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1. Introduction

In many sampling and experimental designs, multiple measurements are ob-
tained on each observational unit, resulting in multivariate observation vec-
tors. It is often of interest to explore whether two or several subvectors are
interrelated. This typically requires a test of independence between two vec-
tors. To be more specific, let X1, . . . , Xn be a sample of i.i.d. observations
from a p-variate distribution with cumulative distribution function (cdf) F and

write Xi = (X
(1)′
i , X

(2)′
i )′, i = 1, . . . , n, where X

(1)
i and X

(2)
i are p1-variate

and p2-variate subvectors, respectively (p = p1 + p2). We wish to test the null
hypothesis

H0 : X
(1)
i and X

(2)
i are independent.
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Denoting by F (�) the cdf of X
(�)
i (� = 1, 2), this null hypothesis equivalently

states that F (x) = F (1)(x(1))F (2)(x(2)) for all x = (x(1)′, x(2)′)′.
If the observations X1, . . . , Xn come from a multinormal distribution with

mean μ and covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (1.1)

the null hypothesis of independence says that the p1 × p2 matrix Σ12 is zero.
The likelihood ratio test for H0 : Σ12 = 0 is due to Wilks (1935) and rejects
the null at asymptotic level α if and only if

W := −n log

[
detS

(detS11)(detS22)

]
> χ2

p1p2;1−α, (1.2)

where the sample covariance matrix S is partitioned as Σ in (1.1) and where
χ2
d;1−α stands for the α-upper quantile of the χ2

d distribution. Another classical
test of independence based on the sample covariance matrix is the Pillai (1955)
trace test, which rejects the null (still at asymptotic level α) if and only if

P := n tr
(
S−1
11 S12S

−1
22 S21

)
= n (vecS12)

′(S22 ⊗ S11)
−1(vecS12) > χ2

p1p2;1−α

(1.3)
(as usual, ⊗ is the Kronecker product and (vecA) stands for the vector stacking
the columns of A on top of each other). If the subvectors are standardized so
that

Ẑ
(1)
i := S

−1/2
11 X

(1)
i and Ẑ

(2)
i := S

−1/2
22 X

(2)
i , i = 1, . . . , n (1.4)

(in the sequel, A1/2, for a symmetric and positive definite matrix A, stands
for the symmetric and positive definite root of A), then we simply have P =
n‖S12(Z)‖2, where S12(Z) stands for the statistic S12 computed from Ẑi =

(Ẑ
(1)′
i , Ẑ

(2)′
i )′, i = 1, . . . , n (throughout, ‖A‖ = (tr (AA′))1/2 is the Frobenius

norm of the matrix A).
It is important to note that Wilks’ test and Pillai’s test may be used for

testing independence even when the normality assumption is not met. This is
due to the fact that the covariance matrix functional Σ = Σ(F ) has the so-

called independence property: if X
(1)
i and X

(2)
i are independent, then Σ12(F ) =

0. Under H0 with finite second-order moments, W and P are asymptotically
equivalent (that is, W = P + oP (1) as n → ∞; see (5.1)), so that they admit
the same asymptotic null (χ2

p1p2
) distribution and share the same asymptotic

powers under any sequence of contiguous alternatives; see Section 5.
Note also that both W and P are invariant under the group of block-affine

transformations x → Ax+ b, associated with any p-vector b and any invertible
matrix A of the form A = diag(A11, A22), where A�� is p�×p� (� = 1, 2); through-
out, diag(B1, B2, . . . , Bm) stands for the block-diagonal matrix with diagonal
blocks B1, B2, . . . , Bm. This block-affine-invariance property—in the sequel, we
will simply write affine-invariance—is natural in cases where the components of

X
(1)
i and X

(2)
i do not have any fixed specified meaning or label, so that the ob-

servations (subvectors) could have been taken in another coordinate system as
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well. Affine-invariance also ensures distribution-freeness of W and P (under the

null) with respect to the variance-covariance structures of both X
(1)
i and X

(2)
i .

Aiming at invariance with respect to componentwise monotone increasing
transformations as well (hence, at distribution-freeness and validity under broad
conditions, excluding any moment assumption), Puri and Sen (1971) proposed a
class of nonparametric tests based on componentwise rankings and component-
wise score functions K1, . . . ,Kp defined over (0, 1) (the latter are normalized so
that E[Kr(U)] = 0 and E[K2

r (U)] = 1 for all r, where U is uniformly distributed
over (0, 1)). As Wilks’ statistic in (1.2), the proposed test statistic is

WK := −n log

[
det S̃

(det S̃11)(det S̃22)

]
,

where the p× p rank-based covariance matrix S̃ (still partitioned as Σ in (1.1)
above) has entry (r, s) given by

1

n

n∑
i=1

Kr

(
Rir

n+ 1

)
Ks

(
Ris

n+ 1

)
,

where Rir denotes the rank of Xir among X1r, . . . , Xnr (here, Xir stands for the
rth component of Xi). The classical sign covariance matrix and Spearman’s rho
matrix are obtained as special cases (through sign and Wilcoxon score functions,
respectively). At the null of independence, WK , under general assumptions, is
asymptotically χ2

p1p2
. The resulting tests extend to any dimension the univari-

ate (p1 = p2 = 1) quadrant test of Blomqvist (1950) (sign score function) and
the popular univariate test due to Spearman (1904) (Wilcoxon score function).
The test statistic WK is invariant under monotone transformations of the com-
ponents of the Xi’s, but is not affine-invariant (in the sense described above).
Most importantly, using componentwise ranks of the standardized subvectors

Ẑ
(1)
i := S

−1/2
11 X

(1)
i and Ẑ

(2)
i := S

−1/2
22 X

(2)
i , i = 1, . . . , n,

instead of the original ones still would not provide affine-invariant test statistics.
Affine-invariant nonparametric tests for independence have been developed as

well. Gieser and Randles (1997) proposed a simple nonparametric test that gen-
eralizes the quadrant test and is based on the Randles (1989) concept of interdi-
rection counts. Taskinen, Kankainen and Oja (2003) proposed a related but more
practical affine-invariant extension of the quadrant test based on spatial signs.
Later, Taskinen, Oja and Randles (2005) developed invariant tests which are
multivariate extensions of the univariate tests due to Kendall (1938) and Spear-
man (1904). Their tests are based on interdirection counts, spatial signs and
spatial ranks, and provide intuitive, practical and robust alternatives to multi-
variate normal theory methods. To make the test statistics affine-invariant, both
subvectors are standardized before spatial signs and ranks are formed. Taski-
nen, Kankainen and Oja (2004) developed rank score tests based on the spatial
signs and the ranks of the lengths of standardized marginal vectors. All these
affine-invariant nonparametric tests avoid any moment assumption.
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At first sight, the multivariate nonparametric tests listed in the previous para-
graph improve on the classical Wilks/Pillai tests (in terms of moment assump-
tions) and on the Puri and Sen ones (in terms of affine-invariance). However,
a closer inspection reveals that they are not invariant (not even asymptotically
so) under componentwise monotone increasing transformations, and that their
asymptotic properties were derived for elliptically symmetric subvectors only.
Actually, they are designed for the model

(
X

(1)
i

X
(2)
i

)
=

(
Λ11 Λ12

Λ21 Λ22

)(
Z

(1)
i

Z
(2)
i

)
+

(
μ1

μ2

)
, i = 1, . . . , n, (1.5)

where the independent random vectors Z
(1)
i and Z

(2)
i have a spherically symmet-

ric distribution (i.e., are such OZ
(�)
i

D
= Z

(�)
i for any p�×p� orthogonal matrix O,

� = 1, 2, where
D
= denotes equality in distribution). The null hypothesis then

naturally is H0 : Λ12 = Λ′
21 = 0. Note that, in this model, parametric submod-

els are obtained by fixing a couple of univariate densities only, namely those of

‖Z(1)
i ‖ and ‖Z(2)

i ‖, and that, under the null, the marginals of X
(1)
i (as those

of X
(2)
i ) do all share the same density type, that is, have—up to location and

scale—a common distribution, which is of course a very severe restriction. Fi-

nally, note that X
(1)
i and X

(2)
i in general do not have an elliptical distribution

under the alternative.

In this paper, we consider a more flexible and natural model, namely the inde-

pendent component (IC) model, where the p components of Zi = (Z
(1)′
i , Z

(2)′
i )′

are assumed to be symmetric mutually independent random variables. This
model is widely used by engineers in blind source separation problems, and is
related to independent component analysis (ICA). After some possible permuta-
tion of the components of Zi, the null of independence still isH0 : Λ12 = Λ′

21 = 0
in this IC model. But we argue that the latter (i) is more natural (since alter-
natives to independence belong to the IC model, whereas dependent marginal
in the “elliptical” model in (1.5) are not elliptical) and (ii) is also richer (since
parametric IC submodels are obtained by fixing p univariate densities, namely

those of the marginals of Z
(1)
i and Z

(2)
i , which allows, e.g., for heterogeneous tail

weights across marginals). Note that, although the central symmetry assump-
tion on Zi may seem strong at first sight, it is of course much weaker than the
elliptical symmetry assumption required by the affine-invariant nonparametric
tests above.

In those IC models, we adopt the same methodology as in Ilmonen and Pain-
daveine (2011)1 and define classes of affine-invariant parametric and nonpara-
metric tests of multivariate independence. The nonparametric procedures are
based on the componentwise signed ranks of the estimated (in the null model)

1As far as hypothesis testing is concerned, Ilmonen and Paindaveine (2011) restricts to the
problem of testing the null that the “mixing matrix” (the p × p matrix in (1.5)) is equal to
a given value, which, unlike the problem of testing for multivariate independence we consider
in the present work, is mainly of academic interest only.
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independent components. Similarly as the affine-invariant nonparametric proce-
dures designed for the elliptical model, the tests we propose do not require any
moment assumption. Our tests however have two important advantages over
their affine-invariant nonparametric competitors: (i) as explained above, they
are defined in a model of dependence that is much more satisfactory than the
elliptical one, and (ii) they allow for local and asymptotical optimality (in the Le
Cam sense) at prespecified densities (provided that they are based on adequate
score functions Kr).

An important issue in the paper will be the singularity arising in IC models
when the assumption that at most one independent component is Gaussian, is
violated. In ICA (that is, in a point estimation context), this standard assump-
tion is made throughout since it essentially guarantees identifiability of Λ; see
Section 2 or Ilmonen and Paindaveine (2011). However, in the problem of test-
ing for multivariate independence considered here, this assumption is much too
strong, as it would, e.g., rule out the multinormal case. We therefore must study
carefully the resulting possible singularity of IC models, which, as we will see,
has a deep impact on the asymptotic distributions of our optimal tests. To the
best of our knowledge, the problem of investigating the nature of this singularity
has never been touched in the literature.

The paper is organized as follows. Section 2 describes the IC model under con-
sideration and states its uniform local asymptotic normality (ULAN) property.
Section 3 exploits this ULAN structure to define optimal parametric tests of
independence in IC models. Nonparametric (signed-rank) versions of these tests
are proposed in Section 4. The properties of the classical Gaussian tests (the
Wilks and Pillai tests) in IC models are investigated in Section 5.1, whereas Sec-
tion 5.2 derives the asymptotic relative efficiencies of our nonparametric tests
with respect to those Gaussian competitors. Section 6 discusses the practical
implementation of the proposed tests and Section 7 investigates their finite-
sample properties through a Monte-Carlo study. Finally, the Appendix collects
technical proofs.

2. IC models, ULAN, and multivariate independence

In this section, we define the IC models in which we will test for multivariate
independence, and state the ULAN property on which the construction of the
proposed optimal tests will be based. We then introduce the problem of testing
for multivariate independence in such models.

2.1. IC models and ULAN

Denote by Gp a subset of the collection of invertible p × p real matrices Λ
obtained by fixing the order and “signs” of columns in some prespecified way,
in the sense that, if Λ ∈ Gp, then the only matrix ΛPS that also belongs
to Gp is Λ itself, where P and S are any permutation and sign-change matrices,
respectively (i.e., matrices respectively obtained by permuting the columns of
the p-dimensional identity matrix Ip or by changing signs of the entries of the
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same). For instance, one can let the sign of the entry with largest absolute values
in each column be positive, and then order columns in such a way that those
largest absolute values form an increasing sequence (in case of ties, one can then
base the ordering/signs on the basis of the second largest absolute values, etc.)
Now, further denote by F the collection of probability density functions (pdf’s) g
(with respect to the Lebesgue measure on R

p) of absolutely continuous random
vectors Z = (Z1, . . . , Zp)

′ whose marginals are (i) mutually independent, (ii)

symmetric about the origin (−Zr
D
= Zr for all r), and (iii) standardized so that

Med[Z2
r ] = χ2

1;.5 for all r. For g ∈ F , we will often decompose g into g(z) =:∏p
r=1 gr(e

′
rz) in the sequel, where er denotes the rth vector of the canonical

basis of Rp.

We then throughout assume that the following independent component (IC)
model holds.

Assumption (A). For some μ ∈ R
p, Λ ∈ Gp, and g ∈ F , the p-variate ob-

servations X1, . . . , Xn are generated by Xi = ΛZi + μ, i = 1, . . . , n, where
Zi = (Zi1, . . . , Zip)

′, i = 1, . . . , n are i.i.d. with pdf g.

In the sequel, we denote the corresponding hypothesis by Pn
μ,Λ,g or Pn

ϑ,g

(where ϑ = (μ′, (vecΛ)′)′ ∈ Θ = R
p × vecGp), and the marginals of Zi are

called the independent components (ICs). The location μ is of course a well-
defined parameter since it is the unique center of symmetry of the common
distribution of the Xi’s. Also, it follows from Theis (2004) that, in cases where
at most one IC is Gaussian (cases we do not want to restrict to in the sequel;
see the comments at the end of this section for more details), the parameters
Λ and g are identifiable. Note indeed that, since Λ ∈ Gp and g ∈ F , the order,
scales, and signs of the ICs are fixed.

For the sake of illustration, we will later consider Gaussian and t-distributed
ICs. We say the rth IC is Gaussian (resp., is tν , ν > 0) if and only if gr(z) =
(2π)−1/2 exp(−z2/2) (resp., gr(z) = cνσ

−1
ν (1+ν−1σ−2

ν z2)−(ν+1)/2, where cν is a
normalization constant). Here, σν is such that Med[Z2

r ] = χ2
1;.5 if Zr has pdf gr

(note that limν→∞ σν = 1). When compared to variance-based standardizations,
the median-based one we use throughout has the advantage of avoiding any
moment assumption (other such standardizations might be adopted, though;
see, e.g., Chen and Bickel (2006)).

As the density g remains unspecified in practice, the semiparametric IC model
Pn = {Pn

ϑ,g : ϑ ∈ Θ, g ∈ F} is to be considered. Proposition 2.1 below, which is
crucial for the construction of optimal tests in Section 3, states that most fixed-g
parametric submodels Pn

g = {Pn
ϑ,g : ϑ ∈ Θ} are ULAN. More precisely, ULAN

requires that the noise density g belongs to the collection FULAN of densities
in F that (i) are absolutely continuous with respect to the Lebesgue measure (in
the sequel, we let ϕgr := −ġr/gr, where ġr stands for the a.e.-derivative of gr)
and (ii) have finite second-order moments (σ2

gr :=
∫ ∞
−∞ z2gr(z)dz < ∞ for all r),

finite Fisher information for location (Igr :=
∫ ∞
−∞ ϕ2

gr(z)gr(z) dz < ∞ for all r),

and finite Fisher information for scale (Jgr :=
∫ ∞
−∞ z2ϕ2

gr(z)gr(z) dz < ∞ for
all r).
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For g ∈ FULAN, let γr,s(g) := Igrσ2
gs , Ig := diag(Ig1 , . . . , Igp), and define

the p-variate optimal location score function ϕg by z = (z1, . . . , zp)
′ �→ ϕg(z) =

(ϕg1(z1), . . . , ϕgp(zp))
′. We then have the following ULAN result.

Proposition 2.1. For any g ∈ FULAN, the family of probability distributions
Pn
g = {Pn

ϑ,g : ϑ ∈ Θ} is ULAN. More precisely, for any ϑn = ϑ + O(n−1/2),

any bounded sequence (τn) in R
p(p+1), and any g ∈ FULAN, we have that (i)

under Pn
ϑn,g

, as n → ∞,

log
(
dPn

ϑn+n−1/2τn,g
/dPn

ϑn,g

)
= τ ′n Δ

(n)
ϑn,g

− 1

2
τ ′nΓϑ,gτn + oP (1),

where, letting Zi(ϑ) := Λ−1(Xi − μ),

Δ
(n)
ϑ,g =

(
Δ

(n)
ϑ,g;1

Δ
(n)
ϑ,g;2

)
=

(
n−1/2

(
Λ−1)′

∑n
i=1 ϕg

(
Zi(ϑ)

)
n−1/2

(
Ip ⊗ Λ−1

)′ ∑n
i=1 vec

(
ϕg

(
Zi(ϑ)

)
Z ′
i(ϑ) − Ip

) )
,

and that (ii) the central sequence Δ
(n)
ϑn,g

, still under Pn
ϑn,g

, is asymptotically
normal with mean zero and covariance matrix Γϑ,g = diag(Γϑ,g;1,Γϑ,g;2), with

Γϑ,g;1 =
(
Λ−1)′IgΛ−1 and Γϑ,g;2 =

(
Ip ⊗Λ−1

)′{ ∑p
r=1(Jgr − 1) (ere

′
r ⊗ ere

′
r) +∑p

r,s=1,r �=s

(
γs,r(g)(ere

′
r ⊗ ese

′
s) + (ere

′
s ⊗ ese

′
r)

)}(
Ip ⊗ Λ−1

)
.

Clearly, Γϑ,g;1 has full rank for all ϑ ∈ Θ and for all g ∈ FULAN with Igr > 0
for all r. Now,

det Γϑ,g;2 = (detΛ)−2p

( p∏
r=1

(Jgr − 1)

)( p−1∏
r=1

p∏
s=r+1

(IgrIgsσ2
grσ

2
gs − 1)

)
.

If g ∈ FULAN, Jgr > 1 for all r (see, e.g., Hallin and Paindaveine (2006)). As
for the other factors, Igrσ2

gr ≥ 1, where the equality holds if and only if gr is
Gaussian. Hence, the information matrix Γϑ,g is nonsingular if and only if at
most one IC is Gaussian. Actually, it can be shown that if exactly q ICs are
Gaussian, then the rank of Γϑ,g is p(p+ 1)− q(q − 1)/2 (an explicit expression
of the Moore-Penrose pseudo-inverse of Γϑ,g is readily obtained from (A.3) in
the Appendix).

This possible singularity of IC models is well-known. In standard ICA, i.e.,
in a point estimation context, it is actually assumed that at most one IC is
Gaussian, which guarantees identifiability (up to postmultiplication by some
permutation, sign-change, and scale matrices) of the mixing matrix Λ to be es-
timated; see, e.g., Theis (2004). The ULAN result above sheds some light on the
nature of this singularity in an asymptotic sense, in terms of Fisher informa-
tion matrices. In the problem of testing for multivariate independence however
(see Section 2.2 below), the parameter Λ need not be fully identified, and hav-
ing several Gaussian ICs does not hurt (for instance, testing for multivariate
independence at the multinormal model, where all ICs are Gaussian, clearly
makes sense). Still, a careful treatment of the possible singularity of Γϑ,g will
be required when studying the asymptotic properties of the proposed tests.
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2.2. Multivariate independence in IC models

Assume that the true model is the semiparametric IC model Pn above. As in

the Introduction, we partition the observations into Xi = (X
(1)′
i , X

(2)′
i )′, where

X
(�)
i is a p�-variate vector (� = 1, 2), and partition accordingly Zi, μ, and Λ into

(Z
(1)′
i , Z

(2)′
i )′, (μ′

1, μ
′
2)

′, and

(
Λ11 Λ12

Λ21 Λ22

)
,

respectively. We consider the problem of testing HIC
0 : Λ12 = Λ′

21 = 0 (under

which the subvectors X
(1)
i and X

(2)
i are independent) against the alternative

that at least one entry in Λ12 or Λ21 is non-zero. Clearly, the location vector μ,
the marginal null mixing matrices Λ�� (� = 1, 2), and the noise density g are
nuisance parameters.

Denoting by M(Ω) the vector space that is spanned by the columns of the
full-rank (p+ p2)× (p+ p21 + p22) matrix

Ω := diag
(
Ω1,Ω2

)
:= diag

(
Ip, diag

(
Ip1 ⊗ (Ip1

... 0p1×p2)
′, Ip2 ⊗ (0p2×p1

... Ip2)
′
))

,

(2.1)
the null can be written as HIC

0 : ϑ ∈ M(Ω)(∩Θ), hence imposes a set of linear
constraints on ϑ. This plays an important role in the sequel, as the form of
optimal (in the Le Cam sense) tests for linear constraints on the parameters of
ULAN models is well-known; see Section 3.1.

Clearly, ϑ is not specified under the null. As we will see in Section 3.1,
our parametric tests will be based on a sequence of estimators ϑ̂(n) = (μ̂(n)′,
(vec Λ̂(n))′)′ satisfying Assumption (B) below—the nonparametric ones actually
require slightly different estimators, satisfying Assumption (B′); see Section 4.2.

Assumption (B). The sequence (ϑ̂(n) = (μ(n)′, (vecΛ(n))′)′, n ∈ N) is

(i) constrained: Pn
ϑ,g

[
ϑ̂(n) ∈ M(Ω)

]
= 1 for all n, ϑ ∈ M(Ω), and g ∈ F ;

(ii) root-n consistent: for all ϑ ∈ M(Ω), n1/2(ϑ̂(n) − ϑ) = OP (1), as n → ∞,
under

⋃
g∈F Pn

ϑ,g;
(iii) affine-equivariant: for any invertible matrix A = diag(A11, A22), where

A�� is a p� × p� matrix (� = 1, 2), and any p-vector b,

μ̂(n)(AX1 + b, . . . , AXn + b) = Aμ̂(n)(X1, . . . , Xn) + b

and

Λ̂(n)(AX1 + b, . . . , AXn + b) = (AΛ̂(n)(X1, . . . , Xn))
◦,

where, for any invertible p× p matrix B, B◦ stands for the unique matrix
that can be obtained in Gp by postmultiplying B with permutation and/or
sign-change matrices.
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(iv) locally asymptotically discrete: for all ϑ ∈ M(Ω), and all c > 0, there exists

an M = M(c) > 0 such that the number of possible values of ϑ̂n in balls
of the form {t ∈ R

p(p+1) : n1/2‖t − ϑ‖ ≤ c} is bounded by M , uniformly
as n → ∞.

Assumption (B) is extremely mild; (B(i)) stresses that ϑ̂(n) should be ob-
tained by fitting the null model (typically by running two separate ICAs on

the subvectors X
(1)
i and X

(2)
i , i = 1, . . . , n). The rate required in (B(ii)) is the

regular one in ICA (see, e.g., Chen and Bickel (2006)). The (natural) affine-
equivariance of μ̂(n) and Λ̂(n) in Assumption (B(iii)) will guarantee the affine-
invariance of the proposed tests. Finally, Assumption (B(iv))—which is needed
for the parametric versions of our tests only (compare with Assumption (B′) in
Section 4.2)—is a purely technical requirement, with little practical implications
(for fixed sample size, any estimator indeed can be considered part of a locally
asymptotically discrete sequence). Most importantly, as far as the asymptotic

properties of our tests are concerned, it turns out that no best choice of ϑ̂(n)

does exist in the class of estimators satisfying Assumption (B) (or (B′)); we will
indeed show that the asymptotic behavior of our tests is not affected by this
choice (see however Section 6.1 for a discussion of finite-sample issues and a
recommended practical solution).

We end this section with the following important remark: the problem of

testing the nullH0, under whichX
(1)
i andX

(2)
i are independent, only imperfectly

translates, in the semiparametric IC model Pn, into that of testing HIC
0 : Λ12 =

Λ′
21 = 0. Indeed, whereas HIC

0 ⊂ H0 always holds, H0 ⊂ HIC
0 may fail to

hold at some noise densities g ∈ F ; an extreme example is the following: if

Zi = (Z
(1)′
i , Z

(2)′
i )′ is standard multinormal, Xi = OZi + μ has independent

subvectors X
(1)
i and X

(2)
i for any orthogonal matrix O and any p-vector μ.

More generally, the number of Gaussian ICs in each subvector plays a crucial
role in the non-equivalence between H0 and HIC

0 , which is thus clearly related
to the possible singularity of IC models.

Although the primary objective of this paper is to test the null H0 of mul-
tivariate independence, the main focus in the next sections will be on the null
HIC

0 , mainly because, as already mentioned, the form of optimal tests for the
latter is known in this ULAN setup. This implies, however, that the tests we
will derive for HIC

0 will have to be reevaluated when considered as tests for H0.
As we will see, our tests will also appear as excellent procedures for the null H0

of interest.

3. Optimal parametric tests

In this section, we build optimal tests for HIC
0 under the assumption that the

underlying noise density g is known to be some fixed f ∈ FULAN (this highly
unrealistic assumption will be relaxed later). We start with a definition of the
optimality concept that is considered in the paper and a reference to Le Cam
(1986) explaining how to define optimal tests in the present context. We then
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provide an explicit expression for the optimal test statistics and derive their
asymptotic distributions, both under the null and under sequences of contiguous
alternatives.

3.1. Local and asymptotic most stringency in ULAN models

Let Cα be the collection of α-level tests for some generic testing problem H0

versus H1. We say that the test φ� is most stringent in Cα if and only if
(i) φ� ∈ Cα and

(ii) sup
P∈H1

rφ�(P ) ≤ sup
P∈H1

rφ(P ), ∀φ ∈ Cα,

where rφ0(P ) := supφ∈Cα
EP [φ] − EP [φ0], P ∈ H1 is the so-called regret of φ0

at P (of course we regard here φ, φ0, and φ� as test functions taking values
in [0, 1]). In other words, a test is most stringent at level α if and only if it
minimizes the maximum (in P ∈ H1) lack of power (at P ) with respect to the
maximal power that can be achieved (at P ) by an α-level test.

Lucien Le Cam showed that when a ULAN result such as that of Proposi-
tion 2.1 holds at g = f , a locally and asymptotically most stringent test (see
Le Cam (1986), Section 10.9, for a precise definition of what is meant here by
“locally and asymptotically”) for a linear null hypothesis of the form H0 : ϑ ∈
M(Ω) in the fixed-f model Pn

f = {Pn
ϑ,f : ϑ ∈ Θ} rejects the null for large values

of
Qf := Q

(n)

ϑ̂,f
:=

(
Δ

(n)

ϑ̂,f

)′(
Γ−
ϑ̂,f

− Ω
(
Ω′Γϑ̂,fΩ

)−
Ω′

)
Δ

(n)

ϑ̂,f
, (3.1)

where ϑ̂ is an estimator satisfying Assumption (B(i)–(ii), (iv)) and where B−

denotes the Moore-Penrose pseudoinverse of B (that is, the unique matrix C
such that BCB = B, CBC = C, (BC)′ = BC, and (CB)′ = CB).

3.2. Optimal parametric tests for multivariate independence

It follows from the previous sections that a locally and asymptotically most
stringent test for HIC

0 in the parametric IC model Pn
f = {Pn

ϑ,f : ϑ ∈ Θ} rejects

the null for large values of the test statistic in (3.1), where Δ
(n)
ϑ,f and Γϑ,f are

respectively the central sequence and information matrix in Proposition 2.1 and
where Ω is the matrix in (2.1).

We now show that Qf can be rewritten under a simple explicit form, which

makes clear why Qf might detect some possible dependence between X
(1)
i

and X
(2)
i . First note that, since both Ω and Γϑ,f are block-diagonal and since

Ω1 = Ip,

Qf =
(
Δ

(n)

ϑ̂,f ;2

)′(
Γ−
ϑ̂,f ;2

− Ω2

(
Ω′

2Γϑ̂,f ;2Ω2

)−
Ω′

2

)
Δ

(n)

ϑ̂,f ;2
. (3.2)

For obvious reasons, the following result is crucial to obtain explicit expressions
for Qf .
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Lemma 3.1. Fix ϑ = (μ′, (vecΛ)′)′ ∈ M(Ω)∩Θ and f ∈ FULAN, and consider
the summation operator∑

r<>s

brs :=
∑
r∈S1

∑
s∈S2

(brs + bsr), S1 := {1, . . . , p1}, S2 := {p1 + 1, . . . , p}.

Then
Γ−
ϑ,f ;2 − Ω2

(
Ω′

2Γϑ,f ;2Ω2

)−
Ω′

2 =
(
Ip ⊗ Λ

)
Mf

(
Ip ⊗ Λ

)′
,

with Mf :=
∑

r<>s

(
αr,s(f) (ere

′
r ⊗ ese

′
s) + βr,s(f)(ere

′
s ⊗ ese

′
r)

)
, where we let

αr,s(f) :=
γr,s(f)

(1 + γ2
r,s(f))

2
=

1

4
and βr,s(f) :=

γ2
r,s(f)

(1 + γ2
r,s(f))

2
=

1

4

if both fr and fs are Gaussian, and

αr,s(f) :=
γr,s(f)

γr,s(f)γs,r(f)− 1
and βr,s(f) :=

−1

γr,s(f)γs,r(f)− 1
(3.3)

otherwise.

If fr and fs are Gaussian (with variance one, since f ∈ F), Ifr = 1/σ2
fr

=

1 = 1/σ2
fs

= Ifs , which explains that αr,s(f) and βr,s(f) then cannot be defined
through (3.3). In all other cases, γr,s(f)γs,r(f) < 1 (see the comments after
Proposition 2.1), so that the quantities in (3.3) are thus well-defined. Applying

Lemma 3.1 to (3.2) and writing Ẑi for Zi(ϑ̂) straightforwardly yields

Qf =
1

n

n∑
i,j=1

[
vec

(
ϕf

(
Ẑi

)
Ẑ ′
i − Ip

)]′
Mf

[
vec

(
ϕf

(
Ẑj

)
Ẑ ′
j − Ip

)]
.

Now, since the rows (hence also the columns) (� − 1)p + 1, . . . , (� − 1)p + p1
(� ∈ S1) and (� − 1)p + p1 + 1, . . . , (� − 1)p + p (� ∈ S2) of the symmetric
matrix Mf contain zeros only, we obtain that

Qf = T ′
ϑ̂,f

Mf Tϑ̂,f , with Tϑ,f :=
1√
n

n∑
i=1

vecd

(
ϕf

(
Zi(ϑ)

)
Z ′
i(ϑ)

)
, (3.4)

where the vecd operator is defined by

vecd

(
Λ11 Λ12

Λ21 Λ22

)
:=

[
Ip2 − Ω2Ω

′
2

]
vec

(
Λ11 Λ12

Λ21 Λ22

)
= vec

(
0 Λ12

Λ21 0

)
.

As Mf is symmetric and positive semidefinite, Qf can be interpreted as a
squared norm of the generalized cross-covariances n−1/2Tϑ̂,f between the es-

timated residuals Z
(1)
i (ϑ̂) and Z

(2)
i (ϑ̂). The word “generalized” stresses that

the residuals Zi(ϑ̂) are weighted by ϕf , which allows for achieving (local and
asymptotic) optimality at f . Note that, at the multinormal, those generalized
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cross-covariances boil down to the standard ones (see (3.6) below). This intu-
itive interpretation for Qf makes clear why HIC

0 should indeed be rejected for
large values of Qf .

Finally, denoting by Gϑ,f the p× p matrix defined by Tϑ,f = (vecGϑ,f ), the
structure of Mf implies that

Qf =
∑
r∈S1

∑
s∈S2

Qf ;r,s

:=
∑
r∈S1

∑
s∈S2

(
(Gϑ̂,f )sr
(Gϑ̂,f )rs

)′(
αr,s(f) βr,s(f)
βr,s(f) αs,r(f)

)(
(Gϑ̂,f )sr
(Gϑ̂,f )rs

)
. (3.5)

This decomposition of Qf into a sum of (asymptotically independent) quadra-
tic forms in ((Gϑ̂,f )sr, (Gϑ̂,f )rs)

′ is explained by the asymptotic independence

(under Pn
ϑ,f ) of the pairs ((Gϑ,f )sr, (Gϑ,f )rs)

′ (see Proposition 2.1); incidently,
note that these pairs would not be asymptotically independent in asymmet-
ric IC models, which would lead to much more complicated test statistics. If
both fr and fs are Gaussian, then (Gϑ,f )sr = (Gϑ,f )rs and αr,s(f) = αs,r(f) =
βr,s(f) = 1/4, so that

Qf ;r,s = ((Gϑ̂,f )rs)
2,

which, as we will show, is asymptotically χ2
1 under the null. In all other cases,

Qf ;r,s is asymptotically χ2
2 under the null. This explains that the number of

degrees of freedom in the asymptotic null distribution of Qf is d(f) := 2p1p2 −
q1(f)q2(f), where q�(f) is the number of Gaussian densities in {fr : r ∈ S�}
(� = 1, 2).

More precisely, we have the following result, which summarizes the asymp-
totic properties of the test based on Qf (below, χ2

d(δ) denotes the noncentral
chi-square distribution with d degrees of freedom and noncentrality parame-
ter δ).

Theorem 3.1. Let Assumptions (A) and (B) hold at g = f ∈ FULAN, and

denote by φf = φ
(n)
f the test that rejects HIC

0 as soon as Qf > χ2
d(f);1−α. Then,

(i) under ∪ϑ∈M(Ω){Pn
ϑ,f}, Qf is asymptotically χ2

d(f);

(ii) under Pn
ϑ+n−1/2τ,f

, with ϑ ∈ M(Ω) and τ /∈ M(Ω) (τ = (τ ′1, τ
′
2)

′ ∈ R
p ×

R
p2

), Qf is asymptotically χ2
d(f)(τ

′
2(Ip⊗Λ−1)′Hf (Ip⊗Λ−1)τ2), withHf :=∑

r<>s

(
γs,r(f)(ere

′
r ⊗ ese

′
s) + (ere

′
s ⊗ ese

′
r)

)
;

(iii) the sequence of tests φ
(n)
f is locally and asymptotically most stringent, at

asymptotic level α, for ∪ϑ∈M(Ω){Pn
ϑ,f} against ∪ϑ/∈M(Ω){Pn

ϑ,f}.

It is easy to check that, if ϑ̂ is affine-equivariant (in the sense of Assump-
tion (B(iii)), then Qf is affine-invariant.
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3.3. Two particular cases

Consider the case for which all ICs are Gaussian, that is, the multinormal case
(f = φ, say). Then q�(φ) = p� (� = 1, 2), αr,s(φ) = βr,s(φ) = 1/4 for all r, s,
ϕφ(z) = z, and

Tϑ,φ =
1√
n

n∑
i=1

vecd

(
Zi(ϑ)Z

′
i(ϑ)

)
, (3.6)

so that the corresponding test rejects HIC
0 at asymptotic level α as soon as

Qφ = T ′
ϑ̂,φ

Mφ Tϑ̂,φ = n
∥∥∥ 1

n

n∑
i=1

Ẑ
(1)
i Ẑ

(2)′
i

∥∥∥2

> χ2
p1p2;1−α. (3.7)

This test is valid at the multinormal only. Under finite second-order moments,
however, it can be robustified via some standard “studentization”, which actu-
ally yields—as we show in Section 5—a test that is asymptotically equivalent,
under the null (hence also under sequences of contiguous alternatives), to the
classical Wilks and Pillai tests of multivariate independence described in the
Introduction.

As a second particular case, we consider the test designed to be optimal
when the rth IC is tνr , r = 1, . . . , p. Denote by φν the corresponding p-variate
pdf. Assuming that νr > 2 for all r (which ensures that φν ∈ FULAN), one
easily checks that (with obvious notation) ϕφν,r (z) = (νr + 1)z/(σ2

νr
νr + z2),

σ2
φν,r

= σ2
νr
νr/(νr − 2), and Iφν,r = (νr + 1)/(σ2

νr
(νr + 3)), so that the resulting

optimal test statistic is given by

Qφν =
1

6n

∑
r∈S1

∑
s∈S2

κ(νr)κ(νs)

ν2r + ν2s + νr + νs − 6

{
νr(νr + 1)

(νr − 2)(νs + 3)

[ n∑
i=1

ŽirŽis

νr + Ž2
ir

]2

+
νs(νs + 1)

(νs − 2)(νr + 3)

[ n∑
i=1

ŽirŽis

νs + Ž2
is

]2

− 2

[ n∑
i=1

ŽirŽis

νr + Ž2
ir

][ n∑
i=1

ŽirŽis

νs + Ž2
is

]}
,

(3.8)

where we let Žir := Ẑir/σνr and κ(ν) := (ν − 2)(ν + 1)(ν + 3). Theorem 3.1
shows that, for all fixed ν1, . . . , νp > 2, the asymptotic null distribution of Qφν

(at φν) is χ2
2p1p2

. Quite interestingly, if one puts ν1 = . . . = νp = ν in (3.8)
and then lets ν go to infinity, the resulting (a.e.-)limit Qφ∞ differs from Qφ

in (3.7). Actually, writing v�3 := v � v � v, where � denotes the Hadamard
(i.e., componentwise) product, it can be shown that

Qφ∞ = Qφ +Qnew

:= n
∥∥∥ 1

n

n∑
i=1

Ẑ
(1)
i Ẑ

(2)′
i

∥∥∥2

+
n

12

∥∥∥ 1

n

n∑
i=1

(
Ẑ

(1)�3
i Ẑ

(2)′
i − Ẑ

(1)
i

(
Ẑ

(2)�3
i

)′)∥∥∥2

(3.9)
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and that the asymptotic null distribution ofQφ∞ at the multinormal is still χ2
2p1p2

(there, Qφ and Qnew asymptotically are independent χ2
p1p2

random variables).
In Section 5.2, we provide some insight about the relevance of the extra term
Qnew in Qφ∞ and on the reason why this term can safely be dropped without
affecting optimality at the multinormal.

4. Optimal signed-rank tests

The main drawback of the parametric tests φf above is their lack of robust-
ness, as they in general do not meet the asymptotic α-level constraint if the
noise density is misspecified. In this section, we robustify those tests by defining
asymptotically distribution-free (signed-rank-based) counterparts, and investi-
gate the properties of the resulting nonparametric tests.

4.1. Signed ranks and invariance

The signed ranks of the residuals Zi(ϑ) = Λ−1(Xi − μ), i = 1, . . . , n are the
quantities Si(ϑ) = (Si1(ϑ), . . . , Sip(ϑ))

′ and Ri(ϑ) = (Ri1(ϑ), . . . , Rip(ϑ))
′, i =

1, . . . , n, where Sir(ϑ) := I[Zir(ϑ)>0] − I[Zir(ϑ)<0] is the sign of Zir(ϑ) and where
Rir(ϑ) denotes the rank of |Zir(ϑ)| among |Z1r(ϑ)|, . . . , |Znr(ϑ)| (here, IA stands
for the indicator function of set A). When no ambiguity is possible, we will not
stress the dependence in ϑ.

Restricting to signed-rank tests (i.e., to tests that are measurable with respect
to the signed ranks of the residuals) is justified by standard invariance argu-
ments, which, in IC models, take the following form. Denote by H the collection
of transformations h of Rp defined by h((z1, . . . , zp)

′) = (h1(z1), . . . , hp(zp))
′,

where the functions hr, r = 1, . . . , p are continuous, odd, and monotone in-
creasing functions that fix (χ2

1;.5)
1/2 and +∞. For each ϑ = (μ′, (vecΛ)′)′ ∈ Θ,

consider then the group of componentwise monotone increasing transformations
(of (Rp)n) Gϑ =

{
gϑh : h ∈ H

}
, defined by

gϑh(X1 . . . , Xn) = (Λh(Z1(ϑ)) + μ, . . . ,Λh(Zn(ϑ)) + μ).

It is easy to check that the corresponding maximal invariant is the collection of
signed ranks (Si(ϑ), Ri(ϑ), i = 1, . . . , n).

Now, the null submodel with value ϑ of the parameter—that is, the fam-
ily Pn

ϑ := {Pn
ϑ,g : g ∈ F}, ϑ ∈ M(Ω)—is invariant under Gϑ. The invariance

principle therefore suggests restricting to tests that are measurable with re-
spect to the corresponding maximal invariants, i.e., restricting to signed-rank
tests. Since, moreover, Pn

ϑ is generated by Gϑ for each ϑ, signed-rank tests are
strictly distribution-free with respect to the noise density g (actually, since ϑ is to
be estimated, only asymptotic invariance—hence, also asymptotic distribution-
freeness—will be achieved).

In the discussion above, distribution-freeness is with respect to g ∈ F . Note
that distribution-freeness with respect to ϑ(∈ M(Ω)) will also follow from invari-
ance arguments; the relevant group of transformations, in this case, is the group
of affine transformations defined in the Introduction (see the top of page 2374).
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4.2. Componentwise signed-rank statistics

The proposed signed-rank statistics will involve score functions that must satisfy
the following assumption.

Assumption (C). The score functions K,L : (0, 1)p → R
p are of the form

K((u1, . . . , up)
′) = (K1(u1), . . . ,Kp(up))

′,

L((u1, . . . , up)
′) = (L1(u1), . . . , Lp(up))

′,

where Kr, Lr : (0, 1) → R, r = 1, . . . , p (i) are normalized in such a way that
E[Kr(U)Lr(U)] = 1, where U is uniformly distributed over (0, 1), and (ii) can be
expressed as the difference of two continuous monotonically increasing functions

(K = Kr+ −Kr+ and L = Lr+ − Lr+, say) with
∫ 1

0
(Kr±(u))

2+δ du < ∞ and∫ 1

0
(Lr±(u))

2+δ du < ∞ for some δ > 0.

Assumption (C) is needed for Hájek’s classical projection result for linear
signed-rank statistics, which actually only requires square-integrability of the
scores (see, e.g., Chapter 3 of Puri and Sen (1985)). As we will see in the proof
of Lemma 4.2 below, controlling the replacement of ϑ with an estimate however
requires the reinforcement of square-integrability into Assumption (C(ii)).

The (K,L)-score version of our tests will be based on the signed-rank statistic

T̃ϑ,K,L =
1√
n

n∑
i=1

vecd

((
Si(ϑ)�K

(Ri(ϑ)

n+ 1

))(
Si(ϑ)� L

(Ri(ϑ)

n+ 1

))′)
,

which clearly collects signed-rank cross-covariances between the Z
(1)
i (ϑ)’s and

the Z
(2)
i (ϑ)’s. Now, let G+ be the function defined by G+((z1, . . . , zp)

′) =
(G1+(z1), . . . , Gp+(zp))

′, where Gr+ stands for the cdf of |Z1r(ϑ)| under Pn
ϑ,g.

Since gr is symmetric, we have that Gr+(z) = 2Gr(z)−1 (hence, that G−1
r+(u) =

G−1
r (u+1

2 )), where Gr is the cdf of Z1r(ϑ) under P
n
ϑ,g. We then have the following

result.

Lemma 4.1. Let Assumptions (A) and (C) hold. Then, for any ϑ ∈ Θ and g ∈
F , E[‖T̃ϑ,K,L − Tϑ,K,L;g‖2] = o(1) as n → ∞, under Pn

ϑ,g, where, writing

|Zi(ϑ)| := (|Zi1(ϑ)|, . . . , |Zip(ϑ)|)′, we let Tϑ,K,L;g := n−1/2
∑n

i=1 vecd
((
Si �

K(G+(|Zi(ϑ)|))
)(
Si � L(G+(|Zi(ϑ)|))

)′)
.

Again, to obtain proper test statistics, appropriate estimators need be sub-
stituted for nuisance parameters. Actually, we will need to consider specific
centerings for each set of scores, or, more precisely, statistics of the form

T̃ϑ̂K ,ϑ̂L,K,L :=
1√
n

n∑
i=1

vecd

((
Si(ϑ̂K)�K

(Ri(ϑ̂K)

n+ 1

))(
Si(ϑ̂L)�L

(Ri(ϑ̂L)

n+ 1

))′)
,

where the estimators ϑ̂K := ϑ̂
(n)
K and ϑ̂L := ϑ̂

(n)
L fulfill
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Assumption (B
′
). The sequences (ϑ̂

(n)
K = (μ̂

(n)′
K , (vec Λ̂(n))′)′, n ∈ N) and

(ϑ̂
(n)
L = (μ̂

(n)′
L , (vec Λ̂(n))′)′, n ∈ N) satisfy Assumptions (B(i)–(iii)) and are such

that

(i) for all r,
∑n

i=1 Sir(ϑ̂
(n)
K )Kr

(Rir(ϑ̂
(n)
K )

n+1 ) and
∑n

i=1 Sir(ϑ̂
(n)
L )Lr

(Rir(ϑ̂
(n)
L )

n+1 ) are
o(n) in quadratic mean as n → ∞, under

⋃
ϑ∈M(Ω)

⋃
g∈F{Pn

ϑ,g}, and
(ii) μ̂

(n)
K , μ̂

(n)
L , and Λ̂(n) are invariant under permutations of the observations.

Assumption (B′(ii)) is extremely mild, but Assumption (B′(i)) may appear
quite peculiar. While estimators satisfying Assumptions (B′) are described in
Section 6, we point out that the latter assumption could actually be replaced
with the same Assumption (B) as for parametric tests, but at the expense of
second-order moment assumptions—the replacement of ϑ with a single estima-
tor ϑ̂(n) = (μ̂(n)′, (vec Λ̂(n))′)′ could indeed then be controlled through appro-
priate asymptotic linearity results, in the same way as in Lemma A.4(ii) (see
the Appendix) for the parametric tests, but this would require ULAN, hence
finite second-order moments. Since we want to avoid any moment assumption,
we rather adopt Assumption (B′), but the considerations above imply that, if

finite moments are not an issue, any estimator ϑ̂(n) satisfying Assumption (B)
can then be used in our signed-rank tests.

Jointly with Lemma 4.1, the following result then provides the key for defining
distribution-free counterparts to the parametric test φf introduced in Section 3.

Lemma 4.2. Let Assumptions (A), (B′), and (C) hold. Then for all ϑ ∈ M(Ω),
E[‖T̃ϑ̂K ,ϑ̂L,K,L − T̃ϑ,K,L‖2] = o(1) as n → ∞, under ∪g∈F{Pn

ϑ,g}.

4.3. Definition of the proposed tests

It directly follows from the representation result in Lemma 4.1 above that, for
any f ∈ FULAN, the signed-rank statistic T̃ϑ,f := T̃ϑ,Kf ,Lf

, with K = Kf :=

ϕf ◦F−1
+ and L = Lf := F−1

+ , is asymptotically equivalent in probability (under
Pn
ϑ,f ) to Tϑ,f (= Tϑ,Kf ,Lf ;f ). Hence, the test rejecting HIC

0 at asymptotic level α
as soon as

Q̃ϑ,f = T̃ ′
ϑ,f Mf T̃ϑ,f > χ2

d(f);1−α,

will inherit, under noise density f , the optimality properties of φf . However, un-
like φf , this signed-rank test is distribution-free under HIC

0 , hence has asymp-

totic level α under any noise density g ∈ F . Of course, the actual test (φ̃f ,

say) is based on Q̃f := T̃ ′
f Mf T̃f , with T̃f := T̃ϑ̂Kf

,ϑ̂Lf
,Kf ,Lf

, but we will show

(see Theorem 4.1) that this estimation of ϑ (i) does not affect optimality at
f and (ii) actually only weakens (strict) distribution-freeness into asymptotic
distribution-freeness (which is sufficient to ensure asymptotic level α under any
noise density g ∈ F).

More generally, the (K,L)-score version of the proposed signed-rank tests is
the test φ̃K,L that rejects HIC

0 for large values of

Q̃K,L := T̃ ′
ϑ̂K ,ϑ̂L,K,L

MK,L T̃ϑ̂K ,ϑ̂L,K,L,
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with MK,L :=
∑

r<>s

(
αr,s(K,L)(ere

′
r⊗ese

′
s)+βr,s(K,L)(ere

′
s⊗ese

′
r)

)
, where,

defining γr,s(K,L) = E[K2
r (U)]× E[L2

s(U)], we let

αr,s(K,L) :=
γr,s(K,L)

γr,s(K,L)γs,r(K,L)− 1
, βr,s(K,L) :=

−1

γr,s(K,L)γs,r(K,L)− 1

if γr,s(K,L)γs,r(K,L) > 1, and

αr,s(K,L) :=
γr,s(K,L)

(1 + γ2
r,s(K,L))2

and βr,s(K,L) :=
γ2
r,s(K,L)

(1 + γ2
r,s(K,L))2

if γr,s(K,L)γs,r(K,L) = 1 (which, in view of Assumption (C(i)), is the case
if and only if Lr(u) = Kr(u)/E[K

2
r (U)] and Ls(u) = Ks(u)/E[K

2
s (U)] for all

u ∈ (0, 1)). Since φ̃Kf ,Lf
= φ̃f , the tests φ̃K,L extend the f -score ones defined

above.
The nonparametric tests φ̃K,L are to be interpreted in the same way as the

parametric ones from Section 3: they reject the null of multivariate independence
when the norm of some cross-covariance matrix — in this case, the signed-rank
one n−1/2T̃ϑ̂K ,ϑ̂L,K,L — is too large.

4.4. Some particular cases

Before stating the asymptotic properties of φ̃K,L, we first consider some partic-
ular cases. We start with the important particular case for which there exist λr,
r = 1, . . . , p such that Lr(u) = λrKr(u) for all u ∈ (0, 1) (note that Assump-

tion (C(i)) then implies that λr = 1/E[K2
r (U)]). One can then take ϑ̂

(n)
K = ϑ̂

(n)
L ,

and it can be checked that

Q̃K,L = n‖C̃K‖2, (4.1)

where (with obvious notation)

C̃K =
1

n

n∑
i=1

(
Ŝ
(1)
i � K̄(1)

( R̂
(1)
i

n+ 1

))(
Ŝ
(2)
i � K̄(2)

( R̂
(2)
i

n+ 1

))′
, (4.2)

where the p-variate score function K̄ is obtained from K by replacing Kr with
K̄r = Kr/(E[K

2
r (U)])1/2, r = 1, . . . , p; this shows that Q̃K,L then has the simple

structure of the Puri and Sen (1971) test statistics. However, we point out that
the tests based on Q̃K,L, unlike the Puri and Sen ones, are affine-invariant.

Three classical score functions and corresponding tests are of this type. (i)
Sign tests are obtained for constant score functions (K̄r(u) = 1 for all r). The
resulting test statistic is

Q̃S := n‖C̃S‖2, with C̃S :=
1

n

n∑
i=1

Ŝ
(1)
i Ŝ

(2)′
i . (4.3)
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(ii)Wilcoxon-type tests are associated with linear score functions (K̄r(u) =
√
3u

for all r) and reject HIC
0 for large values of

Q̃W := n‖C̃W ‖2, with C̃W :=
3

n(n+ 1)2

n∑
i=1

(
Ŝ
(1)
i � R̂

(1)
i

)(
Ŝ
(2)
i � R̂

(2)
i

)′
. (4.4)

(iii) Gaussian scores—K̄r(u) = Φ−1
+ (u) = Φ−1(u+1

2 ) for all r, where Φ stands
for the cdf of the standard normal distribution—yield the van der Waerden test
statistic

Q̃vdW := n‖C̃vdW‖2, (4.5)

with C̃vdW :=
1

n

n∑
i=1

(
Ŝ
(1)
i � Φ−1

+

( R̂
(1)
i

n+ 1

))(
Ŝ
(2)
i � Φ−1

+

( R̂
(2)
i

n+ 1

))′
.

It is easy to check that Q̃vdW coincides with the signed-rank test statistic Q̃φ

achieving optimality at the multinormal (that is, that based on the score func-
tions Kf = ϕf ◦ F−1

+ and Lf = F−1
+ , with f = φ). The resulting van der

Waerden test is therefore the distribution-free counterpart to the Gaussian test
based on (3.7).

As shown in Theorem 4.1 below, Q̃vdW = Q̃φ—as Q̃S and Q̃W—is asymp-
totically χ2

p1p2
under the null. For any other noise density f , however, the non-

parametric test statistic achieving optimality at f , namely Q̃f , gives rise to a
larger number of degrees of freedom (and to a more complicated structure than
that of (4.1)–(4.2)). As an example, we consider the nonparametric counterpart
Q̃φν to Qφν in (3.8), that is, the signed-rank test statistic designed to achieve
optimality when the rth IC is tνr , r = 1, . . . , p. Letting

T K
ir := Ŝir(ϑ

(n)
Kφν

)

√
F−1
1,νr

( R̂ir(ϑ
(n)
Kφν

)

n+1

)
and T L

ir := Ŝir(ϑ
(n)
Lφν

)

√
F−1
1,νr

( R̂ir(ϑ
(n)
Lφν

)

n+1

)
,

where F1,ν stands for the cdf of the Fisher-Snedecor distribution with 1 and ν
degrees of freedom, it is easy to show that

Q̃φν =
1

6n

∑
r∈S1

∑
s∈S2

κ(νr)κ(νs)

ν2r + ν2s + νr + νs − 6

{
νr(νr + 1)

(νr − 2)(νs + 3)

[ n∑
i=1

T K
ir T L

is

νr + (T K
ir )2

]2

+
νs(νs + 1)

(νs − 2)(νr + 3)

[ n∑
i=1

T L
ir T K

is

νs + (T K
is )2

]2

− 2

[ n∑
i=1

T K
ir T L

is

νr + (T K
ir )2

][ n∑
i=1

T L
ir T K

is

νs + (T K
is )2

]}
, (4.6)

which (see again Theorem 4.1 below) is asymptotically χ2
2p1p2

under HIC
0 (irre-

spective of the underlying noise density g ∈ F).
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4.5. Asymptotic properties of the proposed signed-rank tests

Lemma 4.1 implies that, at noise density g, T̃ϑ,K,L and Tϑ,K,L;g have the same
asymptotic behavior under the null, hence also under sequences of contiguous
alternatives. Unlike T̃ϑ,K,L, the random variable Tϑ,K,L;g is a sum of i.i.d. terms,
hence can be studied easily. Defining

HK,L :=
∑
r<>s

(
γs,r(K,L)(ere

′
r ⊗ ese

′
s) + (ere

′
s ⊗ ese

′
r)

)
and

HK,L;g :=
∑
r<>s

(
δs,r(K,L; g)(ere

′
r ⊗ ese

′
s) + δr,s(L,K; g)(ere

′
s ⊗ ese

′
r)

)
, (4.7)

where we let δr,s(K,L; g) = E[Kr(U)ϕgr (G
−1
r+(U))]×E[Ls(U)G−1

s+(U)], standard
arguments (mainly Le Cam’s third lemma) then yield the following lemma (see
the Appendix for the proof).

Lemma 4.3. Let Assumptions (A) and (C) hold. Then, for any ϑ ∈ Θ, T̃ϑ,K,L

is asymptotically normal with mean zero and mean HK,L;g(Ip ⊗ Λ−1)τ2 un-

der Pn
ϑ,g (g ∈ F) and under Pn

ϑ+n−1/2τ,g
(τ = (τ ′1, τ

′
2)

′ ∈ R
p × R

p2

, g ∈ FULAN),

respectively, and covariance matrix HK,L under both.

Now, let d(K,L) := 2p1p2 − q1(K,L)q2(K,L), where q�(K,L), � = 1, 2 is the
number of indices r ∈ S� (see Lemma 3.1 for the definition of S�) such that
Lr = Kr/E[K

2
r (U)]. We can then state the main theorem of this paper.

Theorem 4.1. Let Assumptions (A), (B′), and (C) hold, and denote by φ̃K,L =

φ̃
(n)
K,L the test that rejects HIC

0 as soon as Q̃K,L > χ2
d(K,L);1−α. Then,

(i) under ∪ϑ∈M(Ω) ∪g∈F {Pn
ϑ,g}, Q̃K,L is asymptotically χ2

d(K,L);

(ii) under Pn
ϑ+n−1/2τ,g

, with ϑ ∈ M(Ω), τ = (τ ′1, τ
′
2)

′ /∈ M(Ω), and g ∈ FULAN,

Q̃K,L is asymptotically χ2
d(K,L)(τ

′
2(Ip⊗Λ−1)′H ′

K,L;gMK,LHK,L;g(Ip⊗Λ−1)τ2);

(iii) for any f ∈ FULAN, the sequence of tests φ̃
(n)
f = φ̃

(n)
Kf ,Lf

is locally and
asymptotically most stringent, at asymptotic level α, for ∪ϑ∈M(Ω) ∪g∈F
{Pn

ϑ,g} against ∪ϑ/∈M(Ω){Pn
ϑ,f}.

Three comments are in order. First, Part (i) of the result confirms that
the asymptotic null distribution of the proposed nonparametric test statistics
only depends on the adopted score functions K and L; the resulting asymp-
totic distribution-freeness in particular is not affected by the (typically un-
known) number of underlying Gaussian marginals. Second, since HKf ,Lf ;f =
HKf ,Lf

= Hf actually is the Moore-Penrose pseudoinverse of MKf ,Lf
= Mf

(see Lemma A.6 in the Appendix), the local asymptotic powers of φ̃f under
noise density f coincide with those of φf in Theorem 3.1 (as expected, since
both tests share the same local and asymptotic optimality properties at f).
Third, we stress once more that, unlike the Puri and Sen (1971) tests, our
signed-rank tests—when based on affine-equivariant estimators in the sense of
Assumption (B(iii))—are affine-invariant.
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5. Wilks’ and Pillai’s tests in IC models and AREs

As mentioned in the Introduction, the most classical parametric tests for mul-
tivariate independence are the Wilks (1935) and Pillai (1955) tests in (1.2)
and (1.3), respectively. In this section, we first investigate the asymptotic prop-
erties of these tests in IC models, and then evaluate the performances of our
signed-rank tests by computing their asymptotic relative efficiencies (AREs)
with respect to those classical benchmarks.

5.1. Wilks’ and Pillai’s tests in IC models

Writing S = Ip + (S − Ip) and S�� = Ip + (S�� − Ip), � = 1, 2, in (1.2) and
performing a Taylor expansion, it can be shown that (we use the same notation
as in the Introduction)

W = P + oP (1) = n
(
vecS12

)′
(Σ22 ⊗ Σ11)

−1
(
vecS12

)
+ oP (1) (5.1)

as n → ∞, under any null distribution with finite second-order moments,
where Σ = diag(Σ11,Σ22) stands for the common population covariance ma-
trix of the Xi’s. For any g in the collection F2 of noise densities in F with
finite second-order moments, define Sg := diag(σ2

g1 , . . . , σ
2
gp). In the IC model

under consideration, Σ, at Pn
ϑ,g, with ϑ ∈ M(Ω) and g ∈ F2, is given by

Σϑ,g = diag(Σϑ,g;11,Σϑ,g;22) = ΛSgΛ
′ = diag(Λ11S

(1)
g Λ′

11,Λ22S
(2)
g Λ′

22) (with ob-
vious notation). Direct computations yield that, under Pn

ϑ,g, still with ϑ ∈ M(Ω)
and g ∈ F2, hence also under sequences of contiguous alternatives,

W = n
∥∥∥(S(2)

g ⊗ S(1)
g )−1/2 1

n

n∑
i=1

vec
(
Z

(1)
i (ϑ)Z

(2)′
i (ϑ)

)∥∥∥2

+ oP (1)

= n
∥∥∥(S(1)

g )−1/2
( 1

n

n∑
i=1

Z
(1)
i (ϑ)Z

(2)′
i (ϑ)

)
(S(2)

g )−1/2
∥∥∥2

+ oP (1) (5.2)

= T ′
ϑ,φ,g Mφ Tϑ,φ,g + oP (1) (5.3)

as n → ∞, where we let Tϑ,φ,g := n−1/2
∑n

i=1 vecd
(
S
−1/2
g Zi(ϑ)Z

′
i(ϑ)S

−1/2
g

)
.

The fact that W is equal to (5.2) now makes clear why Wilks’ test can be
regarded as a robustified version of the parametric Gaussian test in (3.7). The
following result summarizes the asymptotic properties of Tϑ,φ,g.

Lemma 5.1. Let Assumption (A) hold, and define Hφ;g :=
∑

r<>s

(σgr

σgs
(ere

′
r⊗

ese
′
s) +

σgs

σgr
(ere

′
s ⊗ ese

′
r)

)
for any g ∈ F2. Then, for any ϑ ∈ Θ, Tϑ,φ,g is asymp-

totically normal with mean zero and mean Hφ;g(Ip⊗Λ−1)τ2 under P
n
ϑ,g (g ∈ F2)

and under Pn
ϑ+n−1/2τ,g

(τ = (τ ′1, τ
′
2)

′ ∈ R
p × R

p2

, g ∈ FULAN), respectively, and

covariance matrix Hφ under both.

The asymptotic properties of Wilks’ test (hence, also of Pillai’s; see (5.1)) in
IC models easily follow from (5.3) and Lemma 5.1.
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Theorem 5.1. Let Assumption (A) hold, and denote by φWilks = φ
(n)
Wilks the

test that rejects HIC
0 as soon as W > χ2

p1p2;1−α. Then,

(i) under ∪ϑ∈M(Ω) ∪g∈F2 {Pn
ϑ,g}, W is asymptotically χ2

p1p2
;

(ii) under Pn
ϑ+n−1/2τ,g

, with ϑ ∈ M(Ω), τ = (τ ′1, τ
′
2)

′ /∈ M(Ω), and g ∈ FULAN,

W is asymptotically χ2
p1p2

(τ ′2(Ip ⊗ Λ−1)′H ′
φ;gMφHφ;g(Ip ⊗ Λ−1)τ2);

(iii) the sequence of tests φ
(n)
Wilks is locally and asymptotically most stringent,

at asymptotic level α, for ∪ϑ∈M(Ω) ∪g∈F2 {Pn
ϑ,g} against ∪ϑ/∈M(Ω){Pn

ϑ,φ}.

This also shows that Wilks’ test does not require finite fourth-order moments
(as it is often stated), but second-order ones only; this follows from (5.1) and
the fact that, unlike

√
n vec(S−Σ),

√
n(vecS12) is asymptotically normal under

the null as soon as the common distribution of the Xi’s has a finite covariance
matrix.

5.2. Asymptotic relative efficiencies

We here compare the performances of the proposed signed-rank tests φ̃K,L

with Wilks’ (equivalently, with Pillai’s) through asymptotic relative efficien-
cies (AREs). If the score functions K,L are such that d(K,L) = p1p2, these
AREs are simply obtained from Theorems 4.1 and 5.1 by computing the ra-
tios of the noncentrality parameters in the asymptotic non-null distributions
of φ̃K,L and φWilks. If d(K,L) > p1p2, however, the degrees of freedom in the

limiting distributions of φ̃K,L and φWilks do not match and a direct use of the
ratio of the noncentrality parameters is no longer valid. We then use the exten-
sion of the concept of Pitman ARE to cases where the limiting distributions of
the competing tests are of different types; see Nyblom and Mäkeläinen (1983)
and Möttönen, Hüsler and Oja (2003). In such a case, the resulting relative
efficiency may depend on the common asymptotic level α and power β of the
tests. The general result is the following.

Proposition 5.1. Let Assumptions (A), (B′), and (C) hold, and fix ϑ ∈ M(Ω),
τ = (τ ′1, τ

′
2)

′ /∈ M(Ω), and g ∈ FULAN. Then, when testing Pn
ϑ,g against

Pn
ϑ+n−1/2τ,g

, the ARE of φ̃K,L with respect to φWilks is given by

AREϑ,τ,g

[
φ̃K,L/φWilks

]
=

cα,βp1p2

cα,βd(K,L)

τ ′2(Ip ⊗ Λ−1)′H ′
K,L;gMK,LHK,L;g(Ip ⊗ Λ−1)τ2

τ ′2(Ip ⊗ Λ−1)′H ′
φ;gMφHφ;g(Ip ⊗ Λ−1)τ2

, (5.4)

where α (resp., β) is the common asymptotic size (resp., power) of the tests

and where cα,βk is the value of the noncentrality parameter δ such that the β
upper-quantile of the χ2

k(δ) distribution is χ2
k;1−α.

To present some numerical values of these AREs, we consider the generic
bivariate case (p1 = p2 = 1) for which ϑ = (μ′, (vecΛ)′)′ and τ = (t′, (vecD)′)′,



2394 H. Oja et al.

Table 1

AREs with respect to Wilks’ test, under type 1 alternatives (see (5.5)) with various error
densities of the form z = (z1, z2)′ �→ g(z) = g1(z1)g2(z2), of the sign (φ̃S), Wilcoxon (φ̃W ),
van der Waerden (φ̃vdW) signed-rank tests, and of the signed-rank tests (φ̃t3 , φ̃t5 , φ̃t8)

achieving optimality when both ICs are tν , with ν = 3, 5, and 8, respectively.

g2
g1 t3 t5 t8 N
t3 0.657 0.608 0.595 0.581

φ̃S t5 0.519 0.495 0.468
t8 0.467 0.438
N 0.405
t3 1.299 1.211 1.186 1.161

φ̃W t5 1.070 1.032 0.996
t8 0.992 0.953
N 0.912
t3 1.357 1.245 1.216 1.199

φ̃vdW t5 1.106 1.072 1.053
t8 1.038 1.019
N 1.000
t3 1.222 1.043 0.993 0.953

φ̃t3 t5 0.872 0.828 0.798
t8 0.787 0.761
N 0.737
t3 1.163 1.051 1.020 0.997

φ̃t5 t5 0.916 0.882 0.859
t8 0.848 0.825
N 0.801
t3 1.130 1.035 1.010 0.993

φ̃t8 t5 0.913 0.883 0.863
t8 0.852 0.831
N 0.809

with arbitrary μ, t ∈ R
2, Λ = I2, and either

D =

(
0 σg1/σg2

σg2/σg1 0

)
(type 1 alternatives) (5.5)

or

D =

(
0 σg1/σg2

−σg2/σg1 0

)
(type 2 alternatives); (5.6)

the rescaling inD ensures that the resulting AREs do not depend on the variance
of the ICs. Table 1 provides, for type 1 alternative sequences, numerical values
of the AREs, with respect to Wilks’ test and under various distributions of the
ICs, for the following six signed-rank tests: (i) the sign test φ̃S based on (4.3), (ii)
the Wilcoxon test φ̃W based on (4.4), (iii) the van der Waerden test φ̃vdW based
on (4.5), and (iv)-(vi) the tests φ̃tν , ν = 3, 5, 8 based on (4.6) with ν1 = ν2(=: ν),
which achieve optimality when both ICs are tν . These last three tests do not
have the same limiting null distribution as Wilks’ (under the null, their statistics
are asymptotically χ2

2, whereas Wilks’ is asymptotically χ2
1); their AREs with

respect to Wilks’ test were then evaluated from Proposition 5.1 with α = 5%
and β = 80%.
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Table 1 shows that, while the sign test is poorly efficient, the Wilcoxon and
van der Waerden tests behave uniformly very well. This is actually an illustration
of the following general result.

Proposition 5.2. Let Assumptions (A), (B′), and (C) hold. Consider a signed-
rank test φ̃K,L with d(K,L) = p1p2 (equivalently, with Lr = Kr/E[K

2
r (U)] for

all r = 1, . . . , p), and fix ϑ =: (μ′, (vecΛ)′)′, τ =: (t′, (vecD)′)′, and g ∈ FULAN.
Then,

(i) letting B := S
−1/2
g Λ−1DS

1/2
g and ar,s(K̄; g) :=

σgr

σgs
δr,s(K̄, K̄; g), we have

AREϑ,τ,g

[
φ̃K,L/φWilks

]
=

∑
r∈S1

∑
s∈S2

(
ar,s(K̄; g)Brs + as,r(K̄; g)Bsr

)2∑
r∈S1

∑
s∈S2

(Brs +Bsr)2
, (5.7)

where K̄, δr,s, and Sg were defined in Sections 4.4, 4.5, and 5.1, respec-
tively.

(ii) the Wilcoxon test φ̃W and the van der Waerden test φ̃vdW satisfy

inf
ϑ,τ,g

AREϑ,τ,g

[
φ̃W /φWilks

]
=

81π8

220
≈ .733

and

inf
ϑ,τ,g

AREϑ,τ,g

[
φ̃vdW/φWilks

]
= 1,

where the infima are taken over all ϑ, τ ∈ R
p+p2

and g ∈ FULAN for which
the corresponding B is symmetric. Moreover, for φ̃vdW, the lower bound
is reached if and only if all ICs are Gaussian.

Part (ii) of this result establishes the very good uniform efficiency properties
of our Wilcoxon and—overall—of our van der Waerden signed-rank tests, under
type 1 alternatives (this restriction is associated with the symmetry of B in
Proposition 5.2(ii)). Such uniform efficiency results, for location problems, were
first derived in Hodges and Lehmann (1956) and Chernoff and Savage (1958),
for Wilcoxon scores and van der Waerden scores, respectively. As for Part (i),
it provides, for arbitrary sequences of alternatives and any dimensions p1 and
p2, a very simple expression for the AREs of our Puri and Sen type signed-rank
tests (the ones based on (4.1)–(4.2)) with respect to Wilks’.

Unfortunately, such a simple expression does not exist for the other proposed
signed-rank tests, namely those for which d(K,L) > p1p2. To give some insight
on the AREs of the latter with respect to Wilks’ test, we consider the AREs,
under identically distributed ICs (with common pdf g1, say), of the signed-rank
test (φ̃f1 , say) designed to achieve optimality when both ICs share some (non-
Gaussian) pdf f1 (we may safely exclude the case for which f1 is Gaussian since
the resulting test, namely φ̃vdW, is then of the Puri and Sen type). Lengthy
yet straightforward calculations yield that, under the bivariate type j (j=1,2)
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alternatives in (5.5)–(5.6), we have

ARE
(j)
ϑ,τ,g1

[
φ̃f1/φWilks

]
=

cα,β1

cα,β2

2(If1,g1σ2
f1,g1

+ sjLf1;g1Lg1;f1)
2/(If1σ2

f1
+ sj)

(1 + sj)2
,

(5.8)
with s1 := 1, s2 := −1, If1,g1 := E[ϕf1(F

−1
1+ (U))ϕg1(G

−1
1+(U))], σ2

f1,g1
:=

E[F−1
1+ (U)G−1

1+(U)], and Lf1;g1 := E[ϕf1(F
−1
1+ (U))G−1

1+(U)] (in (5.8), we stick
to the same numerator/denominator structure as in (5.4), and we allow for zero
noncentrality parameters in the denominator, with obvious interpretation). In
particular, at g1 = f1, we simply have

ARE
(j)
ϑ,τ,f1

[
φ̃f1/φWilks

]
=

cα,β1

cα,β2

2(If1σ2
f1

+ sj)

(1 + sj)2
, j = 1, 2, (5.9)

which, when f1 is the pdf of the tν distribution (with ν > 2, so that ULAN
holds), gives

ARE
(j)
ϑ,τ,tν

[
φ̃tν/φWilks

]
=

cα,β1

cα,β2

2(1 + sj) +
12

(ν−2)(ν+3)

(1 + sj)2
, j = 1, 2. (5.10)

For type 1 alternatives, it is clear that, since cα,β1 < cα,β2 for all α, β, the AREs
in (5.10) are strictly smaller than one for large ν (e.g., if α = .05 and β = .80,
these AREs are .916 and .852 for ν = 5 and ν = 8, respectively; see Table 1),
so that Wilks’ test asymptotically dominates, when both ICs are tν , the signed-
rank test that is optimal under such conditions. This of course is puzzling at
first sight. However, our concept of optimality, namely most stringency (see
Section 3.1), clearly does not imply that the optimal tests are most powerful
under all alternatives, but only that their lack of power with respect to the best
test for any fixed alternative is minimal. What occurs in the AREs (5.8)–(5.10)
is totally in line with most stringency: our optimal tests φ̃f1 (f1 non-Gaussian)
pay a price in terms of efficiency along type 1 alternatives (which allows for the
superiority of Wilks’ there) in order to gain some power along type 2 alternatives,
where the local asymptotic powers of Wilks’ are equal to the nominal level α.
The AREs of the optimal tests φ̃f1 (f1 non-Gaussian) with respect to Wilks’
under (non-Gaussian) Type 2 alternatives may then be considered as being
infinite; see (5.8)–(5.10) again.

Note that Cov[X1, X2] = 0 under type 2 alternatives, which explains why
such alternatives are more difficult to detect than those of type 1. At the multi-
normal, X1 and X2 are then independent, and type 2 “alternatives” actually
belong to the null; hence, optimal tests at the multinormal model can concen-
trate on being most powerful along type 1 alternatives. That is exactly what
Wilks’ test and our van der Waerden test φ̃vdW do. Away from the multinormal,
however, tests with more degrees of freedom are needed to discriminate between
the null and type 2 alternatives. This also explains why, in Qφ∞ (see (3.9)), the
term Qnew, which is the limit (as ν → ∞) of a quadratic form allowing to de-
tect type 2 alternatives, may be dropped without affecting optimality at the
multinormal model.
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6. Practical implementation

The practical implementation of our parametric tests (resp., of our nonpara-

metric tests) crucially relies on the existence of an estimator ϑ̂(n) = (μ̂(n)′,
(vec Λ̂(n))′)′ satisfying Assumption (B) (resp., the existence of a couple of esti-

mators ϑ̂
(n)
K = (μ̂

(n)′
K , (vec Λ̂(n))′)′ and ϑ̂

(n)
L = (μ̂

(n)′
L , (vec Λ̂(n))′)′ satisfying As-

sumption (B′)). Also, our nonparametric tests turn out to be strongly affected,
when d(K,L) > p1p2, by the slow convergence of our test statistics to their
limiting distributions. This section discusses these issues and provides practical
solutions.

6.1. Estimation of ϑ

As stated in Theorems 3.1 and 4.1, the asymptotic properties of our tests do
not depend on the choice of ϑ̂, ϑ̂K , and ϑ̂L (we drop superscripts (n) in this
section); still, their finite-sample properties may be affected by this choice. Here,
we suggest using a particular class of practical estimates that are robust and
easy to implement.

To describe conveniently these estimates, we define Gunit
k as the collection of

matrices Λ ∈ Gk for which each column has Euclidean norm one, and consider
the k-dimensional IC model

X = ΛZ + μ, (6.1)

where μ ∈ R
k, Λ ∈ Gunit

k , and Z(
D
= −Z) has independent marginals (ICs). Note

that the ICs are not standardized in (6.1), but that the requirement Λ ∈ Gunit
k

(rather than just Λ ∈ Gk) plays the same role in the mutual identification of Λ
and (the distribution of) Z as the standardization of Z in the IC models from
Section 2.1.

Consider then two k-variate scatter matrix functionals Sa and Sb (recall that,
if FX is the cdf of a k-variate random vector X, a scatter matrix functional S is
a k×k matrix-valued functional such that S(FX) is positive definite, symmetric,
and affine-equivariant in the sense that S(FAX+b) = AS(FX)A′ for any k × k
invertible matrix A and any k-vector b). If X comes from the IC model (6.1),
the affine-equivariance of Sa and Sb entails that (see also (7) in Nordhausen,
Oja and Paindaveine (2009))

Sb(FX)(Sa(FX))−1Λ = ΛD, (6.2)

where D := Sb(FZ)(Sa(FZ))
−1. Since D is diagonal (this follows from the in-

dependence and the symmetry of the marginals of Z; see Theorem 7 in Tyler
et al. (2009)), the columns of Λ are made of eigenvectors of Sb(FX)(Sa(FX))−1;
here the order, signs, and norms of these eigenvectors are fixed by the require-
ment Λ ∈ Gunit

k .

Of course, the resulting estimator Λ̂ is obtained by replacing Sa and Sb with
root-n consistent estimates Ŝa and Ŝb in (6.2). Actually, one should not bother
too much about signs and norms of the columns of Λ̂ since our tests are in-
variant under reflections (about zero) and rescaling of the estimated ICs (which
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explains that we may safely consider here the IC model in (6.1) rather than
the one in Section 2.1). However, if they involve score functions (Kr, Lr, say, to
adopt the notation used in our nonparametric tests) that are not homogeneous
across components (i.e., that depend on r), then our tests are not invariant
under permutations of the estimated ICs, and it is crucial to order the score
functions Kr, Lr so that the ordering matches that of the underlying ICs (note
that failing to achieve this matching would actually affect only local powers and
optimality properties of our tests, but not their asymptotic validity). Typically,
if the score functions are the ones allowing to achieve optimality at f ∈ F (i.e.,
are given by Kf , Lf ), then one way to achieve this matching is to reorder the
score functions (equivalently, the marginal densities fr of f) so that the diagonal
entries of Sb(Ff )S

−1
a (Ff ) (where Ff denotes the cdf associated with f) have the

same vector of ranks as of the diagonal entries of the matrix D̂ordered defined
through ŜbŜ

−1
a Λ̂ = Λ̂ D̂ordered (with Λ̂ ∈ Gunit

k ).

Now, if 2 ≤ q < k ICs are identically distributed, the corresponding q eigen-
values of Sb(FX)(Sa(FX))−1 do coincide, which implies that only the subspace
of those q ICs can be recovered through (6.2) but not the individual ICs them-
selves; in such cases, our tests are not valid, unless those q ICs are Gaussian—
see Nordhausen, Oja and Paindaveine (2009) for a discussion. However, if one
feels that excluding (non-Gaussian) identically distributed ICs is too much of
an assumption, then it is always possible to resort to another estimator of Λ
in the literature; but we feel that the estimators we propose in this section are
not only easy to compute in practice, but are also very well in line with the
nonparametric sign-and-rank spirit of our tests (see the practical estimators we
propose below).

Focusing on the problem of testing for independence, we consider the null
model (Assumption (B(i)) indeed states that ϑ̂ (or ϑ̂K/ϑ̂L) should be obtained
by fitting the null model)

(
X

(1)
i

X
(2)
i

)
=

(
Λ11Z

(1)
i

Λ22Z
(2)
i

)
+

(
μ1

μ2

)
, i = 1, . . . , n, (6.3)

where the marginals of the i.i.d. noise inputs Zi = (Z
(1)′
i , Z

(2)′
i )′, i = 1, . . . , n

are independent and symmetric about the origin (again, adopting the require-
ment Λ ∈ Gunit

p or rather standardizing noise inputs does not affect the behavior
of our tests, so that one may here adopt the IC model he/she is most comfort-
able with). By using, for each � = 1, 2, two different p�-variate scatter matrix

estimates Ŝ
(�)
a and Ŝ

(�)
b , we can as above define (separately) estimators Λ̂�� based

on X
(�)
i , i = 1, . . . , n. The estimator we then propose for ϑ = (μ′, (vecΛ)′)′ is

ϑ̂ = (μ̂′, (vec Λ̂)′)′, with

μ̂ =

(
μ̂1

μ̂2

)
=

(
Λ̂11T̂

(1)(Λ̂−1
11 X

(1)
1 , . . . , Λ̂−1

11 X
(1)
n )

Λ̂22T̂
(2)(Λ̂−1

22 X
(2)
1 , . . . , Λ̂−1

22 X
(2)
n )

)
and Λ̂ = diag(Λ̂11, Λ̂22),

(6.4)
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where T̂ (�), � = 1, 2, is some p�-variate location estimator obtained by computing
in a componentwise fashion a univariate (equivariant) location estimator T̂ .

Provided that Ŝ
(�)
a , Ŝ

(�)
b , and T̂ (�) (� = 1, 2) are root-n consistent, this es-

timator ϑ̂ then clearly fulfills Assumptions (B(i)–(iii)); note that, in relation
with (B(iii)), the transformed data set(

Ẑ
(1)
i

Ẑ
(2)
i

)
=

(
Λ̂−1
11 (X

(1)
i − μ̂1)

Λ̂−1
22 (X

(2)
i − μ̂2)

)
, i = 1, . . . , n

is then invariant under the transformation z → Az + b for any p× p invertible
matrix A = diag(A11, A22) and any p-vector b. After appropriate discretization,

the estimator ϑ̂ therefore satisfies Assumption (B), hence can be used in the
parametric tests of Section 3.

Our nonparametric tests of Section 4 however require a couple of estima-
tors ϑ̂K = (μ̂′

K , (vec Λ̂)′)′ and ϑ̂L = (μ̂′
L, (vec Λ̂)

′)′ satisfying Assumption (B′).

While one can use the same estimator Λ̂ as above, we need to define appropri-
ate location estimates μ̂K and μ̂L. For μ̂K (one can define μ̂L accordingly), we
propose adopting the location estimator obtained when using K-score location
R-estimators in (6.4) above. More precisely, we suggest using

μ̂K :=

(
μ̂K,1

μ̂K,2

)
:=

(
Λ̂11 0

0 Λ̂22

)
ξ̂K , (6.5)

where the rth component of ξ̂K is defined as an arbitrary “zero” of the step
function

t �→ hK
r (t) :=

n∑
i=1

Ŝir(t)K̂ir(t),

where the signed ranks Ŝir(t)K̂ir(t) are those of yir − t, i = 1, . . . , n, with

yir := [e′r(Λ̂
−1
11 X

(1)
i )] for r ≤ p1 and yir := [e′r−p1

(Λ̂−1
22 X

(2)
i )] for r > p1. By

“zero”, we here mean an arbitrary value t0 for which hK
r (t−0 ) × hK

r (t+0 ) ≤ 0; in
order to define μ̂K unambiguously, we could always choose the such zero that
is closest to the sample median of the yir’s, i = 1, . . . , n. Beyond being robust
and root-n consistent without any moment condition, the resulting estimators
μ̂K and μ̂L also satisfy Assumption (B′(i)–(ii)) (see the end of Section A.2 for
a proof), hence can be used in our nonparametric tests.

Finally, we point out that, to avoid any moment assumption in the construc-

tion above, our choices for Ŝ
(�)
a and Ŝ

(�)
b are the Tyler (1987) and Dümbgen

(1998) scatter matrix estimates, respectively. These statistics are weakly affine-
equivariant only, in the sense that, for invertible matrices A and vectors b with
appropriate dimensions, Ŝ(AX1 + b, . . . , AXn + b) is proportional (but in gen-
eral not equal) to AŜ(X1, . . . , Xn)A

′; however, it is easy to check that this weak
affine-equivariance is sufficient to guarantee the (standard) affine-equivariance
of the resuting estimators of ϑ. For Tyler’s estimate, we need a simultaneous
location estimate; a natural choice is the Hettmansperger and Randles (2002)
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estimate. These estimates are root-n consistent under very weak assumptions,
which do not involve any moment condition.

6.2. An alternative critical value

Our signed-rank tests in Section 4 are based on the fact that the statistics

Q̃K,L = Q̃
(n)

ϑ̂K ,ϑ̂L,K,L
:= T̃ ′

ϑ̂K ,ϑ̂L,K,L
MK,L T̃ϑ̂K ,ϑ̂L,K,L

are asymptotically χ2
d(K,L) under the null. For some of these statistics however

(typically, this happens when d(K,L) > p1p2), this convergence is very slow
and the test rejecting the null at asymptotic level α when Q̃K,L > χ2

d(K,L);1−α

is strongly conservative (hence, biased) for small to moderate sample sizes. Con-
sequently, we recommend using the following alternative critical values, which
allow for implementing bias-corrected versions of our nonparametric tests.

If ϑ(∈M(Ω)) was known, one could use the test statistic Q̃
(n)
ϑ,ϑ,K,L, which

is (strictly) distribution-free under the null; see Section 4.1. The exact critical

values of Q̃
(n)
ϑ,ϑ,K,L can easily be estimated by using simulations; distribution-

freeness indeed allows for simply generating M independent samples S1, . . . , SM

of n i.i.d. multinormal observations with location μ0 = 0 and covariance ma-
trix Λ0Λ

′
0 = Ip, and to use empirical quantiles of the resulting M values

of Q̃
(n)
ϑ0,ϑ0,K,L, ϑ0 = (μ′

0, (vecΛ0)
′)′ = (0′, (vec Ip)

′)′ as estimates for the exact

quantiles of Q̃
(n)
ϑ,ϑ,K,L

Now, since Q̃K,L = Q̃
(n)

ϑ̂K ,ϑ̂L,K,L
and Q̃

(n)
ϑ,ϑ,K,L are asymptotically equivalent

under the null (this is a direct consequence of Lemma 4.2), the exact critical

values of Q̃
(n)
ϑ,ϑ,K,L—hence, also their estimated versions above—may be regarded

as approximate ones for Q̃K,L. As we show through a Monte-Carlo experiment
in the next section, this approach works very well in practice.

7. Simulations

In this section, we report the results of Monte-Carlo experiments that were
conducted to study the small-sample performances of the proposed signed-rank
tests and to see how they compete with Wilks’. It was also of interest to in-
vestigate how well the finite-sample behaviors of the various procedures were in
accordance with the asymptotic results of the previous sections, and we there-
fore compared non-null rejection frequencies with the corresponding asymptotic
powers.

We first considered the bivariate case p1 = p2 = 1 and fixed the location μ
and the null value of the mixing matrix Λ to 0 and I2, respectively (this is
without loss of generality since all tests here are affine-invariant). For various
distributions of the ICs (see below) and some selected values of δ (including
the null value δ = 0), we generated N = 5, 000 independent samples of sizes
n = 100, 200, and 500 from the bivariate IC models
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(
X

(1)
i

X
(2)
i

)
=

(
Λ + n−1/2δ D

) (
Z

(1)
i

Z
(2)
i

)
+ μ, i = 1, . . . , n, (7.1)

where D is as in (5.5) or (5.6) (type 1 and type 2 alternatives, respectively). For
each sample, we performed Wilks’ test and the following six signed-rank tests,
all at asymptotic nominal level 5%: the sign test φ̃S , the Wilcoxon test φ̃W , the
van der Waerden test φ̃vdW (achieving Le Cam optimality in the multinormal
case), and the tests φ̃tν1 tν2

, with (ν1, ν2) = (3, 3), (3, 5), and (5, 5), based on the
(bivariate version of the) statistics in (4.6) (achieving Le Cam optimality when
the ICs are tν1 and tν2). For the last three tests (for which d(K,L) = 2, the
convergence to the null asymptotic χ2

2 distribution appeared to be quite slow,
and we therefore used the alternative critical values of Section 6.2 (evaluated, for
each such test and each sample size n, on the basis of M = 10, 000 independent
samples of n i.i.d. bivariate standard normal observations). For all other tests,
the critical values were simply based on the asymptotic χ2

1 approximation of the
null distributions.

For type 1 alternatives, rejection frequencies are reported, as functions of δ, in

Figure 1 (where both Z
(1)
i and Z

(2)
i are Gaussian), Figure 2 (where Z

(1)
i and Z

(2)
i

are t3 and t5, respectively), and Figure 4(a) (where both Z
(1)
i and Z

(2)
i are t1).

When second-order moments are finite (that is, in the designs considered in
Figures 1–2), we also present the corresponding asymptotic powers—computed
from Theorems 4.1(ii) and 5.1(ii). The results show that, when both ICs are
Gaussian, Wilks’ test slightly dominates the asymptotically optimal van der
Waerden test (and of course the other signed-rank tests) at sample size 100, but
that this dominance fades out as the sample size increases. When the ICs are t3
and t5, the signed-rank tests (excluding the sign test, as expected) are a bit more
powerful than Wilks’ test, which is in accordance with the AREs of Section 5.2.
In each case, finite-sample powers seem to converge quickly to the asymptotic
ones. When both ICs are t1, it is seen that Wilks’ test (which requires finite
second-order moments) exhibits poor performances, while the signed-rank tests
behave as expected: in particular, the “closer” (tν1 , tν2) to the underlying couple
of IC distributions (t1, t1), the better the performances of the asymptotically χ2

2

tests φ̃tν1 tν2
.

We then consider type 2 alternatives, for which rejection frequencies are re-

ported in Figure 3 (where Z
(1)
i and Z

(2)
i are t3 and t5, respectively) and Fig-

ure 4(b) (where both Z
(1)
i and Z

(2)
i are t1). In the setup of Figure 3, all tests

based on a statistic that is asymptotically χ2
1 under the null should, accord-

ing to our asymptotic results, exhibit poor asymptotic powers (in particular,
asymptotic powers of Wilks’ test should coincide with the nominal level 5%).
Quite surprisingly, Wilks’ seems to gain some power at the sample sizes consid-
ered (we have checked, however, that this unexpected behavior of Wilks’ test
disappears for larger sample sizes). The finite-sample powers of the signed-rank
tests φ̃tν1 tν2

, which here are by far the most powerful ones, converge to the
limiting ones, although relatively slowly. For type 2 alternatives with t1 ICs
(Figure 4(b)), Wilks’ test, which is extremely conservative, is again strongly
dominated by the signed-rank tests φ̃tν1 tν2

.
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Fig 1. Rejection frequencies and asymptotic powers, under p1 = p2 = 1 type 1 alternatives
with Gaussian ICs, of Wilks’ test (φWilks), the sign test (φ̃S), the Wilcoxon signed-rank test
(φ̃W ), the van der Waerden signed-rank test (φ̃vdW), and various signed-rank tests based on
(tν1 , tν2 )-score functions (φ̃tν1 tν2

); see Section 7 for details.

To explore cases where Z
(1)
i and Z

(2)
i are multivariate, we generated obser-

vations through(
X

(1)
i

X
(2)
i

)
=

(
Λ + n−1/2δ D

) (
Z

(1)
i

Z
(2)
i

)
+ μ, i = 1, . . . , n,

where μ = 0 ∈ R
p1+p2 = R

2p1 , Λ = Ip1+p2 ,

D =

(
0 σg1/σg2

σg2/σg1 0

)
⊗ Ip1 (type 1 alternatives)
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Fig 2. Finite-sample and exact limiting powers, under p1 = p2 = 1 type 1 alternatives
with t3 and t5 ICs, of Wilks’ test (φWilks), the sign test (φ̃S), the Wilcoxon signed-rank test
(φ̃W ), the van der Waerden signed-rank test (φ̃vdW), and various signed-rank tests based on
(tν1 , tν2 )-score functions (φ̃tν1 tν2

); see Section 7 for details.

or

D =

(
0 σg1/σg2

−σg2/σg1 0

)
⊗ Ip1 (type 2 alternatives),

and where the first (resp., second) half of the mutually independent marginals

of both Z
(1)
i and Z

(2)
i are t3 distributed (resp., t5 distributed) — which of

course implies that we restrict to even values of p1(= p2). In all cases be-
low, the results are based on 5, 000 independent replications and the same
tests as for p1 = p2 = 1 were implemented at asymptotic level α = 5% in
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Fig 3. Rejection frequencies and asymptotic powers, under p1 = p2 = 1 type 2 alternatives
with t3 and t5 ICs, of Wilks’ test (φWilks), the sign test (φ̃S), the Wilcoxon signed-rank test
(φ̃W ), the van der Waerden signed-rank test (φ̃vdW), and various signed-rank tests based on
(tν1 , tν2 )-score functions (φ̃tν1 tν2

); see Section 7 for details.

exactly the same fashion as above (here, the tests φ̃tν1 tν2
are to be replaced

with tests of the form φ̃tν1 tν2 ...tνp1+p2
, achieving optimality when the marginals

of Zi = (Z
(1)′
i , Z

(2)′
i )′ are tν1 , tν2 , . . . , tνp1+p2

, respectively). Obviously, unlike in
the simulations considered for p1 = p2 = 1, a setup with min(p1, p2) > 1 requires
to run two separate ICAs to compute the estimated ICs.

For p1 = p2 = 2, the resulting rejection frequencies (and asymptotic powers)
are reported in Figure 5 and Figure 6, for type 1 and type 2 alternatives, respec-
tively. These figures show that our tests behave similarly as for p1 = p2 = 1 and
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Fig 4. Rejection frequencies, under p1 = p2 = 1 (a) type 1 or (b) type 2 alternatives, with t1
ICs in both cases, of Wilks’ test (φWilks), the sign test (φ̃S), the Wilcoxon signed-rank test
(φ̃W ), the van der Waerden signed-rank test (φ̃vdW), and various signed-rank tests based on
(tν1 , tν2 )-score functions (φ̃tν1 tν2

); see Section 7 for details.

that they are not affected by the estimation of nuisance parameters through the
ICA procedures proposed in Section 6 (at least when based, as it was the case
here, on the Tyler (1987) and Dümbgen (1998) scatter matrix estimates and on
the location estimates μ̂K and μ̂L from (6.5)). Figure 7 provides the correspond-
ing results for type 1 alternatives in the higher-dimensional setup p1 = p2 = 10.
Clearly, at the same sample sizes as in the low-dimensional cases above, the tests
still behave in an excellent agreement with the fixed-p asymptotic theory. In con-
trast, simulations results not reported here indicate that, for high-dimensional
type 2 alternatives, such an agreement shows only for larger sample sizes. Note
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Fig 5. Rejection frequencies and asymptotic powers, under p1 = p2 = 2 type 1 alter-

natives with both Z
(1)
i and Z

(2)
i having a t3 marginal and a t5 marginal, of Wilks’ test

(φWilks), the sign test (φ̃S), the Wilcoxon signed-rank test (φ̃W ), the van der Waerden signed-
rank test (φ̃vdW), and various signed-rank tests based on (tν1 , tν2 , tν3 tν4 )-score functions

(φ̃tν1 tν2 tν3 tν4
); see Section 7 for details.

that our tests still remain of high practical value even for such high-dimensional
type 2 alternatives, since many ICA applications, e.g., in signal processing, typ-
ically offer large sample sizes.

To comment on the computational efforts required by the proposed nonpara-
metric procedures, we ran (for sample sizes n = 100, n = 200 and n = 500) 100
replications of the null distributional setups considered in Figures 1, 5 and 7
(this relates to p1 = p2 = 1, p1 = p2 = 2 and p1 = p2 = 10, respectively). In
Figure 8, we show the computing times (in seconds), averaged over these 100
replications, of the sign test statistic, the Wilcoxon test statistic, the van der
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Fig 6. Rejection frequencies and asymptotic powers, under p1 = p2 = 2 type 2 alter-

natives with both Z
(1)
i and Z

(2)
i having a t3 marginal and a t5 marginal, of Wilks’ test

(φWilks), the sign test (φ̃S), the Wilcoxon signed-rank test (φ̃W ), the van der Waerden signed-
rank test (φ̃vdW), and various signed-rank tests based on (tν1 , tν2 , tν3 tν4 )-score functions

(φ̃tν1 tν2 tν3 tν4
); see Section 7 for details.

Waerden test statistic, and the signed-rank test statistics based on t3-scores
only, t5-scores only, and on mixed t3-t5 scores (the three corresponding t-score
tests are those used in Figures 1, 5 and 7). Whenever p1 = p2 > 1, the imple-
mentation of all these test statistics requires evaluating the Tyler and Dümbgen
scatter matrices, and the corresponding (still, averaged) computing times are
then also shown in Figure 8. The results reveal that, as expected, the computa-
tional effort increases both with the dimension and with the sample size. The
more complex test statistics, relying on t-scores, are more costly than the sign,
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Fig 7. Rejection frequencies and asymptotic powers, under p1 = p2 = 10 type 1 alternatives

with all Z
(1)
i and Z

(2)
i respectively having their first five (resp., last five) marginals that are

t3 distributed (resp., t5 distributed), of Wilks’ test (φWilks), the sign test (φ̃S), the Wilcoxon
signed-rank test (φ̃W ), the van der Waerden signed-rank test (φ̃vdW), and various signed-
rank tests based on (tν1 , . . . , tν10 )-score functions (φ̃tν1 ...tν10

); see Section 7 for details (the

test denoted as φ̃t3...t3t5...t5t3...t3t5...t5 is the one that is optimal in the distributional setup
considered).

Wilcoxon and van der Waerden ones. Clearly, as the sample size increases, the
time to compute the Dümbgen scatter matrix is increasingly large compared to
the time required to compute the full test statistic (this can be corrected for
by using a less robust scatter matrix). Most importantly, for all dimensions and
sample sizes considered, computing times remain quite small for every nonpara-
metric test statistic, with a maximum value of less than 2.5 seconds for sample
size n = 500 in dimension p1 = p2 = 10.
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Fig 8. Computing times (in seconds), averaged over 100 replications, of the sign test statis-
tic (S), the Wilcoxon test statistic (W ), the van der Waerden test statistic (vdW), and various
signed-rank test statistics based on t3-scores only (t3), t5-scores only (t5), and on mixed t3-
t5 scores (t3-t5). The distributional setups are those considered under the null in Figure 1,
Figure 5 and Figure 7, for p1 = p2 = 1, p1 = p2 = 2 and p1 = p2 = 10, respectively.
Whenever p1 = p2 > 1, the total computing time is partitioned into the (still, averaged) times
used to compute the Tyler scatter matrix (green), the Dümbgen scatter matrix (red), and the
remaining time used to compute the test statistic.

As a conclusion, this Monte-Carlo study shows that (i) all tests succeed in
meeting the asymptotic 5% level constraint at all sample sizes; (ii) the non-
null rejection frequencies of the proposed signed-rank tests are compatible with
the corresponding asymptotic powers and AREs derived in the previous sec-
tions; most importantly, while they compete reasonably well with the other
tests under type 1 alternatives, the optimal signed-rank tests (that are based on
a higher number of degrees of freedom) outperform the other tests under (non-
Gaussian) type 2 alternatives. Again, this is totally in line with the optimality
concept (namely, most stringency) considered. Finally, the computational ef-
forts required remains quite low, which makes the proposed tests applicable in
practice.
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Appendix A: Appendix

A.1. Proofs of Proposition 2.1 and Lemma 3.1

Clearly, the likelihood, under Pn
ϑ,g, is given by Ln

ϑ,g =
∏n

i=1 gϑ(Xi), where

gϑ(x) := | detΛ |−1
∏p

r=1 gr
(
e′rΛ

−1(x− μ)
)
(here, er still denotes the rth vector

of the canonical basis of Rp). The proof of Proposition 2.1 is then based on
Lemma 1 from Swensen (1985), or, more precisely, on its extension by Garel
and Hallin (1995), which, in the present context, takes the following form.

Lemma A.1. Define ξ
(n)
i := (g

1/2

ϑ+n−1/2τn
(Xi)/g

1/2
ϑ (Xi)) − 1 and assume that

there exist a triangular array of random variables ζ
(n)
i , i = 1, . . . , n and a

bounded sequence (dn) satisfying the following seven conditions, where all con-
vergences are as n → ∞ and all expectations and stochastic convergences

are under Pn
ϑ,g: (i) E[

∑n
i=1(ξ

(n)
i − ζ

(n)
i )2] = o(1); (ii) supn E[

∑n
i=1(ζ

(n)
i )2] <

∞; (iii) max1≤i≤n |ζ(n)i | = oP (1); (iv)
∑n

i=1(ζ
(n)
i )2 − (1/4)d2n = oP (1); (v)∑n

i=1 E[(ζ
(n)
i )2I

[|ζ(n)
i |>1/2]

] = o(1); (vi) E[ζ
(n)
i ] = 0 for all i, n; (vii)

∑n
i=1 E[(ξ

(n)
i )2

+ 2ξ
(n)
i ] = o(1). Then, under Pn

ϑ,g, with g ∈ FULAN,

log(dPn
ϑn+n−1/2τn,g

/dPn
ϑn,g) = 2

n∑
i=1

ζ
(n)
i − (1/2)d2n + oP (1) (A.1)

and [log(dPn
ϑn+n−1/2τn,g

/dPn
ϑn,g

) + (1/2)d2n]/dn is asymptotically standard nor-

mal.

The proof of Lemma A.1 in turn crucially relies on the quadratic mean dif-

ferentiability of the mapping ϑ �→ g
1/2
ϑ (·) stated in Lemma A.2 below (we omit

the tedious proof, which can be done by combining arguments from Lind and
Roussas (1972) and from the proof of Lemma A.1 in Hallin and Paindaveine
(2006)).

Lemma A.2. Let g ∈ FULAN and define

Dμg
1/2
ϑ (x) :=

1

2
g
1/2
ϑ (x)(Λ−1)′ϕg(Λ

−1(x− μ)),

DΛg
1/2
ϑ (x) :=

1

2
g
1/2
ϑ (x)

(
Ip ⊗ Λ−1

)′
vec [ϕg(Λ

−1(x− μ)) (Λ−1(x− μ)
)′ − Ip],

Dϑg
1/2
ϑ (x) = ((Dμg

1/2
ϑ (x))′, (DΛg

1/2
ϑ (x))′)′.

Then, (i)
∫ {

g
1/2
μ+m,Λ(x)−g

1/2
μ,Λ(x)−m′Dμg

1/2
ϑ (x)

}2
dx = o(‖m‖2), as m → 0, (ii)∫ {

g
1/2
μ,Λ+L(x)−g

1/2
μ,Λ(x)−(vecL)′DΛg

1/2
ϑ (x)

}2
dx = o(‖L‖2), as (vecL) → 0, and

(iii)
∫ {

g
1/2
ϑ+t(x)−g

1/2
ϑ (x)−t′Dϑg

1/2
ϑ (x)

}2
dx = o(‖t‖2), as t = (m′, (vecL)′)′ → 0.

Proof of Proposition 2.1. Letting T
(n)
i := Dg

1/2
ϑ (Xi)/g

1/2
ϑ (Xi), i = 1, . . . , n, it

is easy to check that E[T
(n)
i ] =

∫
g
1/2
ϑ (x)Dg

1/2
ϑ (x) dx=0 and that E[T

(n)
i T

(n)′
i ] =
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∫
Dg

1/2
ϑ (x)(Dg

1/2
ϑ (x))′ dx = (1/4)Γϑ,g. We then show that Conditions (i)-(vii)

in Lemma A.1 are satisfied with ζ
(n)
i := n−1/2 τ ′nT

(n)
i , i = 1, . . . , n and dn =

Γ
1/2
ϑ,g τn.

(i) Lemma A.2(iii) directly entails that E[
∑n

i=1(ξ
(n)
i − ζ

(n)
i )2] = n∫

{g1/2
ϑ+n−1/2τn

(x)−g
1/2
ϑ (x)−n−1/2τ ′nDg

1/2
ϑ (x)}2 dx is o(1). (ii) Since E[(ζ

(n)
i )2] =

n−1τ ′nΓϑ,gτn for all i, Condition (ii) follows from the boundedness of (τn). (iii)
Letting ε > 0 be fixed and defining Cτ := supn ‖τn‖, we have

P [ max
1≤i≤n

|ζ(n)i | ≤ ε] = (P [(ζ
(n)
i )2 ≤ ε2])n ≥ (P [C2

τ ‖T
(n)
i ‖2 ≤ ε2n])n

≥
(
1− 1

ε2n
E

[
C2

τ ‖T
(n)
i ‖2I

[C2
τ‖T

(n)
i ‖2>ε2n]

])n

,(A.2)

which converges to one (since T
(n)
i has a finite covariance matrix under the

considered sequence of probability measures, we indeed have that the second

expectation in (A.2) is o(1)). (iv) The WLLN directly entails that
∑n

i=1(ζ
(n)
i )2−

(1/4)d2n = τ ′n[n
−1

∑n
i=1 T

(n)
i T

(n)′
i −(1/4)Γϑ,g]τn = o(1). (v) denoting by ‖A‖L :=

sup{‖Ax‖ : ‖x‖ = 1} the sup norm of the matrix A, we have

n∑
i=1

E[(ζ
(n)
i )2I

[|ζ(n)
i |>1/2]

] ≤ C2
τ ‖E[T

(n)
1 T

(n)′
1 I

[|T (n)
1 |>n1/2/(2Cτ )]

]‖L,

which is o(1) since E[T
(n)
1 T

(n)′
1 ] is finite. (vi) E[ζ

(n)
i ] = n−1/2 τ ′nE[T

(n)
i ] = 0. (vii)

Using the definition of ξ
(n)
i , we obtain E[(ξ

(n)
i )2 + 2ξ

(n)
i ] + 1 = E[(ξ

(n)
i + 1)2] =∫

gϑ+n−1/2τn(x) dx = 1.
Consequently, Lemma A.1 applies and establishes the result since the linear

term in the right-hand side of (A.1) is 2
∑n

i=1 ζ
(n)
i = τ ′n(2n

−1/2
∑n

i=1 T
(n)
i ),

hence coincide with τ ′nΔ
(n)
ϑ,g (see Lemma A.2) and the expression of the central

sequence Δ
(n)
ϑ,g in Proposition 2.1).

Proof of Lemma 3.1. Lengthy but straightforward calculations allow to check
that

Γ−
ϑ,f ;2 =

(
Ip ⊗ Λ

){ p∑
r=1

1

Jfr − 1
(ere

′
r ⊗ ere

′
r)+

p∑
r �=s

r,s=1

(
αr,s(f) (ere

′
r ⊗ ese

′
s) + βr,s(f)(ere

′
s ⊗ ese

′
r)

)}(
Ip ⊗ Λ

)′
(A.3)

is the Moore-Penrose pseudoinverse of Γϑ,f ;2. It can easily be checked that (with
ϑ ∈ M(Ω))

Ω′
2Γϑ,f ;2Ω2 = diag

(
Γ
(1)
ϑ,f ;2,Γ

(2)
ϑ,f ;2

)
,

where Γ
(�)
ϑ,f = diag(Γ

(�)
ϑ,f ;1,Γ

(�)
ϑ,f ;2) denotes the (p�(p� + 1)) × (p�(p� + 1)) infor-

mation matrix in the marginal IC model X
(�)
i = Λ��Z

(�)
i + μ�, � = 1, 2. Since
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Γ
(�)
ϑ,f ;2, � = 1, 2 are information matrices with the same structure as Γϑ,f ;2, one

can use (A.3) to obtain the Moore-Penrose pseudoinverses
(
Γ
(�)
ϑ,f ;2

)−
, � = 1, 2.

Simplifying the resulting explicit expression for

Γ−
ϑ,f ;2 − Ω2

(
Ω′

2Γϑ,f ;2Ω2

)−
Ω′

2 = Γ−
ϑ,f ;2 − Ω2

[
diag

((
Γ
(1)
ϑ,f ;2

)−
,
(
Γ
(2)
ϑ,f ;2

)−)]
Ω′

2.

then provides the result.

A.2. Proofs of Lemmas 4.1 and 4.2

In this section, we fix some ϑ ∈ Θ and g ∈ F (in the proof of Lemma 4.2, the
fixed value of ϑ is in M(Ω)). All expectations and stochastic convergences are
then under Pn

ϑ,g. We write throughout Zir, Sir,Rir, Ẑ
K
ir , Ŝ

K
ir , and R̂K

ir , for Zir(ϑ),

Sir(ϑ), Rir(ϑ), Zir(ϑ̂K), Sir(ϑ̂K), and Rir(ϑ̂K), respectively. We also let K̂ir :=
Kr(R̂

K
ir/(n+1)), K̃ir := Kr(Rir/(n+1)), and Kir := Kr(G+r(|Zir|)). Of course,

ZL
ir, Ŝ

L
ir, R̂

L
ir, L̂ir, L̃ir, and Lir will denote the corresponding quantities based

on ϑ̂L and the score function Lr. Eventually, we denote by G̃ϑ,K,L, G̃ϑ̂K ,ϑ̂L,K,L,

andGϑ,K,L;g, the p×pmatrices defined by T̃ϑ,K,L =: (vec G̃ϑ,K,L), T̃ϑ̂K ,ϑ̂L,K,L =:

(vec G̃ϑ̂K ,ϑ̂L,K,L), Tϑ,K,L;g =: (vecGK,L;g), respectively.

Proof of Lemma 4.1. Since

E[‖T̃ϑ,K,L − Tϑ,K,L;g‖2] =
∑
r<>s

E[((G̃ϑ,K,L −Gϑ,K,L;g)rs)
2], (A.4)

it is sufficient to show that each term in this sum is o(1) as n → ∞. Then using
(i) E[Sir] = 0, (ii) the independence (under Pn

ϑ,g) between the Sir’s and the
(Rir, |Zir|)’s, and (iii) the independence, for fixed r �= s (note that r are s are
never equal in (A.4)), between the Zir’s and the Zis’s, we obtain E[((G̃ϑ,K,L −
Gϑ,K,L;g)rs)

2] = E[(n−1/2
∑

i SirSis(K̃irL̃is−KirLis))
2] = n−1

∑
i E[(K̃irL̃is−

KirLis)
2]. Hence, E[((G̃ϑ,K,L − Gϑ,K,L;g)rs)

2] = E[(K̃1rL̃1s − K1rL1s)
2] ≤

2E[(K̃1r − K1r)
2L̃2

1s] + 2E[K2
1r(L̃1s − L1s)

2] ≤ 2(E[L2
s(U)] + o(1))E[(K̃1r −

K1r)
2] + 2E[K2

r (U)]E[(L̃1s − L1s)
2], as n → ∞.

This proves the result since the Hájek projection theorem for linear signed-
rank statistics (see Puri and Sen (1985), Chapter 3) yields E[(K̃1r −K1r)

2] =
n−1

∑
i E[(K̃ir − Kir)

2] = n−1
∑

i,j E[SirSjr(K̃ir − Kir)(K̃jr − Kjr)] =

E[((n−1/2
∑

i SirK̃ir) − (n−1/2
∑

i SirKir))
2] is o(1) as n → ∞ (of course, one

similarly obtains that E[(L̃1s − L1s)
2] = o(1) as n → ∞).

It remains to prove Lemma 4.2. In view of Lemma 4.1, it is sufficient to show
that E[‖T̃ϑ̂K ,ϑ̂L,K,L − Tϑ,K,L;g‖2] = o(1) as n → ∞, or equivalently, that

E[((G̃ϑ̂K ,ϑ̂L,K,L −Gϑ,K,L;g)rs)
2] = o(1) (A.5)

as n → ∞, for any (r, s) ∈ (S1 × S2) ∪ (S2 × S1). In the rest of this section, we
therefore fix (r, s) ∈ S1×S2 (the case (r, s) ∈ S2×S1 of course follows along the
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same lines) and proceed to prove (A.5). We will need the following preliminary
result.

Lemma A.3. As n → ∞, (i) ẐK
1r − Z1r = oP (1) = ẐL

1r − Z1r under Pn
ϑ,g (with

the ϑ and g fixed at the beginning of this section), (ii) E[(K̂1r−K1r)
2] = o(1) =

E[(L̂1r −L1r)
2], (iii) E[|ŜK

1r −S1r|a] = o(1) = E[|ŜL
1r −S1r|a] for any a > 0, and

(iv) E[(ŜK
1rK̂1r − S1rK1r)

2] = o(1) = E[(ŜL
1rL̂1r − S1rL1r)

2].

Proof of Lemma A.3. Clearly, it is sufficient to prove the lemma for theK-based
quantities (the proof for the L-based ones is entirely similar).

(i) Since |ẐK
1r−Z1r| ≤ ‖ẐK

1 −Z1‖ ≤ ‖Λ̂−1−Λ−1‖L‖X1−μ‖+‖Λ̂−1‖L‖μ̂K−μ‖,
the claim for ẐK

1r − Z1r follows from the root-n consistency of ϑ̂K .
(ii) Applying Lemma 2 in page 555 of Peters and Randles (1990), with α =

ϑ and g(X,α) = |e′r[Λ−1(X − μ)]| yields that
R̂K

1r

n+1 − Gr+(|Z1r|) is oP (1) as
n → ∞ (note that Conditions (a)-(b) of that lemma are fulfilled: (a) is our
Assumption (B(ii)), whereas (b) can be checked exactly along the same lines as
in Peters and Randles (1990), once it is noticed that ||e′r[(Λ + n−1/2H)−1(X −
μ0)]| − |e′r[Λ−1(X − μ0)]|| ≤ ‖[(Λ + n−1/2H)−1 − Λ−1](X − μ0)‖, for any fixed
p× p matrix H).

Now, the continuity of Kr entails that K̂1r−K1r is oP (1) as n → ∞. To prove
that this convergence also holds in quadratic mean (which is precisely Part (ii)
of the lemma), it is sufficient to show that K̂1r − K1r is uniformly integrable.
Clearly, K1r is uniformly integrable since the integrable random variable K1r =
Kr(Gr+(|Z1r|)) does not depend on n. As for K̂1r, recall that K̃1r−K1r = oL2(1)
as n → ∞ (see the proof of Lemma 4.1), which implies that K̃1r is uniformly

integrable. Finally, the latter uniform integrability and the invariance of ϑ̂K

under permutations of the observations in turn imply that K̂1r is also uniformly
integrable. We conclude that K̂1r −K1r is indeed uniformly integrable, and the
result follows.

(iii) Since ŜK
1r − S1r = (|ẐK

1r|−1 − |Z1r|−1)ẐK
1r + |Z1r|−1(ẐK

1r − Z1r), we have
|ŜK

1r−S1r| ≤ 2|ẐK
1r−Z1r|/|Z1r| =: Y1r. Now, fix some δ > 0. Then, for all η > 0,

P [Y1r > δ] ≤ P [Y1r I[|Z1r|<η] > δ/2] + P [Y1r I[|Z1r|≥η] > δ/2]

≤ P [|Z1r| < η] + P [Y1r I[|Z1r|≥η] > δ/2]

=: p
(n)
1 + p

(n)
2 ,

say. For all ε > 0, there exists η = η(ε) such that p
(n)
1 < ε/2. As for p

(n)
2 , note

that Y1r I[|Z1r|≥η] ≤ (2/η)|ẐK
1r−Z1r|, so that Part (i) of the Lemma entails that

p
(n)
2 < ε/2 for large n. We conclude that |ŜK

1r − S1r| ≤ Y1r converges to zero in

probability, which establishes the result (since |ŜK
1r − S1r| is bounded).

(iv) By using Hölder’s inequality, we obtain

E[(ŜK
1rK̂1r − SK

1rK1r)
2] ≤ 2E

[
(ŜK

1r)
2(K̂1r −K1r)

2
]
+ 2E

[
(ŜK

1r − S1r)
2K2

1r

]
≤ 2E

[
(K̂1r −K1r)

2
]
+ 2

(
E[(ŜK

1r − S1r)
2(2+δ)

δ ]
) δ

2+δ
(
E[K2+δ

1r ]
) 2

2+δ ,
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where δ > 0 is as in Assumption (C(ii)). The latter and Parts (ii)-(iii) of this
Lemma then yield the result.

Proof of Lemma 4.2. We have to prove (A.5). To do so, note that, writing
ûi := ŜK

ir K̂ir, v̂i := ŜL
isL̂is, ui := SirKir, and vi := SisLis, and using the

exchangeability of the observations, we have

E[((G̃ϑ̂K ,ϑ̂L,K,L −Gϑ,K,L;g)rs)
2]

= E[(n−1/2∑n
i=1 (ûiv̂i − uivi))

2]

= E[(û1v̂1 − u1v1)
2] + (n− 1)E[(û1v̂1 − u1v1)(û2v̂2 − u2v2)]

=: T
(n)
1 + T

(n)
2 ,

say. Now, by using the independence between (û1, u1) and (v̂1, v1) under the
null, we obtain

T
(n)
1 ≤ 2E

[
(û1 − u1)

2v̂21
]
+ 2E

[
u2
1(v̂1 − v1)

2
]

= 2E
[
(û1 − u1)

2
]
E

[
v̂21

]
+ 2E

[
u2
1

]
E

[
(v̂1 − v1)

2
]
,

which is o(1) as n → ∞ by Lemma A.3(iv). As for T
(n)
2 , we have

T
(n)
2 = (n− 1)E[û1v̂1û2v̂2]− 2(n− 1)E[u1v1û2v̂2] + (n− 1)E[u1v1u2v2]

= (n− 1)E[û1û2]E[v̂1v̂2]− 2(n− 1)E[u1û2]E[v1v̂2] + 0, (A.6)

where we used again the independence (under the null) between (u1, û1, û2) and
(v1, v̂1, v̂2), along with the fact that E[u1] = 0. Defining Wu :=

∑n
i=1 ûi and

writing u̇1 for either û1 or u1, we have

|(n− 1)1/2 E[u̇1û2]| ≤ (n− 1)−1/2|E[u̇1

(∑n
i=2 ûi

)
]|

≤ (n− 1)−1/2 E[|u̇1(Wu − û1)|]

≤ (n− 1)−1/2
(
(E[u̇2

1] E[W
2
u ])

1/2 + (E[u̇2
1] E[û

2
1])

1/2
)
,

which is o(1) as n → ∞ by using Lemma A.3(iv) and Assumption (B′(i)).
Similarly, (n− 1)1/2E[v̂1v̂2] = o(1) = (n− 1)1/2E[v1v̂2] as n → ∞, so that (A.6)

implies that T
(n)
2 —hence also E[((G̃ϑ̂K ,ϑ̂L,K,L −Gϑ,K,L;g)rs)

2]—is o(1) as n →
∞.

Finally, we prove that the nonparametric location estimate μ̂K (hence, also
its companion estimate μ̂L) from (6.5) satisfies Assumption (B′).

Proof that μ̂K satisfies Assumption (B′). We only check that μ̂K satisfies As-
sumption (B′(i)), since the other conditions are trivially met. To this end, fix
r ∈ S1 (the proof is entirely similar for r ∈ S2). Using the same notation as
in (6.5), we stress that the piecewise constant function hK

r may only have jumps
at the Walsh averages (yir + yjr)/2, 1 ≤ i ≤ j ≤ n, with sizes 2|Kr(

i
n+1 ) −
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Kr(
i−1
n+1 )|, i = 2, . . . , n, or 2|Kr(

1
n+1 )|; see Bauer (1972). This implies that∣∣ ∑n

i=1 Ŝ
K
ir K̂ir

∣∣ ≤ 2max(maxi=2,...,n

∣∣Kr(
i

n+1 ) − Kr(
i−1
n+1 )

∣∣, |Kr(
1

n+1 )|), hence
that

n−1
∣∣∑n

i=1 Ŝ
K
ir K̂ir

∣∣2
≤ 4max

(
1
n

∑n
i=2

(
Kr

(
i

n+1

)
−Kr

(
i−1
n+1

))2
, 1
n K2

r

(
1

n+1

))
≤ 4max

(
1
n

∑n
i=2

(
K2

r

(
i

n+1

)
+K2

r

(
i−1
n+1

)
− 2Kr

(
i

n+1

)
Kr

(
i−1
n+1

))
, 1
n K2

r

(
1

n+1

))
=: 4max(an + bn − 2cn, dn),

almost surely. The finiteness of
∫ 1

0
K2

r (u) du clearly implies that dn is o(1)
as n → ∞. Now, if one assumes that Kr is monotone increasing, we have
that K2

r (
i−1
n+1 ) ≤ Kr(

i
n+1 )Kr(

i−1
n+1 ) ≤ K2

r (
i

n+1 ), hence that cn, as an and bn,

converges to
∫ 1

0
K2(u) du as n → ∞, which yields the result in the mono-

tone case considered. In the general case, the result follows similarly by writ-
ing Kr = Kr+ − Kr−, where Kr± are monotone increasing functions; see As-
sumption (C(ii)).

A.3. Proofs of Lemmas 4.3 and 5.1

Proof of Lemma 4.3. Under Pn
ϑ,g, the multivariate CLT yields that Tϑ,K,L;g is

asymptotically normal with mean zero and covariance matrix HK,L. Under
Pn
ϑ+n−1/2τ,g

, the asymptotic normality of Tϑ,K,L;g with mean HK,L;g(Ip⊗Λ−1)τ2
and covariance matrix HK,L follows as usual, by (i) establishing the joint nor-
mality (under Pn

ϑ,g) of Tϑ,K,L;g and log(dPn
ϑ+n−1/2τ,g

/dPn
ϑ,g), then (ii) applying

Le Cam’s third Lemma (the required joint normality follows from a routine
application of the classical Cramér-Wold device).

This establishes the result since Lemma 4.1 shows that T̃ϑ,K,L = Tϑ,K,L;g +
oP (1) as n → ∞, under Pn

ϑ,g (hence, by contiguity, also under Pn
ϑ+n−1/2τ,g

).

Proof of Lemma 5.1. Along the same lines as in the proof of Lemma 4.3, the
result under Pn

ϑ,g easily follows from the multivariate CLT, and the one under
Pn
ϑ+n−1/2τ,g

can be obtained by establishing the joint normality (under Pn
ϑ,g) of

Tϑ,φ,g and log(dPn
ϑ+n−1/2τ,g

/dPn
ϑ,g), then applying Le Cam’s third Lemma.

We end this section with

Lemma A.4. Let Assumptions (A) and (B) hold at g = f ∈ FULAN. Then
(i) Tϑ,f is asymptotically normal with mean zero and mean Hf (Ip ⊗ Λ−1)τ2
under Pn

ϑ,f and under Pn
ϑ+n−1/2τ,f

(τ = (τ ′1, τ
′
2)

′ ∈ R
p × R

p2

), respectively, and

covariance matrix Hf under both; (ii) writing ϑ̂ = (μ̂′, (vec Λ̂)′)′, Tϑ̂,f − Tϑ,f +

n1/2Hf (Ip ⊗ Λ−1)vec(Λ̂− Λ) is oP (1) as n → ∞, under Pn
ϑ,f .
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Proof of Lemma A.4. Part (i) of the result readily follows from Lemma 4.3 by
using Lemma 4.1 and the identities Tϑ,Kf ,Lf ;f = Tϑ,f andHKf ,Lf ;f = HKf ,Lf

=
Hf . As for Part (ii), it is obtained by first showing that Tϑ+n1/2τ,f − Tϑ,f +
Hf (Ip ⊗ Λ−1)τ2 is oP (1) as n → ∞, under Pn

ϑ,f (which is a direct consequence
of the equivalent asymptotic linearity formulation of ULAN at f ∈ FULAN),
then by using Lemma 4.4 of Kreiss (1987).

A.4. Proofs of Theorems 3.1, 4.1, and 5.1

Those proofs are based on both following lemmas. The first one is actually The-
orem 9.2.1 in Rao and Mitra (1971), and the second one follows from standard
algebra.

Lemma A.5. Let Y be a Gaussian k-vector with mean μ and covariance ma-
trix Σ (that may be singular). Let A be a k × k matrix. Then Y ′AY ∼ χ2

d(δ)
for some d and δ if and only if (i) ΣAΣAΣ = ΣAΣ, (ii) ΣAμ ∈ M(ΣAΣ), and
(iii) μ′A′ΣAμ = μ′Aμ, in which case, d = tr(AΣ) and δ = μ′A′ΣAΣAμ.

Lemma A.6. (i) MK,L is the Moore-Penrose pseudoinverse of HK,L (in par-
ticular, MK,LHK,LMK,L = MK,L), and (ii) tr(MK,LHK,L) = d(K,L).

Proof of Theorem 3.1. In this proof, whenever we refer to Lemma A.6, it is for
K = Kf = ϕf ◦ F−1

+ and L = Lf = F−1
+ (note that HKf ,Lf

= Hf , MKf ,Lf
=

Mf , and d(Kf , Lf ) = d(f)). Now, since ϑ̂ satisfies Assumption (B(i)) and ϑ ∈
M(Ω), we have that MfHf (Ip ⊗ Λ−1)vec(Λ̂ − Λ) = 0. Hence, Lemma A.4(ii)
yields that

Qf = T ′
ϑ,f Mf Tϑ,f + oP (1), (A.7)

as n → ∞, under Pn
ϑ,f , with ϑ ∈ M(Ω). Part (i) of the theorem then follows

trivially from Lemma A.5, Lemma A.4(i), and Lemma A.6.
As for Part (ii), contiguity implies that (A.7) also holds under local alterna-

tives of the form Pn
ϑ+n−1/2τ,f

, with ϑ ∈ M(Ω) and τ /∈ M(Ω). Hence, Lemma A.5

(Conditions (i)-(iii) readily follow from Lemma A.6(i)) yields that Qf is asymp-
totically χ2

d(f)(δ) under P
n
ϑ+n−1/2τ,f

, with δ = (Hf (Ip⊗Λ−1)τ2)
′MfHfMfHfMf

(Hf (Ip ⊗ Λ−1)τ2) = τ ′2(Ip ⊗ Λ−1)′HfMfHf (Ip ⊗ Λ−1)τ2 (where we used again
Lemma A.6(i)).

Eventually, Part (iii) follows from the general form (in (3.1)) of locally and
asymptotically most stringent tests (see Le Cam (1986), Section 11.9).

Proof of Theorem 4.1. Applying Lemma 4.2 then Lemma 4.1 yields that, as
n → ∞, under Pn

ϑ,g, with ϑ ∈ M(Ω),

Q̃K,L = T̃ ′
ϑ,K,L MK,LT̃ϑ,K,L + oP (1)

= T ′
ϑ,K,L;g MK,L Tϑ,K,L;g + oP (1). (A.8)

Part (i) of the theorem then follows from Lemmas A.5, 4.3, and A.6.
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Now, by contiguity, (A.8) also holds under local alternatives of the form
Pn
ϑ+n−1/2τ,g

, with ϑ ∈ M(Ω) and τ /∈ M(Ω). In order to use Lemma A.5 again,

we further need checking that Conditions (ii) and (iii) in that lemma hold: Con-
dition (ii) states that HK,LMK,LHK,L;g(Ip ⊗ Λ−1)τ2 = HK,LMK,LHK,Lv for
some vector v, which is a direct consequence of Lemma A.6(i); as for Condi-
tion (iii), it trivially follows from Lemma A.6(i). Hence, Lemma A.5 shows that
Q̃K,L is asymptotically χ2

d(K,L)(δ) under Pn
ϑ+n−1/2τ,g

, where, by using again

Lemma A.6(i),

δ = (HK,L;g(Ip ⊗ Λ−1)τ2)
′MK,LHK,LMK,LHK,LMK,L(HK,L;g(Ip ⊗ Λ−1)τ2)

= τ ′2(Ip ⊗ Λ−1)′H ′
K,L;gMK,LHK,L;g(Ip ⊗ Λ−1)τ2,

which establishes Part (ii) of the theorem.

As for Part (iii), it is a direct consequence of the asymptotic equivalence,
under ∪ϑ∈M(Ω){Pn

ϑ,f} (hence, also under sequences of contiguous alternatives),

between Q̃f = Q̃Kf ,Lf
and the optimal parametric test statistic Qf (this equiv-

alence follows from (A.7), (A.8), and the identities Tϑ,Kf ,Lf ;f = Tϑ,f and
MKf ,Lf

= Mf ).

Proof of Theorem 5.1. This theorem follows from (5.3) and Lemma A.5, along
the same lines as the proof of Theorem 4.1. The required Gaussian version
of Lemma A.6, which is obtained for K = Kφ and L = Lφ, states that (i)
MφHφMφ = Mφ and (ii) tr(MφHφ) = p1p2.

A.5. Proof of Proposition 5.2

It only remains to prove Proposition 5.2.

Proof of Proposition 5.2. Part (i) follows—after painful computations—by eval-
uating (5.4) in the particular case for which Lr = Kr/E[K

2
r (U)] for all r =

1, . . . , p. Let us therefore concentrate on Part (ii). By using (x + y)2 ≥ 4xy
in (5.7), we see that alternatives for which B is symmetric satisfy

AREϑ,τ,g

[
φ̃K,L/φWilks

]
≥

∑
r∈S1

∑
s∈S2

B2
rs ar,s(K̄; g)as,r(K̄; g)∑

r∈S1

∑
s∈S2

B2
rs

, (A.9)

which shows that the ARE in (5.7) is bounded from below by a weighted mean of
the quantities ar,s(K̄; g)as,r(K̄; g) = δr,r(K̄, K̄; g)δs,s(K̄, K̄; g), r ∈ S1, s ∈ S2.
The result for the Wilcoxon test then follows from Hallin and Tribel (2000),

which establishes that infg∈FULAN δr,r(K̄, K̄; g) ≥ 9π4

210 for the linear scores u �→
K̄r(u) =

√
3u. As for the van der Waerden test, the result similarly follows

from the fact that, for the Gaussian scores u �→ K̄r(u) = Φ−1(u+1
2 ), one has

δr,r(K̄, K̄; g) ≥ 1 for all g ∈ FULAN, where the equality holds if and only if gr
is Gaussian; see Hallin (1994).
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