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Abstract

In this paper we study the theoretical properties of the deflation-based Fas-

tICA method, the original symmetric FastICA method, and a modified sym-

metric FastICA method, here called the squared symmetric FastICA. This

modification is obtained by replacing the absolute values in the FastICA ob-

jective function by their squares. In the deflation-based case this replacement

has no effect on the estimate since the maximization problem stays the same.

However, in the symmetric case we obtain a different estimate which has been

mentioned in the literature, but its theoretical properties has not been stud-

ied at all. In the paper we review the classic deflation-based and symmetric

FastICA approaches and contrast these with the squared symmetric version

of FastICA. We find the estimating equations and derive the asymptotical

properties of the squared symmetric FastICA estimator with an arbitrary

choice of nonlinearity. This allows the main contribution of the paper, i.e.,

efficiency comparison of the estimates in a wide variety of situations using
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asymptotic variances of the unmixing matrix estimates.

Keywords: Affine equivariance, independent component analysis, limiting

normality, minimum distance index

1. Introduction

We assume that a p-variate random vector x = (x1, . . . , xp)
T follows

the basic independent component (IC) model, that is, the components of

x are linear mixtures of p mutually independent latent variables in z =

(z1, . . . , zp)
T . The model can then be written as

x = µ+ Ωz, (1)

where µ is a location shift and Ω is a full-rank p × p mixing matrix. In

independent component analysis (ICA), parameter µ is usually regarded as

a nuisance parameter as the main interest is to find, using a random sample

X = (x1, . . . ,xn) from the distribution of x, an estimate for an unmixing

matrix Γ such that Γx has independent components [7], [2], [3]. Notice that,

although we restrict in this paper to the case where x and z are of the

same dimension, there also exists such versions of (1), where the dimension

of z is larger than that of x (the underdetermined case) or the other way

around (the overdetermined case). In the latter case we can simply apply a

dimension reduction method at first stage.

The IC model (1) is a semiparametric model in the sense that the marginal

distributions of the components z1, . . . , zp are unspecified. However, some

assumptions on z are needed in order to fix the model: For identifiability of

Ω, we need to assume that
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(A1) at most one of the components z1, . . . , zp is gaussian [18].

Nevertheless, µ, Ω and z are still confounded and the mixing matrix Ω

can be identified only up to the order and heterogenous multiplication of its

columns. To fix µ and the scales of the columns of Ω we further assume that

(A2) E(zi) = 0 and E(z2i ) = 1 for i = 1, . . . , p.

After these assumptions, the order and signs of the columns of Ω still remain

unidentified. For practical data analysis this is usually sufficient. The impact

of the component order on asymptotics is discussed in Section 3.

The solutions to the ICA problem are often formulated as algorithms

with two steps. The first step is to whiten the data, and the second step

is to find an orthogonal matrix that rotates the whitened data to indepen-

dent components. In the following we formulate such an algorithm at the

population level using the random variable x: Let S(Fx) = Cov(x) denote

the covariance matrix of a random vector x, where Fx denotes the cumula-

tive distribution function of x, and write xst = S−1/2(Fx)(x−E(x)) for the

standardized (whitened) random vector. Here the square root matrix S−1/2

is chosen to be symmetric. The aim of the second step is to find the rows

of an orthogonal matrix U = (u1, . . . ,up)
T , either one by one (deflation-

based approach) or simultaneously (symmetric approach). The symmetric

version of the famous FastICA algorithm [6] finds the orthogonal matrix U

by maximizing the objective function
p∑
j=1

|E[G(uTj xst)]|,

where G is a twice continuously differentiable, nonlinear and nonquadratic

function (see Section 2.5 for more details).
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In this paper we replace the absolute values by their squares as suggested

in [19], where the squared symmetric FastICA estimates based on convex

combinations of the third and fourth squared cumulants were studied in

detail. Notice that replacing the absolute values by their squares in the

objective function has been mentioned in [6] and [3, Section 6], but the

idea was never carried further. In Section 2 we formulate unmixing matrix

functionals based on the two symmetric approaches and the deflation-based

approach. Some statistical properties of the old estimators are recalled in

Section 3, and the corresponding results of squared symmetric FastICA are

derived for the first time for general function G. The efficiencies of the

three estimators are compared in Section 4 using both asymptotic results

and simulations.

2. FastICA functionals

In this section we give formal definitions of three different FastICA un-

mixing matrix functionals with corresponding estimating equations and algo-

rithms for their computation. The formal definition of the squared symmetric

FastICA functional is new. The conditions for function G that ensure the

consistency of the estimates is also discussed.

2.1. IC functionals

Let again Fx denote the cumulative distribution function of a random

vector x obeying the IC model (1), and write Γ(Fx) for the value of an

unmixing matrix functional at the distribution Fx. Due to the ambiguity in

model (1), it is natural to require that the separation result Γ(Fx)x = Γ(Fz)z
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does not depend on µ and Ω and the choice of z in the model specification.

This is formalized in the following.

Definition 1. The p× p matrix-valued functional Γ(Fx) is said to be inde-

pendent component (IC) functional if

1. Γ(Fx)x has independent components for all x in the IC model (1), and

2. Γ(Fx) is affine-equivariant in the sense that Γ(FAx+b) = Γ(Fx)A−1 for

all nonsingular p × p full-rank matrices A, for all p-vectors b and for

all x (even beyond the IC model).

The condition Γ(FAx+b) = Γ(Fx)A−1 can be relaxed to be true only up

to permutations and sign changes of their rows. The corresponding sample

version, denoted from now on by Γ̂ = Γ(X), is obtained when the IC func-

tional is applied to the empirical distribution function of X = (x1, . . . ,xn).

Naturally, the estimator is then also affine equivariant in the sense that

Γ(AX + b1Tn ) = Γ(X)A−1 for all nonsingular p × p full-rank matrices A

and for all p-vectors b.

The rest of this section focuses on three specific FastICA functionals. For

recent overviews of FastICA and its variants see also [9] and [22].

2.2. Deflation-based approach

Deflation-based FastICA functional is based on the algorithm proposed

in [4] and [6]. In deflation-based FastICA method the rows of an unmixing

matrix are extracted one after another. The method can thus be used in

situations where only the few most important components are needed. The

statistical properties of the deflation-based method were studied in [16] and
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[17], where the influence functions and limiting variances and covariances of

the rows of unmixing matrix were derived.

Assume now that x is an observation from an IC model (1) with mean

vector µ = E(x) and covariance matrix S = Cov(x). In deflation-based

FastICA, the unmixing matrix Γ = (γ1, . . . ,γp)
T is estimated so that after

finding γ1, . . . ,γj−1, the jth row vector γj maximizes a measure of non-

Gaussianity

|E[G(γTj (x− E(x)))]|

under the constraints γTl Sγj = δlj, l = 1, . . . , j, where δlj is the Kronecker

delta δlj = 1 (0) as l = j (l 6= j). The requirements for the function G and

the conventional choices of it are discussed in Section 2.5.

The deflation-based FastICA functional Γd satisfies the following p esti-

mating equations [17], [15]:

Definition 2. The deflation-based FastICA functional Γd = (γd1, . . . ,γ
d
p)
T

solves the estimating equations

T (γj) = S

(
j∑
l=1

γ lγ
T
l

)
T (γj), j = 1, . . . , p,

where g = G′ and T (γ) = E[g(γT (x− E(x)))(x− E(x))].

The estimating equations imply that ΓSΓT = Ip, where Ip denotes the

identity matrix. This is equivalent to Γ = US−1/2 for some orthogonal

matrix U . The estimation problem can then be reduced to the estimation of

the rows of U one by one. This suggests the following fixed-point algorithm
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for uj:

uj ←

(
Ip −

j−1∑
l=1

ulu
T
l

)
T (uj)

uj ← ||uj||−1uj,

where T (u) = E[g(uTxst)xst] and xst is the whitened random variable. How-

ever, this algorithm is unstable and we recommend the use of the original

algorithm [4], that is, a modified Newton-Raphson algorithm where T (u) is

replaced by T ∗(u) = E[g(uTxst)xst]− E[g′(uTxst)]u.

For the estimate based on the observed data set, all the expectations

above are replaced by the sample averages, e.g., E(x) is replaced by x̄ and

S by the sample covariance matrix Ŝ.

Notice that neither the estimating equations nor the algorithm fixes the

order in which the components are found, and the order depends to some

extent on the initial value in the algorithm. Since a change in the estimation

order changes the unmixing matrix estimate more than just by permuting its

rows, deflation-based FastICA is not affine equivariant if the initial value is

chosen randomly. To find an estimate which globally maximizes the objective

function at each stage, we propose the following strategy to choose the initial

value for the algorithm:

1. Find a preliminary consistent estimator Γ0 of Γ.

2. Find a permutation matrix P such that |E[G((PΓ0x)1)]| ≥ · · · ≥

|E[G((PΓ0x)p)]|.

3. The orthogonal initial value for U is PΓ0S
1/2.

The preliminary estimate in step 1 can be for example k-JADE estimate [10].
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This algorithm, as well as all other FastICA algorithms mentioned in this

paper, are implemented in R package fICA [11].

The extraction order of the components is highly important not only for

the affine equivariance of the estimate, but also for its efficiency. In the

deflationary approach, accurate estimation of the first components can be

shown to have a direct impact on accurate estimation of the last components

as well. [15] discussed the extraction order and the estimation efficiency

and introduced the so-called reloaded deflation-based FastICA, where the

extraction order is based on the minimization of the sum of the asymptotic

variances, see Section 3. [13] discussed the estimate that uses different G-

functions for different components. Different versions of the algorithm and

their performance analysis are presented for example in [24], [23].

2.3. Symmetric approach

In symmetric FastICA approach, the rows of Γ = (γ1, . . . ,γp)
T are found

simultaneously by maximizing

p∑
j=1

|E[G(γTj (x− E(x)))]|

under the constraint ΓSΓT = Ip. The unmixing matrix Γ then optimizes

the Lagrangian function

L(Γ,Θ) =

p∑
j=1

|E[G(γTj (x−E(x)))]|−
p∑
j=1

θjj(γ
T
j Sγj−1)−

p−1∑
j=1

p∑
l=j+1

θljγ
T
l Sγj,

where symmetric matrix Θ = [θlj] contains p(p + 1)/2 Lagrangian multipli-

ers. Differentiating the above function with respect to γj and setting the
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derivative to zero yields

E[g(γTj (x− E(x)))(x− E(x))] πj = 2θjjSγj +
∑
l<j

θljSγ l +
∑
l>j

θjlSγ l,

where g = G′ and πj = sign(E[G(γTj (x − E(x)))]). Then by multiplying

both sides by γTl we obtain γTl E[g(γTj (x − E(x)))(x − E(x))]πj = θlj, for

l < j, and γTl E[g(γTj (x − E(x)))(x − E(x))]πj = θjl, for l > j. Hence the

solution Γ must satisfy the following estimating equations

Definition 3. The symmetric FastICA functional Γs = (γs1, . . . ,γ
s
p)
T solves

the estimating equations

γTl T (γj) πj = γTj T (γ l)πl and γTl Sγj = δlj, j, l = 1, . . . , p,

where T (γ) = E[g(γT (x− E(x)))(x− E(x))].

Again, Γ = US−1/2 for some orthogonal matrix U . Then the estimation

equations for U are

uTl T (uj) πj = uTj T (ul) πl and uTl uj = δlj,

where l, j = 1, . . . , p, T (u) = E[g(uTxst)xst], and the equations suggest the

following fixed-point algorithm for U :

T ← (T (u1), . . . ,T (up))
T

U ← (TT T )−1/2T .

As in the deflation-based approach, a more stable algorithm is obtained when

T (uj) is replaced by T ∗(uj).

In symmetric FastICA, different initial values give identical unmixing

matrix estimates up to order and signs of the rows.
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2.4. Squared symmetric approach

In squared symmetric FastICA, the absolute values in the objective func-

tion of the regular symmetric FastICA are replaced by squares [19]. The

squared symmetric FastICA functional Γs2 = (γs21 , . . . ,γ
s2
p )T maximizes

p∑
j=1

(E[G(γTj (x− E(x)))])2

under the constraint ΓSΓT = Ip. Similarly as in Section 2.3 the Lagrange

multipliers method yields the following estimating equations:

Definition 4. The squared symmetric FastICA functional Γs2 = (γs21 , . . . ,γ
s2
p )T

solves the estimating equations

γTl T 2(γj) = γTj T 2(γ l) and γTl Sγj = δlj, j, l = 1, . . . , p,

where T 2(γ) = E[G(γT (x− E(x)))]E[g(γT (x− E(x)))(x− E(x))].

The estimation equations for U are

uTl T 2(uj) = uTj T 2(ul) and uTl uj = δlj, l, j = 1, . . . , p,

where T 2(u) = E[G(uT (xst))]E[g(uT (xst))xst]. The following algorithm,

which is based on the same idea as the algorithm for symmetric FastICA,

can be used to find the solution in practice:

T ← (T ∗2(u1), . . . ,T
∗
2(up))

T

U ← (TT T )−1/2T ,

where T ∗2(u) = E[G(uT (xst))]{E[g(uT (xst))xst]− E[g′(uT (xst))]u}.
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Notice that

T ∗2(u) = E[G(uTxst)]T
∗(u),

and hence the squared symmetric FastICA estimator can be seen as weighted

classical symmetric FastICA estimator. The more nongaussian an indepen-

dent component is (as measured by function G), the more impact it has in

the orthogonalization step.

2.5. Function G

The function G is required to be twice continuously differentiable, nonlin-

ear and nonquadratic function such that E[G(z)] = 0, when z is a standard

Gaussian random variable. The derivative function g = G′ is the so-called

nonlinearity. The use of classical kurtosis as a measure of non-Gaussianity

is given by the nonlinearity function g(z) = z3 (pow3) [4]. Other popular

choices include g(z) = tanh(az) (tanh) and g(z) = z exp(−az2/2) (gaus)

with tuning parameters a as suggested in [5], and g(z) = z2 (skew).

The deflation-based, symmetric and squared symmetric FastICA esti-

mators need extra conditions for G to ensure the consistency of the esti-

mation procedure: One then requires that for any z = (z1, . . . , zp)
T with

independent and standardized components and for any orthogonal matrix

U = (uT1 , . . . ,u
T
p )T , the following holds:

def |E[G(uT1 z)]| ≤ max(|E[G(z1)]|, . . . , |E[G(zp)]|),

sym |E[G(uT1 z)]|+ · · ·+ |E[G(uTp z)]|

≤ |E[G(z1)]|+ · · ·+ |E[G(zp)]| or

sym2 (E[G(uT1 z)])2 + · · ·+ (E[G(uTp z)])2

≤ (E[G(z1)])
2 + · · ·+ (E[G(zp)])

2.
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[14] and [19] proved that for pow3 and skew (as well as for their convex

combination), all three conditions are satisfied. On the contrary, tanh and

gaus do not satisfy the conditions for all choices of the distributions of z1 and

z2. For these two nonlinearities [20] found bimodal distributions for which

the fixed points of the deflation-based FastICA algorithm are not correct

solutions of the IC problem. In Figure 1 we plot the density functions of

random variables z1 and z2 which serve as examples for a case where none

of the three inequalities hold for gaus. These examples should however be
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Figure 1: Density functions of z1 and z2, which violate the conditions def, sym and sym2

with nonlinearity gaus. Both distributions are mixtures of four Gaussian distributions.

For more details, see Appendix.

seen as rare and artificial exceptions and FastICA with tanh and gaus satisfy

the conditions for most of pairs of distributions of z we have checked. For

example, in Section 4.3 FastICA with tanh worked as expected under a wide

variety of source distributions. Deflation-based or symmetric FastICA with

tanh is perhaps the most popular unmixing matrix estimate.
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See Section 4.2 for the optimal choice of the nonlinearity for a component

with a known density function.

3. Asymptotical properties of the FastICA estimators

The limiting variances and the asymptotic multinormality of the deflation-

based and symmetric FastICA unmixing matrix estimators were found quite

recently in [17], [15], [21] and [22]. In this section, we review these find-

ings and derive corresponding results for the squared symmetric FastICA

estimator.

Let now X = (x1, . . . ,xn) be a random sample from the distribution of

x following the IC model (1). The deflation-based, symmetric and squared

symmetric FastICA estimators Γ̂
d
, Γ̂

s
and Γ̂

s2
are then obtained when the

three functionals are applied to the empirical distribution of X.

Due to affine equivariance, we can in the following assume without loss of

generality that Ω = Ip. Before proceeding we need to make some additional

assumptions on the distribution of zi = (zi1, . . . , zip)
T , namely,

(A3) The fourth moments βj = E[z4ij] as well as the following expected values

νj = E[G(zij)], µj = E[g(zij)], σ2
j = Var[g(zij)],

λj = E[g(zij)zij], δj = E[g′(zij)], τj = E[g′(zij)zij]

exist. Write also πj = sign(νj).

Write now

T j =
1

n

n∑
i=1

(g(zij)− µj)zi and

T 2j =
1

n

n∑
i=1

G(zij)
1

n

n∑
i=1

(g(zij)− µj)zi
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for j = 1, . . . , p. To avoid division by zero in the following theorem, assume

that νj(λj − δj) ≥ 0 for all j = 1, . . . , p, with equality for at most one

j. Notice that in [6] it was stated that νj(λj − δj) > 0 for most of the

reasonable functions G and distributions of zij. For (pow3), νj(λj − δj) > 0

for any distribution with E(z4ij) 6= 3. The limiting behavior of the deflation-

based FastICA estimate was first given in [15]. The corresponding results

of the symmetrical FastICA estimates are given in the following. The result

(iii) is proved in the Appendix and the proof of (ii) is essentially similar to

the proof of (iii). In the following theorem, ei is a p-vector with ith element

one and others zero and oP (1) replaces a random variable that converges in

probability to zero as n goes to the infinity.

Theorem 1. LetX = (x1, . . . ,xn) be a random sample from the IC model (1)

satisfying the assumptions (A1)-(A3): If Ω = Ip then there exist a sequence

of solutions Γ̂
d
, Γ̂

s
and Γ̂

s2
converging to Ip such that

(i) (deflation-based)

√
n γ̂djl = −

√
n γ̂dlj −

√
n Ŝjl + oP (1), l < j,

√
n (γ̂djj − 1) = −1

2

√
n (Ŝjj − 1) + oP (1), l = j,

√
n γ̂djl =

eTl
√
nT j − λj

√
n Ŝjl

λj − δj
+ oP (1), l > j,

(ii) (symmetric)

√
n (γ̂sjj − 1) = −1

2

√
n (Ŝjj − 1) + oP (1), l = j,

√
n γ̂sjl =

eTl
√
nT jπj − eTj

√
nT lπl − (λj πj − δlπl)

√
n Ŝjl

(λj − δj)πj + (λl − δl)πl
+ oP (1), l 6= j,
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(iii) (squared symmetric)

√
n (γ̂s2jj − 1) = −1

2

√
n (Ŝjj − 1) + oP (1), l = j,

√
n γ̂s2jl =

eTl
√
nT 2j − eTj

√
nT 2l + (νlδl − νjλj)

√
n Ŝjl

νj(λj − δj) + νl(λl − δl)
+ oP (1), l 6= j.

For the asymptotical properties of deflation-based FastICA for several

nonlinearities g, see [13]. As seen from Theorem 1(i), the limiting distribu-

tions of vectors γ̂d1, . . . , γ̂
d
p depend on the order in which they are found. It

is shown in Corollary 2 that, for j < l, the asymptotic variances of γ̂dlj and

γ̂djl are equal and depend only on the distribution of the jth independent

component. The limiting distributions of the diagonal elements do not de-

pend on the method or the chosen nonlinearity g. [19] discovered that the

squared symmetric FastICA estimator with (pow3) nonlinearity has the same

asymptotics as the JADE (joint approximate diagonalization of eigenmatri-

ces) estimator [1]. We then have the following straightforward but important

corollaries. When A is a p × q matrix, vec(A) is a pq-vector derived as a

sequence of column vectors of A.

Corollary 1. Under the assumptions of Theorem 1, if the joint limiting

distribution of
√
nT jl and

√
nT 2jl for j 6= l = 1, . . . , p and

√
n (Ŝjl−δjl) for

j, l = 1, . . . , p, is a multivariate normal distribution, then also the limiting

distributions of
√
n vec(Γ̂

d
− Ip),

√
n vec(Γ̂

s
− Ip) and

√
n vec(Γ̂

s2
− Ip) are

multivariate normal.

Corollary 2. Under the assumptions of Theorem 1, the asymptotic covari-

ance matrix (ASV) of the jth source vectors are of the form

ASV (γ̂j) =

p∑
l=1

ASV (γ̂jl)ele
T
l
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with ASV (γ̂jj) = (βj − 1)/4, j = 1, . . . , p, for each estimator. The other

variances are

(i) (deflation-based)

ASV (γ̂djl) =
σ2
l − λ2l

(λl − δl)2
+ 1, l < j

ASV (γ̂djl) =
σ2
j − λ2j

(λj − δj)2
, l > j.

(ii) (symmetric)

ASV (γ̂sjl) =
σ2
j + σ2

l − λ2j + δl(δl − 2λl)

((λj − δj)πj + (λl − δl)πl)2
, l 6= j.

(iii) (squared symmetric)

ASV (γ̂s2jl ) =
ν2j (σ2

j − λ2j) + ν2l (σ2
l + δl(δl − 2λl))

(νj(λj − δj) + νl(λl − δl))2
, l 6= j.

The asymptotic variances of the deflation-based and symmetric FastICA

estimators were first derived in [17] and [21], respectively. The asymptotic

covariance matrices of the FastICA estimators for given marginal densities

can be computed using the R package BSSasymp [12].

4. Efficiency comparisons

The asymptotical results derived in Section 3 allow us to evaluate and

compare the performances of the FastICA methods. In this section the

asymptotic and finite sample efficiencies of deflation-based and symmetric

FastICA estimators are compared to those of squared symmetric FastICA

estimators using a wide range of distributions with varying skewness and

kurtosis values.
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4.1. Performance index

We measure the finite sample performance of the unmixing matrix esti-

mates using the minimum distance index [8]

D̂ = D(Γ̂Ω) =
1√
p− 1

inf
C∈C
‖CΓ̂Ω− Ip‖, (2)

where ‖ · ‖ is the matrix (Frobenius) norm and C is the set of p × p matri-

ces with exactly one non-zero element in each column and each row. The

minimum distance index is scaled so that 0 ≤ D̂ ≤ 1. If Ω = Ip and
√
n vec(Γ̂ − Ip) → Np2(0,Σ), then the limiting distribution of n(p − 1)D̂2

is that of the weighted sum of independent chi squared variables with the

expected value

Trace [(Ip2 −Dp,p)Σ(Ip2 −Dp,p)] , (3)

where Dp,p =
∑

i(eie
T
i ) ⊗ (eie

T
i ), and ⊗ means the Kronecker product.

Notice that (3) equals the sum of the limiting variances of the off-diagonal

elements of
√
n vec(Γ̂− Ip) and therefore

p−1∑
j=1

p∑
l=j+1

(ASV (γ̂jl) + ASV (γ̂lj)) (4)

provides a global measure of the variation of the estimate Γ̂.

4.2. Asymptotic efficiency

Let fj be the density function and gj = −f ′j/fj be the optimal loca-

tion score function for the jth independent component zj. Also let Ij =

V ar(gj(zj)) be the Fisher information number for the location problem.

Write

αj :=
σ2
j − λ2j

(λj − δj)2
= [(Ij − 1)ρ2g(zj)gj(zj)·zj ]

−1,

17



where ρ2g(zj)gj(z)·zj is the squared partial correlation between g(zj) and gj(zj)

given zj. Then we have the following result.

Theorem 2. For our three estimates and for non-gaussian zj and zl, j 6= l,

ASV (γ̂jl) + ASV (γ̂lj) is(
βj

βj + βl

)2

(2αj + 1) +

(
βl

βj + βl

)2

(2αl + 1)

where  βj = 1, πj(λj − δj) and νj(λj − δj)

βl = 0, πl(λl − δl) and νl(λl − δl)

for deflation-based, symmetric and squared symmetric FastICA estimates,

respectively.

Notice first that the value of ASV (γ̂jl)+ASV (γ̂lj) only depends on the jth

and lth marginal distributions, which means we can restrict the comparison

to bivariate distributions as the multivariate comparison would only mean

summing the bivariate comparisons. If the jth and lth marginal distributions

are the same, then the three values of ASV (γ̂jl) + ASV (γ̂lj) are (2αj + 1),

(2αj + 1)/2 and (2αj + 1)/2 and these are minimized with the choice g = gj.

So, if z1, . . . , zp are identically distributed with the density function f , then

the optimal choice for g is −f ′/f .

If the lth component is Gaussian, then λl = δl, and for the deflation-based

and squared symmetric FastICA estimates, ASV (γ̂jl)+ASV (γ̂lj) = (2αj+1)

and for the symmetric FastICA estimate one gets

ASV (γ̂jl) + ASV (γ̂lj) = (2αj + 1) +
2(σ2

l − λ2l )
β2
j

= (2αj + 1) +
2σ2

l

β2
j

(
1− ρ2g(zil)zil

)
,

18



where ρg(zil)zil is the correlation between g(zil) and zil. The symmetric Fas-

tICA is therefore always poorest in this case.

For further comparison of the estimators we use two families of source dis-

tributions, the standardized exponential power distribution family and the

standardized gamma distribution family. The density function of standard-

ized exponential power distribution with shape parameter β is

f(x) =
β exp{−(|x|/α)β}

2αΓ(1/β)
,

where β > 0, α = (Γ(1/β)/Γ(3/β))1/2 and Γ is the gamma function. The

distribution is symmetric for any β, and β = 2 gives the normal (Gaussian)

distribution, β = 1 gives the heavy-tailed Laplace distribution and the den-

sity converges to the low-tailed uniform distribution as β →∞. The density

function of standardized gamma distribution with shape parameter α is

f(x) =
(x+

√
α)α−1αα/2 exp{−(x+

√
α)
√
α}

Γ(α)
.

Gamma distributions are right skew, and for α = k/2, the distribution is

a chi square distribution with k degrees of freedom, k = 1, 2, . . . . When

α = 1, we have an exponential distribution, and the distribution converges

to a normal distribution as α→∞.

We next compare the asymptotic variances of the unmixing matrix es-

timates with the same nonlinearity and for Ω = Ip. For the comparison,

write

AREs2,d =
ASV (γ̂djl) + ASV (γ̂dlj)

ASV (γ̂s2jl ) + ASV (γ̂s2lj )
,

for the asymptotic relative efficiency of the squared symmetric estimate with

respect to the deflation based estimate, and similarly for AREs2,s. Notice
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that AREs2,d and AREs2,s depend on the two marginal distribution as well

as on the chosen nonlinearity. We then plot the contour maps of the ARE’s

as functions of the shape parameters of the exponential power or gamma

distributions with nonlinearities pow3 and tanh. The equal efficiency is given

by the ARE value 1 and can be found using the bar with contour thresholds

on the right-hand side of the figures, or AREs2,d = 1 can be found where

one of the components is Gaussian, and the color of AREs2,s = 1 where the

two distributions are the same. The darker the point the higher the relative

efficiency.

In Figure 2, the map is mostly darker than the color of AREs2,d = 1,

and hence the squared symmetric FastICA estimator is in most cases more

efficient than the deflation-based estimator. Figure 3 shows that the areas

where ASV (γ̂sjl) > ASV (γ̂s2jl ) and ASV (γ̂sjl) < ASV (γ̂s2jl ) are almost equally

large, but the differences in favour of the squared symmetric estimator are

larger. They also occur in cases where the separation of the components is

difficult, and hence the efficiency is important there.

In Table 1 the values of AREs2,s and AREs2,d are displayed for different

pairs of source distributions and for pow3 in the upper triangle and for tanh

in the lower triangle. Table 1 presents a sample of the values of Figure 2 and

Figure 3 in a numerical form.

4.3. Finite-sample efficiencies

We compare the finite-sample efficiencies of the estimates in a simulation

study using the same two-dimensional settings with Ω = Ip as in the previous

section. In each setting we consider the average of n(p − 1)D̂2 which has

limiting expected value ASV (γ̂jl) + ASV (γ̂lj). Thus, the simulation study
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Table 1: Values of AREs2,s (on the top) and AREs2,d (on the bottom) for different

distributions. L=Laplace distribution=EP1=exponential power distribution with β = 1,

N=Normal distribution=EP2, U=Uniform distribution, G1=Gamma distribution with

α = 1. Upper triangle for pow3 and lower triangle for tanh.
L EP1.5 EP1.75 N EP 3 EP4 U G1 G3 G6

L 1 0.87 0.96 1.10 0.79 0.74 0.70 0.84 1.00 0.94

EP1.5 1.05 1 1.02 1.46 0.87 1.05 1.61 0.87 0.84 0.95

EP1.75 1.21 1.10 1 1.72 1.53 2.21 3.75 0.95 0.93 0.92

N 1.50 1.79 1.90 – 3.09 3.85 5.49 1.03 1.13 1.25

EP3 0.91 0.99 1.29 2.23 1 1.23 1.45 0.86 0.74 0.77

EP4 0.85 1.13 1.55 2.32 1.05 1 1.13 0.81 0.71 0.86

U 0.87 1.46 1.90 2.45 1.24 1.08 1 0.76 0.74 1.20

G1 0.97 0.94 1.12 1.43 0.82 0.74 0.76 1 0.84 0.87

G3 1.15 0.93 0.97 1.67 0.85 1.18 1.39 1.07 1 0.93

G6 1.27 1.10 0.92 1.79 1.16 1.70 1.91 1.18 1.06 1

L EP1.5 EP1.75 N EP 3 EP4 U G1 G3 G6

L 2 1.12 1.02 1 1.07 1.15 1.34 1.46 1.53 1.18

EP1.5 1.16 2 1.02 1 0.87 0.55 0.40 1.03 1.26 1.89

EP1.75 1.03 1.21 2 1 0.90 0.83 0.81 1.00 1.04 1.15

N 1 1 1 – 1 1 1 1 1 1

EP3 1.19 2.44 1.12 1 2 1.13 1.01 1.02 1.17 1.72

EP4 1.42 1.17 1.04 1 1.42 2 1.23 1.04 1.35 2.60

U 2.24 1.02 1.01 1 1.14 1.34 2 1.08 1.83 0.21

G1 2.32 1.18 1.03 1 1.19 1.74 2.24 2 1.20 1.05

G3 1.12 2.29 1.24 1 2.54 0.81 0.81 1.17 2 1.39

G6 1.04 1.15 1.91 1 0.94 0.93 0.94 1.05 1.29 2

also illustrates how well the asymptotic results approximate the finite-sample

variances. Let Γ̂
s2

i and Γ̂
s

i , i = 1, . . . ,M , be the estimates from M samples.

Then the finite sample asymptotic relative efficiency is estimated by

ÂREs2,s =

∑M
i=1{D(Γ̂

s

iΩ)2}∑M
i=1{D(Γ̂

s2

i Ω)2}
.

In Table 2, we list the estimated values of AREs2,s and AREs2,d for the

same set of distributions as in Table 1. For each setting, M = 10000 samples

of size n = 1000 are generated. In most of the settings, the ratios of the

averages are close to the corresponding asymptotical values. When both
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Figure 2: Contour maps of AREs2,d when Ω = Ip and the source distributions are ex-

ponential power (EP) or gamma (Gamma) distributions with varying shape parameter

values. The nonlinearities are pow3 on the top row and tanh on the bottom row.

components are nearly Gaussian, a larger sample size than 1000 is required

for ÂREs2,s and ÂREs2,d to converge to AREs2,s and AREs2,d, respectively.

Also, if E[G(zij)] ≈ E[G(zil)], then the extraction order of the deflation-

based estimate is not always the one which is assumed when computing the

asymptotical variances. This may have a large impact on the efficiency of

the deflation-based estimate.

In Figure 4 we plot the contour maps of the average of n(p − 1)D̂2 over

200 simulation runs for deflation-based, symmetric and squared symmetric

FastICA estimates using tanh. Each setting has two independent components

22



1 3 5 7

1

3

5

7

EP

E
P

Sym/Sym2, pow3

1 3 5 7

1

3

5

7

Gamma

G
am

m
a

1 3 5 7

1

3

5

7

EP

G
am

m
a

1

2

3

4

1 3 5 7

1

3

5

7

EP

E
P

Sym/Sym2, tanh

1 3 5 7

1

3

5

7

Gamma

G
am

m
a

1 3 5 7

1

3

5

7

EP

G
am

m
a

1

2

3

4

Figure 3: Contour maps of AREs2,s when Ω = Ip and the source distributions are ex-

ponential power (EP) or gamma (Gamma) distributions with varying shape parameter

values. The nonlinearities are pow3 on the top row and tanh on the bottom row.

with exponential power distribution and varying shape parameter value, and

n = 1000. Also the contour maps of the limiting expected values are given,

and the corresponding maps resemble each other rather nicely. The asymp-

totical results thus provide good approximations already for n = 1000.

5. Conclusions

In this paper we reviewed in a unified way the estimating equations, algo-

rithms and asymptotic theory of the classical deflation-based and symmetric

FastICA estimators and provided similar tools and derived similar results

23



Table 2: Values of ÂREs2,s (on the top) and ÂREs2,d (on the bottom) computed

from 10000 samples of size n = 1000 for different distributions. L=Laplace distribu-

tion=EP1=exponential power distribution with β = 1, N=Normal distribution=EP2,

U=Uniform distribution, G1=Gamma distribution with α = 1. Upper triangle for pow3

and lower triangle for tanh.
L EP1.5 EP1.75 N EP 3 EP4 U G1 G3 G6

L 0.98\0.86 0.94 1.09 1.17 0.80 0.75 0.73 0.85 0.88 0.98

EP1.5 1.03 1.01\0.95 1.15 1.34 0.94 1.07 1.49 0.92 0.89 0.95

EP1.75 1.27 1.27 1.14\1.13 1.07 1.66 2.10 3.13 1.02 1.06 1.08

N 1.47 1.65 1.12 – 2.22 2.99 4.13 1.05 1.25 1.25

EP3 0.92 1.06 1.59 1.91 1.31\1.07 1.08 1.45 0.85 0.77 0.90

EP4 0.84 1.14 1.67 2.12 1.06 1.07\1.00 1.14 0.81 0.76 0.98

U 0.87 1.41 1.89 2.22 1.25 1.08 1.00\1.00 0.76 0.82 1.23

G1 0.96 0.97 1.18 1.43 0.84 0.76 0.76 0.99\0.84 0.88 0.93

G3 1.15 0.94 1.12 1.51 0.87 1.01 1.38 1.13 1.10\0.83 0.90

G6 1.31 1.21 1.09 1.23 1.19 1.47 1.86 1.25 1.15 1.11\0.93

L EP1.5 EP1.75 N EP 3 EP4 U G1 G3 G6

L 1.93\1.79 1.12 1.02 1.00 1.09 1.18 1.38 1.47 1.53 1.18

EP1.5 1.14 1.82\1.47 1.14 0.98 1.66 1.54 0.85 1.04 1.29 1.40

EP1.75 1.03 1.24 1.14\1.04 1.03 1.18 0.89 0.72 1.00 1.04 1.11

N 1.00 0.98 1.05 – 0.89 0.91 0.92 1.00 1.00 1.00

EP3 1.18 1.78 1.19 0.93 1.82\1.78 1.35 1.01 1.03 1.25 1.50

EP4 1.42 1.41 1.01 0.97 1.40 1.93\1.94 1.23 1.05 1.42 1.52

U 2.14 1.00 0.99 0.99 1.13 1.33 1.92\1.94 1.11 1.64 1.30

G1 2.23 1.18 1.03 1.00 1.20 1.44 2.27 2.04\1.66 1.22 1.06

G3 1.43 1.99 1.20 0.99 1.79 1.85 1.03 1.26 2.18\1.57 1.36

G6 1.05 1.83 1.21 0.99 1.35 1.05 0.91 1.06 1.49 1.29\1.36

for the novel squared symmetric FastICA estimators. The squared sym-

metric FastICA estimator can be derived as the regular symmetric FastICA

estimator, but replacing the analytically cumbersome absolute values in the

objective function by their squares. The asymptotic variances were used to

compare the three methods in numerous different situations.

The asymptotic and finite sample efficiency studies imply that although

none of the methods uniformly outperforms the others, the squared symmet-

ric approach has the best overall performance under the considered combina-

tions of source distributions and nonlinearities. Also a crude ranking order,
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Figure 4: Contour maps of the average of n(p − 1)D̂2 over 200 simulation runs with

deflation-based, symmetric and squared symmetric FastICA estimates using tanh on the

top and the contour maps of the limiting expected values on the bottom. Two independent

components with exponential power distribution and varying shape parameter value.

(deflation-based, symmetric, squared symmetric), from worst to best can be

given. Thus the use of the squared symmetric variant over the two other

methods is highly recommended.
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Appendix

For the proof of Theorem 1, write

T̂ (γ̂) =
1

n

n∑
i=1

g(γ̂T (xi − x̄))(xi − x̄) and

T̂ 2(γ̂) =
1

n

n∑
i=1

G(γ̂T (xi − x̄))
1

n

n∑
i=1

g(γ̂T (xi − x̄))(xi − x̄).

The deflation-based, symmetric and squared symmetric FastICA estimators

Γ̂
d

= (γ̂d1, . . . , γ̂
d
p)
T = Γd(X), Γ̂

s
= (γ̂s1, . . . , γ̂

s
p)
T = Γs(X) and Γ̂

s2
=

(γ̂s21 , . . . , γ̂
s2
p )T = Γs2(X) are defined as follows.

Definition 5. The deflation-based, symmetric and squared symmetric Fas-

tICA estimates Γ̂
d
, Γ̂

s
and Γ̂

s2
solve the following sets of estimating equations

T̂ (γ̂j) = Ŝ

(
j∑
l=1

γ̂ lγ̂
T
l

)
T̂ (γ̂j), j = 1, . . . , p,

γ̂Tl T̂ (γ̂j) π̂j = γ̂Tj T̂ (γ̂ l) π̂l and γ̂Tl Ŝγ̂j = δlj, j, l = 1, . . . , p,

γ̂Tl T̂ 2(γ̂j) = γ̂Tj T̂ 2(γ̂ l) and γ̂Tl Ŝγ̂j = δlj, j, l = 1, . . . , p,

respectively.

To prove Theorem 1, we need the following straightforward result:

Lemma 1. The second set of estimating equations γ̂Tj Ŝγ̂ l = δlj, j, l =

1, . . . , p yields to

√
n (γ̂jj − 1) = −1

2

√
n (Ŝ − Ip)jj + oP (1) and

√
n γ̂jl +

√
n γ̂lj = −

√
n Ŝjl + oP (1). (5)
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Proof of Theorem 1 (iii)

Let us now consider the first set of estimating equations. To shorten the

notations, write T̂ 2(γ̂j) = T̂ 2j. Now

√
n γ̂Tl T̂ 2j =

√
n (γ̂ l − el)T T̂ 2j +

√
n eTl (T̂ 2j − νjλjej).

By Taylor expansion and Slutky’s Theorem, we have

√
n (T̂ 2j − νjλjej) =

√
n (T 2j − νjλjej)− (µjλj + νjτj)eje

T
j

√
n x̄

+ (λ2jeje
T
j + νj∆j)

√
n (γ̂j − ej) + oP (1),

where ∆j = E[g′(zij)ziz
T
i ]. Consequently,

√
n γ̂Tl T̂ 2j =

√
n (γ̂ l − el)Tνjλjej + eTl (

√
nT 2j − (µjλj + νjτj)eje

T
j

√
n x̄

+ (λ2jeje
T
j + νj∆j)

√
n (γ̂j − ej)) + oP (1)

=νjλj
√
n γ̂lj + eTl

√
nT 2j + νjδj

√
n γ̂jl + oP (1).

According to our estimating equations, above expression is equivalent to

√
n γ̂Tj T̂ 2l = νlλl

√
n γ̂jl +

√
n eTj T 2l + νlδl

√
n γ̂ lj + oP (1),

which means that

(νlλl − νjδj)
√
n γ̂jl − (νjλj − νlδl)

√
n γ̂lj =

√
n eTl T 2j −

√
n eTj T 2l + oP (1).

From (5) in Lemma 1, we have
√
n γ̂lj = −

√
n (γ̂jl + Ŝjl) + oP (1), and thus

(νj(λj − δj) + νl(λl − δl))
√
n γ̂jl

=
√
n (eTl T 2j − eTj T 2l) + (νlδl − νjλj)

√
n Ŝjl + oP (1),

which proves the Theorem.
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The densities of z1 and z2 in Section 2.5 are given by

fi =
4∑
j=1

πijN(µij, σ
2
ij), i = 1, 2,

where N(µ, σ2) denotes the Gaussian density function with mean µ and vari-

ance σ2, and the (rounded) parameter values are π11 = 0.09, π12 = 0.43,

π13 = 0.43, π14 = 0.04, π21 = 0.15, π22 = 0.31, π23 = 0.45, π24 = 0.09, µ11 =

−1.76, µ12 = −0.34, µ13 = 0.54, µ14 = 1.79, µ21 = −1.71, µ22 = −0.36,

µ23 = 0.48, µ24 = 1.66, σ2
11 = 0.13, σ2

12 = 0.50, σ2
13 = 0.28, σ2

14 = 0.13,

σ2
21 = 0.11, σ2

22 = 0.26, σ2
23 = 0.11, σ2

24 = 0.11.
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