and predicted latent variables, ui, the mean Procrustes286

errors between the estimated and true parameter values were computed (Bartholomew et al., 2011, Chapter287

8.4). The Procrustes error can be thought of as the mean squared error of two matrices after accounting for288

differences in rotation and scale. The boxplots of Procrustes errors based on Laplace approximation method289

and variational approximation method are given in Figure 1. To compare the performances of model based290

12



ordination methods to a classical algorithmic based ordination method, non-metric multidimensional scaling291

(nMDS), the mean Procrustes errors between the true latent variables and nMDS ordination points were292

also computed. As seen in Figure 1, both model based ordination methods strongly outperform nMDS. The293

results based on Laplace approximation method and variational approximation method are almost equally294

good.295

Figure 1: Comparative boxplots of Procrustes errors between true and estimated ordination points (first row)
and true and estimated parameters γ̂j (second row). Ordination points (and parameters γ̂j when applicable)
are obtained from non-metric multidimensional scaling (nMDS) and negative binomial GLLVM fitted using
Laplace approximation method (LA) and variational approximation method (VA). The true model in each
plot was negative binomial GLLVM with (a) n = 100 and m = 50, (b) n = 50 and m = 100, (c) n = 50 and
m = 500 and (d) n = 50 and m = 1000.
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Finally, regarding computation time, the proposed Laplace approximation method averaged 13.2, 12.1,296

159.4 and 609.3 seconds respectively to estimate the parameters and their standard errors using models in297

simulation settings (a) to (d) above. This was a substantial gain on the corresponding mean computation298

times for variational approximation method, which averaged 56.4, 54.9, 233.4 and 650.9 seconds, respectively.299

The main reason for differences in computation times is that for these setups, the variational approximation300

needs to estimate 5n variational parameters (corresponding to the mean and covariance parameters in the301

variational distribution) on top of the model parameters.302
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4.2 Biomass data303

In the case of biomass data, we used simulations to study the effect of ignoring the correlation between304

taxa on regression estimates. We used only Laplace approximation method to fit the models, as there are305

currently no alternative maximum likelihood based methods available for fitting GLLVMs to biomass data.306

The simulation setup differed slightly from the one used previously for overdispersed counts. Specifically,307

we simulated K = 1500 datasets according to the Tweedie model with fixed power parameter ν = 1.6 using308

three different sample sizes with dimensions: (e) n = 100 and m = 50, (f) n = 50 and m = 100 and (g)309

n = 50 and m = 200. As a mean model, we used log(µij) = β0j +x�
iβj +u�

iγj , with two covariates included310

in the model. The true latent variables for the GLLVM, ui, were generated from a three component mixture311

of bivariate normal distributions all having covariance matrices 0.5I2, with differing means (−1, 1), (1.5, 1.5)312

and (0.5,−1.5), and proportions 0.4, 0.3 and 0.3 respectively. The first covariate xi1 was generated from the313

standard normal distribution and the second covariate xi2 from the exponential distribution with rate λ = 1.314

Finally, as per the overdispersed count simulation, we constructed γj such that all elements in both columns315

were obtained from the uniform distribution U(−2, 2), while the species-specific covariate coefficients βj and316

intercept parameters β0j were chosen from the uniform distribution U(−1, 1). The dispersion parameters317

were set to φj = 1 for all species j.

Table 2: Average biases and root mean squared errors (MSEs) of Tweedie GLLVM and Tweedie GLM
estimates based on Laplace approximation method. The true models were Tweedie GLLVMs with (e)
n = 100 and m = 50, (f) n = 50 and m = 100 and (g) n = 50 and m = 200.

GLLVM GLM

Bias RMSE Bias RMSE

(e)

β0 0.06 0.31 1.15 1.37
β1 0.03 0.16 -0.09 0.18
β2 -0.08 0.32 0.02 0.21
φ -0.03 0.12 2.06 2.71

(f)

β0 -0.02 0.25 0.97 1.17
β1 0.00 0.17 -0.20 0.32
β2 -0.03 0.23 0.06 0.34
φ -0.07 0.18 1.79 2.44

(g)

β0 -0.02 0.27 0.94 1.12
β1 -0.00 0.17 -0.18 0.32
β2 -0.03 0.25 0.06 0.34
φ -0.07 0.18 1.63 2.10

318

Table 2 lists the average biases and mean squared errors for regression estimates based on a Tweedie319

GLLVM compared to a Tweedie generalized linear model (GLM). The latter does not include any latent320

variables to account for residual correlation between species i.e., it assumes the species are independent after321
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Figure 2: Comparative boxplots of Procrustes errors between true and estimated ordination points. Ordi-
nation points are obtained from non-metric multidimensional scaling (nMDS) and Tweedie GLLVM fitted
using Laplace approximation method (LA). The true model in each plot was Tweedie GLLVM with (e)
n = 100 and m = 50, (f) n = 50 and m = 100 and (g) n = 50 and m = 200.
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accounting for correlations due to the observed predictors xi. In all of the considered setups ignoring the322

correlation yields biased estimates with high variability, particularly for the species specific intercepts and323

overdispersion parameters. Additionally, Figure 2 displays the boxplots of Procrustes errors between true324

and predicted latent variables, as well as those between the true latent variables and ordination points given325

by nMDS. Again, the model based approach of GLLVM yields substantially better ordination results.326

5 Examples327

5.1 Microbial Community Data328

We applied Laplace approximated GLLVMs on the bacterial species data discussed in Nissinen et al. (2012).329

Altogether eight different sampling sites were selected from three locations. Three of the sites were in330

Kilpisjärvi, Finland, three in Ny-Ålesund, Svalbard, Norway, and two in Mayrhofen, Austria. From each331

sampling site, several soil samples were taken and their bacterial species were recorded. The data consist of332

m = 1276 bacterial species counts measured from n = 56 sites. The sites can be considered as independent333

from each other since bacterial communities are known to be very location specific. As many of the species334

were observed only in few sites, we decided to exclude such rare species and considered only species present335

at five of more sites. This reduced the number of species to m = 985. In addition to bacteria counts, three336

continuous environmental variables (pH, available phosphorous and soil organic matter) were measured from337

each soil sample.338

In order to study whether the effect of environmental variables is seen in an unconstrained ordination339

plot, we first considered a generalized linear latent variable model with two latent variables and no predictors,340

15



and constructed an ordination plot based on the predicted latent variables. Due to small sample size, the341

corrected Akaike information criterion, AICc, was used for selecting which count distribution was most342

appropriate for the data (Burnham and Anderson, 2002). The values for AICc (scaled by n and subtracted343

by 1942) based on the Poisson, negative binomial and ZIP models are given in the first column of Table 3,344

with results indicating that the negative binomial model fitted the data best. The ZIP model outperformed345

the model assuming Poisson counts.346

Table 3: Values of AICc (scaled by n and subtracted by 1942) for Poisson, negative binomial (NB) and ZIP
GLLVMs (1) without covariate, (2) with pH as a covariate, (3) with pH, soil organic matter and phosphorous
as covariates, (4) with pH included along with a site effect and (5) with all three soil covariates included
along with a site effect.

(1) (2) (3) (4) (5)
Poisson 771 674 463 395 244
NB 178 150 86 59 0
ZIP 630 547 377 311 189

The ordination of sites based on negative binomial GLLVM is plotted in Figure 3(a). The sites are347

coloured according to their pH values. A very clear gradient in the pH values of sites is observed, while348

there was less evidence of such a pattern with the two other soil variables (see Figure B1 in Appendix B). In349

addition, the ordination points are (also) labeled according to the sampling location (Kilpisjärvi, Ny-Ålesund350

and Innsbruck), and it is clear that the sites differed in terms of species composition. In Figure 3(b), a biplot351

based on generalized linear latent variable model is given. Here indices of the 15 species with largest factor352

loadings are added in the (rotated) ordination plot in Figure 3(a). The biplot suggests a small set of indicator353

species which prefer sites with low pH values and a larger set of indicator species for high pH sites.354

In order to study whether the environmental variables alone are capable of explaining the variation in355

species composition across sites, we included them as explanatory variables in the GLLVM. Points estimates356

with 95% confidence intervals are plotted in Figure B2 in Appendix B, and indicate that pH value was the357

main covariate affecting the species composition. The corresponding ordination plots are given in Figure B3358

in Appendix B, and they indicate that even though the effect of environmental variables on ordination359

vanishes, the ordination still exhibits a sampling location effect. Several Kilpisjärvi sites in particular seem360

to be different from the others. To account for this, we further added the sampling location as a categorical361

covariate into the model. The resulting ordination plot in Figure 3(c) shows that there is no visible pattern362

in sampling location anymore. As the figure uses the same scale as plots in Figure 3(a), it is clear that a lot363

of covariation in ordination is explained by the covariates included in the model. When comparing nested364

models, in particular, the model with environmental covariates to the null model, and the model with all365

covariates to the model with environmental covariates, the deviances are 5144.6 and 4830.1, respectively,366
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Figure 3: (a) The ordination plot of n = 56 sites based on generalized linear latent variable model without
any covariates assuming negative binomial distributed responses. (b) The biplot, where 15 species with
the largest factor loadings (in terms of distance from the origin) are printed on top of the (rotated) site
ordination to illustrate indicator species for sites with low and high pH values. (c) The ordination plot based
on generalized linear latent variable model with environmental variables and sampling location as covariates.
The plot (c) uses the same scale as Figure (a) to emphasize the reduction in variation. The sites in ordination
plots are coloured according to their pH values and labeled according to the sampling site.
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suggesting that about 6% of the total covariation is due to environmental covariates based on the marginal log-367

likelihood. Notice that changes in log-likelihood are not the only approach to quantifying variance explained,368

and other methods like extensions of pseudo R2 are possible (see for instance recent work by Nakagawa and369

Schielzeth, 2013, for the case of generalized linear mixed models). Notice also that the corrected AICc picks370

the model with these covariates i.e., the negative binomial GLLVM with all three covariates and sampling371

location, as the best model (Table 3).372

Finally, as a diagnostic tool, we plotted Dunn-Smyth residuals (Dunn and Smyth, 1996) against linear373

predictors for Poisson, zero-inflated Poisson and negative binomial GLLVM models with pH, soil organic374

matter, phosphorous and site as covariates. The plots in Figure B4 in Appendix B show residuals for 100375

randomly selected species to make any patterns in the plots more apparent. Specifically, the plot for the376

Poisson model displays a fan-shaped pattern, which means that the model is not capable of capturing the377

overdispersion in the data, while the plot for the ZIP model displays skew with a lowess curve showing a378

positive trend in residuals. By contrast, the Dunn-Smyth residuals given by negative binomial GLLVMs are379

uniformly distributed around zero indicating an appropriate fit to the data.380

5.2 Coral data381

As the second example, we consider abundances of coral reef species collected in Tikus island, Indone-382

sia (Warwick et al., 1990). The abundance of each reef species was measured as the length (in centimetres)383
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of a ten metre transect which intersected with the species. The data were collected during 1981-1988, but in384

this example we only consider measurements taken in 1981 and in 1983. The reason for this is that there was385

an El Niño event in 1982-1983 causing a tenfold decrease in site total abundance between the two sampling386

times. The aim is to study whether this event had any effect on the community structure, beyond the effect387

on total abundance. We consider species with more than four presences over the two years. Also one record388

for a site in 1983 that contained no presences was removed. The final data set thus contains n = 19 sites389

and m = 18 species.390

Warwick et al. (1990) applied non-metric multidimensional scaling on this data and concluded that stress391

due to El Niño event increases variability in coral communities; see also Figure 4(a). Later Hui et al.392

(2015) applied GLLVM based ordination methods to the corresponding, converted presence-absence data,393

and showed that there was in fact no evidence of a difference in dispersion across the two sampling times. We394

now repeat their analyses using a GLLVM assuming Tweedie distributed responses. The power parameter ν395

was estimated using a profile likelihood approach, testing several different parameter values and selecting the396

one (ν = 1.1) which maximised the profile likelihood. At first, the generalized linear latent variable model397

without site effects was fitted to produce an ordination of species abundance, i.e., including effects on total398

abundance as well as on relative abundance. The ordination plot in Figure 4(b) exhibits a clear location399

difference between coral compositions in 1981 and 1983, reflecting the El Niño event. Secondly, a GLLVM400

with site effects was fitted in order to study ordinations of species composition. The results in Figure 4(c)401

indicate that the species compositions did not change between the two sampling times.402

Figure 4: The ordination plots of n = 19 sites based on (a) non-metric multidimensional scaling (b) Tweedie
GLLVM without site effect and (c) Tweedie GLLVM with site effects. The sites in ordination plots are
labeled according to the year the data was collected.
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In Figure B5 in Appendix B the residual plots are given for the GLLVM models (b) and (c).403
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6 Discussion404

In this paper we illustrated how generalized linear latent variable models can be used to model multivariate405

abundance data and biomass data, that is, data common in ecological studies. When modeling multivariate406

abundance data (overdispersed counts), we assumed negative binomial or zero-inflated Poisson models for407

responses. For biomass data (continuous but non-negative data) the Tweedie distributed responses were408

assumed. Notice however that these distributions just serve as examples and the method can be tailored to409

handle any response distribution.410

Although the generalized linear latent variable models are straightforward to derive, the major challenge411

is the lack of computationally efficient estimation tools. In this paper, we used the Laplace approximation412

method for the estimation and inference. The general form for the Laplace approximation in case of ex-413

ponential family is given in Huber et al. (2004), and we have extended this to the zero-inflated Poisson,414

negative binomial and Tweedie distributions cases, which involve additional nuisance parameters. Other415

case-by-case extensions may sometimes be required, e.g. to handle ordinal data, and one could argue that416

a disadvantage of the Laplace method is the need for case-by-case derivation of estimation algorithms. In417

such case, automated differentiation offers a way forward in this regard, e.g. the Template Model Builder418

software (Kristensen et al., 2016) can potentially simplify estimation procedures, as it requires specification419

of the complete likelihood only, and implementation is based on C++ code. More importantly however, such420

general software nevertheless employs the same Laplace approximation considered in this article as the basis421

for estimation and inference in GLLVMs.422

Simulation studies indicated that such estimation method performs well when modeling overdispersed423

counts and continuous, non-negative data. However, as shown in Joe (2008) the Laplace approximation424

can become less adequate when the conditional distributions of the responses are highly discrete. In such425

settings, such as for binary and ordinal responses, we may consider other approximations method e.g. the426

variational approximation approach as in Hui et al. (2016). All these choices are available in R package427

gllvm, which is associated with this article. In our two examples we illustrated how generalized linear latent428

variable models can be applied to produce ordination plots as well as to make inferences on environmental429

covariates on species communities.430

The generalized latent variable model considered in this paper can be generalized in several ways. If q431

trait covariates tj are also recorded and one wishes to study the environmental-trait interaction, a simple432

way to do it is via model g(µij) = αi + β0j + x�
iβe + vec�(B�

I)(tj ⊗ xi) + u�
iγj . Here βe is now a main433

effect for the environment, common for all species, and B�
I is an interaction matrix, which tells us how well434

traits explain variation in the environmental response. Notice that, as compared to (1), the above model435
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includes far less parameters to be estimated and tested. In ecology, the model (without latent variables) is436

known as a fourth corner model (Brown et al., 2014). Another way to reduce the number of parameters is437

to introduce random effects into the model. For instance, using a random rather than fixed site effect might438

be beneficial as, based on our simulation studies, the fixed site estimates seem to be slightly biased in the439

case of the latter. We will consider the fourth corner latent variable model and random effect models in our440

future studies.441
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A Proofs446

A.1 Laplace approximations for the general exponential family447

Assume that the responses yij come from the exponential family of distributions with mean µij = E(yij),448

and write f(yij |ui,Ψ) = exp {yijaj(µij)− bj(µij) + cj(yij)}, where aj(·), bj(·) and cj(·) are known functions,449

and Ψ includes all model parameters. The log-likelihood function (5) for parameter vector Ψ now equals450

l(Ψ) =

n�

i=1

log

� 


m�

j=1

exp
�
yij aj(µij)− bj(µij) + cj(yij)

�

× (2π)−

d
2 exp

�
−1

2
u�
iui

�
dui,

and the Laplace approximation of the log-likelihood function is451

l̃(Ψ, ûi) =

n�

i=1

�
− 1

2
log det {Γ(Ψ, ûi)}+

m�

j=1

{yij aj(µij)− bj(µij) + cj(yij)}−
û�
iûi

2

�
,

where452

Γ(Ψ, ûi) =

m�

j=1

∂2 {−yij aj(µij) + bj(µij)}
∂u�

i∂ui

�����
ui=ûi

+ Id,

and ûi is the maximum of Q(Ψ,ui) = (1/m)

�
m�
j=1

log f(yij |ui;Ψ)− u�
iui/2

�
with respect to ui. The result453

has been proven in Huber et al. (2004).454
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A.2 Poisson responses455

Species counts can be modelled as Poisson distributed responses, yij ∼ Poisson(µij), and log link function.456

Then aj(µij) = log(µij), bj(µij) = µij , and cj(yij) = − log(yij !). Then the following Laplace approximation457

l̃ for the log-likelihood function is obtained458

l̃(Ψ, ûi) =

n�

i=1

�
− 1

2
log det (Γ(Ψ, ûi)) +

m�

j=1

�
yij η̂ij − exp(η̂ij)− log(yij !)

�
− û�

iûi

2

�
,

where Γ(Ψ, ûi) =
m�
j=1

exp(η̂ij)γjγ
�
j + Id, with η̂ij = αi + β0j + x�

iβj + ûi
�γj , and ûi is the maximum of459

Q(Ψ,ui) =
1

m

�
m�

j=1

�
yijηij − exp(ηij)− log(yij !)

�
− u�

iui

2
− d

2
log(2π)

�
.

A.3 Proof of Theorem 2460

Assume that the responses yij come from the zero-inflated Poisson distribution with mean E(yij) = (1−pj)µij461

and density of the form (3). The log-likelihood function (5) then equals462

l(Ψ) =

n�

i=1

log

�� m�

j=1

exp
�
log [pj + (1− pj) exp{− exp(ηij)}] I(yij=0)

+ {log(1− pj)− exp(ηij) + yijηij − log(yij !)} I(yij>0)

��

× (2π)−
d
2 exp

�
−1

2
u�
iui

�
dui.

Hence, the Laplace approximation of the log-likelihood function is463

l̃(Ψ, ûi) =

n�

i=1

�
− 1

2
log det {Γ(Ψ, ûi)}+

m�

j=1

log f(yij |ûi;Ψ)− û�
iûi

2

�

=

n�

i=1

�
− 1

2
log det {Γ(Ψ, ûi)}+

m�

j=1

�
log

�
pj + (1− pj)Âij

�
I(yij=0)

+ {log(1− pj)− exp(η̂ij) + yij η̂ij − log(yij !)} I(yij>0)

�
− û�

iûi

2

�
,

where464
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Γ(Ψ, ûi) =
∂2

∂u�
i∂ui

�
−

m�

j=1

log f(yij |ui;Ψ) +
u�
iui

2

������
ui=ûi

=

m�

j=1

∂2
�
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−
(1− pj)

2Â2
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A.4 Proof of Theorem 3467

Assume that the responses yij come from the Tweedie distribution with mean E(yij) = µij and density of468

the form (4). The log-likelihood function (5) then equals469

l(Ψ) =

n�

i=1

log

�� m�

j=1

exp

�
−

µ2−ν
ij

φj(2− ν)

�
I(yij=0) +

1

yij
W̃ (yij ,φj , ν) exp

�
1

φj

�
yijµ

1−ν
ij

1− ν
−

µ2−ν
ij

2− ν

��
I(yij>0)

�

× (2π)−
d
2 exp

�
−1

2
u�
iui

�
dui.

Hence, the Laplace approximation of the log-likelihood function is470

l̃(Ψ, ûi) =
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.473

B Additional Application Results474

Figure B1: The ordination of n = 56 sites based on generalized linear latent variable model without any
covariates assuming negative binomial distributed responses. The sites in ordination are coloured according
to their (a) soil organic matter (SOM) values and (b) phosphorous (P) values, and labelled according to the
sampling site.
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Figure B2: Ranked point estimates with 95% confidence intervals for the three environmental variables based
on negative binomial GLLVM. Grey confidence intervals include the zero value.

x xxxxxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxx

−15 −10 −5 0 5

SOM

xxxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxx x xx

−10 0 10 20 30

pH

x xxxxxxxxxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
x

−20 −15 −10 −5 0 5

Phosphorous

24



Figure B3: The ordination of n = 56 sites based on generalized linear latent variable model with pH, soil
organic matter and phosphorous as covariates, and assuming negative binomial distributed responses. The
sites in ordination are coloured according to their (a) pH values, (b) soil organic matter (SOM) values and
(c) phosphorous (P) values, and labeled according to the sampling site. The effect of environmental variables
vanishes, but the ordination is affected by the sampling location few Kilpisjärvi sites being different from
the others what comes to species composition.
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Figure B4: Dunn-Smyth residuals against linear predictors for the (a) Poisson, (b) zero inflated Poisson
and (c) negative binomial GLLVM models with pH, soil organic matter, phosphorous and categorical site as
covariates. Lowess curves are included in the plots.
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Figure B5: Dunn-Smyth residuals against linear predictors for the Tweedie models (a) without site effect
and (b) with site effect.
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