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Abstract

In this paper, we assume that the observed p time series are linear combina-
tions of p latent uncorrelated weakly stationary time series. The problem is
then, using the observed p-variate time series, to find an estimate for a mix-
ing or unmixing matrix for the combinations. The estimated uncorrelated
time series may then have nice interpretations and can be used in a further
analysis. The popular AMUSE algorithm finds an estimate of an unmixing
matrix using covariances and autocovariances of the observed time series. In
this paper, we derive the limiting distribution of the AMUSE estimator under
general conditions, and show how the results can be used for the comparison
of estimates. The exact formula for the limiting covariance matrix of the
AMUSE estimate is given for general MA(∞) processes.

Keywords: AMUSE, asymptotic normality, autocovariance matrix,
MA(∞) processes, minimum distance index

1. Introduction

Blind source separation (BSS) is a very general method which in its most
basic form solves the following problem: Assume that the components of
an observed p-variate vector x are linear combinations of the components
of a latent unobserved p-variate source vector z. The BSS model can then
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be written as x = Ωz with an unknown full rank p × p mixing matrix Ω,
and the aim is, based on the observations x1, . . . ,xn, to find an estimate of
the mixing matrix Ω (or its inverse). In the independent component analysis
(ICA), which is perhaps the most popular BSS approach, it is further assumed
that the components of z are mutually independent and at most one of them
is gaussian. The BSS approach has been widely used in biomedical signal
analysis, brain imaging, and economic time series applications, for example.

For BSS applications, it is often assumed that the observation vectors
x1, . . . ,xn are independent and identically distributed (iid) observations from
the distribution Fx. In reality, however, there is often temporal (e.g. time
series) or spatial (e.g. image analysis) dependence between the observations,
and one should naturally utilize this dependence in the analysis of data. In
the time series context, the model may be written as

xt = Ωzt, t = 0,±1,±2, . . .

where z = (zt)t=0,±1,±2,... is a p-variate time series satisfying some general
assumptions, and the aim is again, based on observed p-variate time series
x1, . . . ,xT , to estimate a full-rank p × p matrix Ω (or its inverse). In the
signal processing community, an analysis tool called a second order source
separation was developed for this problem. In this paper, we consider the
second order source separation model and find the limiting properties of the
estimate obtained from the popular AMUSE (Algorithm for Multiple Un-
known Signals Extraction) (Tong et al., 1990, 1991) algorithm, one of the
first solutions of the problem. The algorithm uses covariances and autoco-
variances with different lags τ = 1, 2, . . . of the observed multivariate time
series.

The structure of the paper is as follows. In Section 2, the BSS model
and autocovariance matrix functionals with different lags τ are discussed
and then used for the definition of the AMUSE unmixing matrix functional
and estimator. The asymptotic distribution of the AMUSE estimator based
on the covariance matrix and autocovariance matrix with lag τ is derived
in Section 3. In Section 4, the asymptotic as well as finite sample behavior
of the the AMUSE estimators is considered in some selected AR, MA, and
ARMA models. The paper ends with a short discussion in Section 5.
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2. Notation and definitions

2.1. Blind source separation model

We start with the definition of the blind source separation model.

Definition 1. A p-variate time series x = (xt)t=0,±1,±2,... follows a blind
source separation (BSS) model if

xt = Ωzt, t = 0,±1,±2, . . . (1)

where Ω is a full-rank p× p mixing matrix and, for all t = 0,±1,±2, . . ., the
p-variate time series z satisfies

(A1) E(zt) = 0,

(A2) E(ztz
′
t) = Ip, and

(A3) E(ztz
′
t+τ ) = Dτ is diagonal for all τ = 1, 2, . . ..

Note that the assumptions in Definition 1 imply the (second-order) weak
stationarity and uncorrelatedness of the p time series in z. Note also that Ω
and z in the definition are confounded in the sense the signs and order of the
components of z (and the signs and order of the columns of Ω, respectively)
are not uniquely defined. Given an observed time series (x1, . . . ,xT ) from
the BSS model (1), the aim is to find estimate Γ̂ of an unmixing matrix Γ
such that Γx has uncorrelated components.

Remark 1. The semiparametric BSS model is very flexible, and contains,
for example, a multivariate MA(∞) process Ωz where

zt =
∞

∑

j=−∞

Ψjǫt−j, (2)

and Ψj, j = 0,±1,±2, . . ., are diagonal matrices with diagonal elements
ψj1, . . . , ψjp such that

∑

∞

j=−∞
Ψ2

j = Ip, and ǫt are p-variate iid random vec-
tors with E(ǫt) = 0 and Cov(ǫt) = Ip. Hence

xt = Ωzt =
∞

∑

j=−∞

(ΩΨj)ǫt−j.
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Notice that every second-order stationary process is either linear process
(MA(∞)) or can be transformed to a linear process using Wold’s decom-
position. Note also that causal ARMA(p, q) processes are MA(∞) processes.
See Chapter 3 in Brockwell & Davis (1991).

Tong et al. (1990) proposed a simple two-step algorithm to obtain an
unmixing matrix estimate Γ̂. In their AMUSE algorithm, the p-variate ob-
served time series is first standardized using the sample covariance matrix.
Second, a sample autocovariance matrix with some delay τ is used to find
the rotation that transforms standardized time series into uncorrelated time
series. In the next section, we write the AMUSE algorithm in the form of a
well-defined statistical functional.

2.2. Unmixing matrix functionals based on autocovariance matrices

Let x be a time series obeying the semiparametric BSS model (1) such
that, for some τ > 0, the diagonal elements of the autocovariance matrix
E(ztz

′
t+τ ) = Dτ are distinct. Write

Sτ = E(xtx
′

t+τ ) = ΩDτΩ
′, τ = 0, 1, 2, . . .

for the autocovariance matrices.

Definition 2. Assume that the diagonal elements of Dτ , τ > 0, are distinct.
The unmixing matrix Γτ is then a p × p matrix that satisfies

ΓτS0Γ
′

τ = Ip and ΓτSτΓ
′

τ = Λτ ,

where Λτ is a diagonal matrix with the diagonal elements in a decreasing
order.

Note that S0 is the regular covariance matrix. It is easy to see that
the diagonal elements of Λτ are the diagonal elements of Dτ , but possibly
reordered. The unmixing matrix Γτ based on S0 and Sτ may be seen as a
statistical functional satisfying that Γτx recovers z up to signs and order of
the time series components.

The functional Γτ is affine equivariant in the sense that, if Γτ and Γ∗
τ are

the values of the functionals at x and x∗ = Ax in the BSS model (1) then
Γτx = Γ∗

τx
∗ (up to sign changes of the components). Note also that, for

different τ ’s, the components of Γτx may be given in a different order.
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The (population) autocovariance matrices Sτ can be estimated by the
sample autocovariance matrices

Ŝτ =
1

T − τ

T−τ
∑

t=1

xtx
′

t+τ , τ = 0, 1, 2, . . .

Write also

ŜS
τ =

1

2
(Ŝτ + Ŝ ′

τ ).

for a symmetrized version of the autocovariance matrix. (This is natural as
as we are estimating the population quantity Sτ which is symmetrical.)

The unmixing matrix estimate corresponding to the functional Γτ is then
given in the following.

Definition 3. The unmixing matrix estimate Γ̂τ is then a p× p matrix that
satisfies

Γ̂τ Ŝ0Γ̂
′

τ = Ip and Γ̂τ Ŝ
s
τ Γ̂

′

τ = Λ̂τ ,

where Λ̂τ is a diagonal matrix with diagonal elements a in a decreasing order.

3. Limiting distributions

Similarly as in Ilmonen et al. (2010a), it is possible to prove the following
theorem and corollary. We first derive the limiting distributions using the
BSS model with Ω = Ip. The limiting distributions in general case then

follow from the affine equivariance of Γ̂ and the affine invariance of Λ̂.

Theorem 1. Assume that (x1, . . . ,xT ) is an observed p-variate time series
obeying the BSS model (1) with Ω = Ip. Assume also that

√
T (Ŝ0 − Ip) =

Op(1) and
√

T (ŜS
τ −Λτ ) = Op(1), where Λτ is a diagonal matrix with diagonal

elements λ1 > · · · > λp. Then, for a sequence of solutions Γ̂ and Λ̂,

√
T diag(Γ̂τ − Ip) = −1

2

√
T diag(Ŝ0 − Ip) + op(1)

√
T off(Γ̂τ ) =

√
T H ⊙ ((ŜS

τ − Λτ ) − (Ŝ0 − Ip)Λτ ) + op(1)
√

T (Λ̂τ − Λτ ) =
√

T diag((ŜS
τ − Λτ ) − (Ŝ0 − Ip)Λτ ) + op(1),

as T → ∞, where diag(Γ) is a diagonal matrix with the same diagonal el-
ements as Γ, off(Γ) = Γ − diag(Γ), ⊙ is the Hadamard (entrywise) product
and H is a p × p-matrix with elements
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Hii = 0 and Hij = (λi − λj)
−1, if i 6= j.

The limiting distributions of Γ̂τ and Λ̂τ are thus given by the limiting
distributions of Ŝ0 and ŜS

τ and, based on Theorem 1, one can write

√
T

(

vec(Λ̂τ − Λτ )

vec(Γ̂τ − Ip)

)

= B
√

T

(

vec(Ŝ0 − Ip)

vec(ŜS
τ − Λτ )

)

+ op(1),

where

B =

(

B11 B12

B21 B22

)

(3)

with

B11 = −diag(vec(Ip))(Λτ ⊗ Ip), B12 = diag(vec(Ip)),

B21 = −1

2
diag(vec(Ip)) − diag(vec(H))(Λτ ⊗ Ip) and

B22 = diag(vec(H)).

Note that, using the affine equivariance of Γ̂τ and the affine invariance
of Λ̂τ , the limiting distribution of these sample statistic are easily found for
any Ω, see the next corollary.

Corollary 1. Assume that (x1, . . . ,xT ) is an observed time series from the
BSS model (1). Assume also that, for Ω = Ip, the joint limiting distribution
of

√
T

(

vec(Ŝ0 − Ip)

vec(Ŝs
τ − Λτ )

)

is N2p2(0, V ) where the diagonal elements of Λτ are in a decreasing order.
Then, for any full-rank Ω, the limiting distribution of

√
T

(

vec
(

Λ̂τ − Λτ

)

vec
(

Γ̂τ − Ω−1
)

)

is a 2p2-variate normal distribution with zero mean vector and covariance
matrix ABV B′A′, where B is as in (3), and

A =

(

Ip2 0
0 (Ω−1)′ ⊗ Ip

)

.
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Assume next that zt are uncorrelated multivariate MA(∞) processes de-
fined in (2) that satisfy assumptions (A1)-(A3). First note that the autoco-
variance matrices of z are

Sτ = E(ztz
′

t+τ ) =
∞

∑

t=−∞

ΨtΨt+τ , τ = 0, 1, 2, ...

The series is standardized as clearly S0 = Ip. The limiting distributions

of the sample autocovariance matrices Ŝτ depend on the Ψt, t = 0,±1,±2, ...,
through autocovariances of the parameter vector series,

Fτ =
∞

∑

t=−∞

ψtψ
′

t+τ , τ = 0, 1, 2, ...

where ψt = (ψt1, ..., ψtp)
′ and ψt1, ..., ψtp are the diagonal elements of Ψt,

t = 0,±1,±2, ....
To derive the joint limiting distribution of Ŝ0 and Ŝτ we also assume that

(A4) The components of ǫt have finite fourth moments.

(A5) The components of ǫt are exchangeable and marginally symmetric, that
is,

JPǫt ∼ ǫt

for all sign-change matrices J and for all permutation matrices P .

Now the joint limiting normality of Γ̂τ and Λ̂τ follows from the next
results.

Theorem 2. Let xt = Ωzt, where z is a multivariate MA(∞) process sat-
isfying (A1)-(A5). Assume (w.l.o.g.) that Ω = Ip and SS

τ = Λτ with the
distinct diagonal elements in a decreasing order. Also, write E[ǫ4

ti] = βii and
E[ǫ2

tiǫ
2
tj] = βij. Then the joint limiting distribution of

√
T

(

vec(Ŝ0 − Ip)

vec(Ŝs
τ − Λτ )

)

is 2p2-variate normal with mean value zero and covariance matrix

V =

(

V00 V0τ

Vτ0 Vττ

)

. (4)
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The submatrices of V are given by

Vlm = diag(vec(Dlm))(Kp,p − Dp,p + Ip2),

where Kp,p =
∑

i

∑

j(eie
T
j ) ⊗ (eje

T
i ), Dp,p =

∑

i(eie
T
i ) ⊗ (eie

T
i ) and Dlm is

a p × p matrix with elements with

(Dlm)ii = (βii − 3)(Fl)ii(Fm)ii +
∞

∑

k=−∞

((Fk+l)ii(Fk+m)ii + (Fk+l)ii(Fk−m)ii) ,

(Dlm)ij =
1

2

∞
∑

k=−∞

((Fk+l−m)ii(Fk)jj + (Fk)ii(Fk+l−m)jj)

+
1

4
(βij − 1)(Fl + F ′

l )ij(Fm + F ′

m)ij, i 6= j.

Remark 2. First note that, if ǫt are iid from Np(0, Ip) then βii = 3 and
βij = 1 for all i 6= j, and the variances and covariance in Theorem 2 become
much simpler. If we assume (A4) but replace (A5) by

(A6) The components of ǫt are mutually independent.

then, in this independent component model case, the joint limiting distribu-
tion of Ŝ0 and ŜS

τ is still as in Theorem 2 with βij = 1 for i 6= j.

Remark 3. The joint limiting distribution of two autocovariance matrices
in non-Gaussian case is also derived in Su and Lund (2012). The limiting
distribution of symmetrized autocovariance matrices follows by noticing that

vec(Ŝs
τ ) =

1

2
(I2

p + Kp,p) vec(Ŝτ ).

4. The behavior of the estimates Γ̂τ in ARMA models

4.1. Minimum distance index

In simulation studies the mixing matrix Ω is naturally known. For any
reasonable unmixing matrix estimate Γ̂, the so called gain matrix Ĝ = Γ̂Ω
converges to some C in

C = {C : each row and column of C has exactly one non-zero element.}
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The minimum distance index (Ilmonen et al., 2010b) for the comparison of
the estimates is then defined as

D̂ = D(Γ̂Ω) =
1√

p − 1
inf
C∈C

‖CΓ̂Ω − Ip‖,

where ‖ · ‖ is the matrix (Frobenius) norm.
The minimum distance index is affine invariant and has the following nice

properties, see (Ilmonen et al., 2010b):

(i) 0 ≤ D̂ ≤ 1,

(ii) D̂ = 0 if and only if CΓ̂Ω = Ip for some C ∈ C,

(iii) D̂ = 1 if and only if CΓ̂Ω = 1pa
′ for some p-vector a and some C ∈ C,

and

(iv) if Ω = Ip and
√

T vec(Γ̂ − Ip) → Np2(0, Σ), then

TD̂2 =
T

p − 1
||off(Γ̂)||2 + op(1),

and the limiting distribution of TD̂2 is that of weighted sum of indepen-
dent chi squared variables. The limiting distribution has the expected
value

1

p − 1
tr ((Ip2 − Dp,p)Σ(Ip2 − Dp,p)) . (5)

Notice that tr ((Ip2 − Dp,p)Σ(Ip2 − Dp,p)) is the sum of the limiting vari-

ances of the off-diagonal elements of
√

T vec(Γ̂− Ip) and therefore provides a

global measure of the variation of the estimate Γ̂. Note also that, for different
estimatesΓ̂τ , the limiting distribution of the diagonal elements is the same.
See Theorem 1.

4.2. The efficiency results for some ARMA models

To compare unmixing matrix estimates Γ̂τ with different lags τ , we calcu-
lated the limiting values of T (p−1)E(D̂2) for different lags τ and for different
multivariate AR, MA and ARMA models. We also performed a small sim-
ulation study in the same cases to see how fast is the convergence to these
limiting values.

We considered the case where the uncorrelated time series were given by
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(i) three independent AR(1) processes with parameters 0.55, 0.35 and 0.15,
respectively, and normally distributed innovations (AR(1)-N),

(ii) three AR(1) processes as in (i) but with spherical three-variate t5-
distributed innovations (AR(1)-t5),

(iii) three independent AR(2) processes with parameters (0.25, 0.6), (0.15, 0.4)
and (0.1, 0.2), respectively, and normally distributed innovations (AR(2)-
N),

(iv) three AR(2) processes as in (iii) but with spherical three-variate t5-
distributed innovations (AR(2)-t5),

(v) three independent causal MA(25) processes with normal innovations,

(vi) three independent ARMA(3,3) processes with normal innovations,

(vii) four independent AR(10) processes, where the innovations were χ2
4,

exponentially, normally, and normally distributed, respectively.

Notice that in (ii) and (iv) the time series are not independent, only
uncorrelated. The innovations were standardised to have mean equal to zero
and variance equal to one. The number of parameters in (v)-(vii) were 75,
18, and 30, respectively, and the values of the parameters are therefore not
reported here. They can be obtained from the first author upon request.
The mixing matrix in all simulation settings was Ω = Ip. Notice that due
to affine invariance, the performance of the methods do not depend on the
choice of Ω.

The limiting values of T (p − 1)E(D̂2), that is, global measures of the
efficiencies of the estimates, for different setups were computed using (5).
The results for lags τ = 1, . . . , 10 are listed in Table 1. As an example,
consider simulation setting (i) and case τ = 1. To obtain (5), only the
limiting variances of the elements of

√
T vec(Γ̂1 − Ip) need to be computed.

They were computed numerically using the results given in Corollary 1 and
Theorem 2. The limiting variances can be collected into a matrix

Σ1 =





0.93 12.46 3.79
7.96 0.64 13.12
2.04 10.62 0.52



 ,
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where (Σ1)ij is the limiting variance of
√

T (Γ̂1 − Ip)ij, i, j = 1, 2, 3. The sum
of the limiting variances of the off-diagonal elements now equals

tr
(

ASCOV (
√

Tvec(off(Γ̂1)))
)

= 49.99.

Other values can be computed in a similar way.
The values for Γ̂τ naturally depend strongly on the model as well as on the

chosen parameters in the model. The results in Table 1 clearly indicate that
there are major differences between the expected performances for different
lags. One can see, for example, that using τ = 1 and τ = 2 in considered
AR(1) and AR(2) models, respectively, gives the smallest limiting variances
for the estimate. Also, in ARMA(3, 3) model τ = 3 seems to be the best
choice. For models with large number of parameters, it seems difficult to
give a general rule for the choice of τ .

Table 1: The limiting values of T (p − 1)E(D̂2) for for Γ̂τ for τ = 1, . . . , 10, and for the
models (i)-(vii).

τ AR(1)-N AR(1)-t5 AR(2)-N AR(2)-t5 MA(25) ARMA(3,3) AR(10)
1 50.0 52.7 136.3 138.7 1 723 48.5 252.2
2 163.4 166.1 32.8 35.0 123.3 32.7 675.5
3 848.1 850.8 117.4 119.7 7 635 63.6 55.3
4 5 674 5 677 70.3 72.5 53.1 48.9 432.0
5 42 649 42 652 215.8 218.1 334.5 543.6 102.7
6 3.4 · 105 3.4 · 105 206.7 208.9 32.5 4250 4179
7 2.7 · 106 2.7 · 106 572.2 574.4 57.6 1139 562.8
8 2.2 · 107 2.2 · 107 725.2 727.5 567.1 19 325 71.0
9 1.8 · 108 1.8 · 108 1 824 1 826 2 520 51 742 180.5
10 1.5 · 109 1.5 · 109 2 748 2 750 316.0 1.0 · 106 109.4

We next illustrate the finite sample behavior of unmixing matrix estimates
Γ̂τ using simulations. The programs for computing AMUSE estimates as
well as minimum distance index are available in the R-package JADE (Nord-
hausen et al., 2012). The simulations were carried out by generating 10 000
repetitions of observed time series with selected lengths T . The comparisons
in the considered cases were made through average values of T (p−1)D̂2 over
10 000 repetitions. In Figure 1, the finite sample behavior of Γ̂1, Γ̂2 and Γ̂3

is illustrated using models (i) and (ii). Figure 1 shows that Γ̂1 and Γ̂2 are
much more efficient than Γ̂3 when the observations come from the AR(1)-N
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model, and the convergence of the average to T (p − 1)E(D̂2) seem slowest
for Γ̂3. One also sees that the estimate Γ̂1 is better in model (i) than in
model (ii). Notice that the second moments are the same in these two mod-
els; the difference is that innovations in model (ii) have heavier tails and are
dependent.

In Figure 2, the performance of different unmixing matrix estimates Γ̂τ is
illustrated using models (iv)-(vii). It is again seen that there are major differ-
ences between the performances for different lags, and that the convergence
is slower the higher the value T (p − 1)E(D̂2) is.
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Figure 1: The averages of T (p − 1)D̂2 for Γ̂1, Γ̂2, and Γ̂3 from 10 000 repetitions of
observed time series with length T from models (i) (AR(1)-N) and (ii) (AR(1)-t5. In the
left panel Γ̂1, Γ̂2, and Γ̂3 are compared in model (i). In the right panel, the behavior of
Γ̂1 is illustrated in models (i) and (ii). The horizontal lines give the expected values of the
limiting distributions of T (p − 1)D̂2.

5. Final remarks

The AMUSE procedure was originally presented as a method which jointly
diagonalizes the covariance matrix and an autocovariance matrix with a cho-
sen lag τ . The solution can, however, be found as a solution in a principal
components analysis (PCA) problem (Cichocki & Amari, 2002) or as a solu-
tion in a canonical correlation analysis (CCA) problem (Liu et al., 2007) as
follows. The PCA solution is found if one first finds standardized p-variate
times series yt = Cov(xt)

−1/2xt, which is then rotated using the matrix of
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Figure 2: The averages of T (p − 1)D̂2 for Γ̂τ with different values of τ from 10 000
repetitions of observed time series with length T . In the top left panel Γ̂1, Γ̂2, and Γ̂4 are
compared in model (iv). In the top right panel Γ̂2, Γ̂4, and Γ̂6 are compared in model (v).
In the bottom left panel Γ̂1, Γ̂2, and Γ̂3 are compared in model (vi). In the bottom right
panel Γ̂1, Γ̂3, and Γ̂8 are compared in model (vii). The horizontal lines give the expected
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eigenvectors of Cov(yt+yt+τ ). The CCA solution finds the canonical vectors
for

Cov

(

xt

xt+τ

)

=

(

S0 Sτ

S ′
τ S0

)

In the paper, we showed that the efficiency of the estimate Γ̂τ depends
strongly on the model as well as on the unknown parameters in the model.
It seems that in practice there is no good rule for the choice of τ without
using any preliminary or additional information on the underlying process.
Cichocki & Amari (2002), for example, simply recommend to start with the
choice τ = 1, and then try another value for τ if Λ̂τ has diagonal elements
that are too close together.

Without any knowledge about good choices of τ , another approach is
to jointly diagonalize several autocovariance matrices S0, Sτ1 , ..., Sτk

as is
done by the popular SOBI (Second Order Blind Identification) algorithm
(Belouchrani et al., 1997). In simulations and practical applications, SOBI
seems to perform better than AMUSE but no (asymptotic) efficiency results
are available so far. It would be interesting also to robustify the AMUSE
and SOBI procedures by replacing the regular covariance and autocovariance
matrices by some robust functionals. Robust AMUSE and SOBI procedures
has been proposed by Theis et al. (2010) but, unfortunately, these procedures
lack the affine equivariance property.
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Appendix: Proofs of the results

Proof of Theorem 1. The proof is similar to the proof of Theorem 3.1
in Ilmonen et al. (2010).

To prove Theorem 2, we need the following lemma.
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Lemma 1. Assume that xt is a multivariate linear process satisfying as-
sumptions (A1)-(A5), SS

τ = Λτ , where Λτ is a diagonal matrix with diagonal
elements (Λτ )ii = E[xtixt+τ,i] = (Fτ )ii, where Fτ =

∑

∞

t=−∞
ψtψ

′

t+τ . Denote

Ŝτ = ave{xtxt+τ} =:







(Ŝτ )11 . . . (Ŝτ )1p
...

. . .
...

(Ŝτ )p1 . . . (Ŝτ )pp






.

Then the elements of symmetrised matrix ŜS
τ = (Ŝτ + Ŝ ′

τ )/2 are given by

(ŜS
τ )ij =

{

T−1
∑

t xtixt+τ,i, if i = j
T−1

∑

t(xt+τ,ixtj + xtixt+τ,j)/2, if i 6= j.
(6)

Write now ASCOV for the asymptotic covariance. Then for any i 6= j,

ASCOV (
√

T (ŜS
l )ii,

√
T (ŜS

m)ii)

= (βii − 3)(Fl)ii(Fm)ii +
∞

∑

k=−∞

[

(Fk+l)ii(Fk+m)ii + (Fk+l)ii(Fk−m)ii

]

.

and

ASCOV (
√

T (ŜS
l )ij,

√
T (ŜS

m)ij)

= 2−1

∞
∑

k=−∞

[

(Fk+l)ii(Fk+m)jj + (Fk+l)ii(Fk−m)jj

]

+ (βij − 1)(Fl + F ′

l )ij(Fm + F ′

m)ij.

Proof of Lemma 1. The first expression is proved in Propositions 7.3.1
and 7.3.4 of Brockwell & Davis (1991), and the second one can be proved
using similar technique.

Proof of Theorem 2. Assume that the components of xt are sign-symmetric
linear zero mean processes such that E[ǫ2

tiǫ
2
tj] = βij, S0 = Ip and SS

τ = Λτ ,
where Λ is a diagonal matrix with diagonal elements (Λτ )ii = (Fτ )ii =
E[xt+τ,ixti]. One can easily show that the asymptotic covariance matrix of√

T (vec(Ŝ0−Ip)
′, vec(ŜS

τ −Λτ )
′) is given by (4), where the non-zero elements

can be expressed using covariances computed in Lemma 1.
To prove the asymptotic normality, we proceed as in section 7.3 of Brock-

well & Davis (1991), that is, we first prove the normality using m-dependent
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moving average processes xm
t =

∑m
j=−m Ψjǫt−j and then extend the result to

case m → ∞.
Write now ym

t = (vec(xm
t (xm

t )′), vec(xm
t (xm

t+τ )
′ + xm

t+τ (x
m
t )′)). Then ym

t

is a strictly stationary (2m + τ) -dependent sequence such that

T−1

T
∑

t=1

ym
t = ((Ŝm

0 )11, (Ŝ
m
0 )12, . . . , (Ŝ

m
0 )pp, (Ŝ

S,m
τ )11, . . . , (Ŝ

S,m
τ )pp)

′,

where (ŜS,m
τ )ij are obtained from (6) replacing xti with xm

ti . Then proceed-
ing as in the proof of Proposition 7.3.2 in Brockwell & Davis (1991), one
can show that T−1

∑T
t=1 ym

t has a limiting normal distribution with mean
(vec(Ip)

′, vec(Λm
τ )′) and covariance V m/T , where Λm

τ and V m are the corre-
sponding matrices to Λτ and V , where each (Fτ )ii is replaced with (Fm

τ )ii.
The result can be extended to MA(∞) processes by following the steps

in the proof of Proposition 7.3.3 in Brockwell & Davis (1991).
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