Scattering theory

Solutions to Exercises \#9, 10.12.2007

1. Let $\varphi \in C_{0}^{\infty}(\mathbf{R})$, and assume $\operatorname{supp}(\varphi) \subset[-R, R]$. Then

$$
\int_{|x| \geq \varepsilon} \frac{\varphi(x)}{x} d x=\int_{\varepsilon \leq|x| \leq R} \frac{\varphi(x)-\varphi(0)}{x} d x
$$

since $1 / x$ is an odd function. We have

$$
\left|\frac{\varphi(x)-\varphi(0)}{x}\right| \leq \frac{\|\nabla \varphi\|_{L^{\infty}}|x|}{|x|}=\|\nabla \varphi\|_{L^{\infty}} .
$$

This shows that $\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \varphi(x) / x d x$ is well defined, and we obtain a linear map p.v. $1 / x$ on $C_{0}^{\infty}(\mathbf{R})$ satisfying

$$
\left.\left\lvert\,\left\langle\text { p.v. } \frac{1}{x}, \varphi\right\rangle\right. \right\rvert\, \leq 2 R\|\nabla \varphi\|_{L^{\infty}}, \quad \varphi \in C_{0}^{\infty}([-R, R])
$$

Thus p.v. $1 / x \in \mathscr{D}^{\prime}(\mathbf{R})$.
We have $\log |x| \in L_{\mathrm{loc}}^{1}(\mathbf{R})$ since the function is continuous outside 0 and

$$
\int_{0}^{1}|\log x| d x=\int_{0}^{\infty} t e^{-t} d t<\infty
$$

by the substitution $x=e^{-t}$. Thus $\log |x| \in \mathscr{D}^{\prime}(\mathbf{R})$, and for $\varphi \in C_{0}^{\infty}([-R, R])$ one has

$$
\begin{aligned}
\left\langle\frac{d}{d x} \log \right| x|, \varphi\rangle & =-\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon \leq|x| \leq R} \log |x| \varphi^{\prime}(x) d x \\
& =(\varphi(\varepsilon)-\varphi(-\varepsilon)) \log \varepsilon+\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{\varphi(x)}{x} d x .
\end{aligned}
$$

Since $|(\varphi(\varepsilon)-\varphi(-\varepsilon)) \log \varepsilon| \leq 2\|\nabla \varphi\|_{L^{\infty}} \varepsilon|\log \varepsilon|$ and

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon|\log \varepsilon|=\lim _{t \rightarrow \infty} t e^{-t}=0
$$

by taking $\varepsilon=e^{-t}$, we obtain $d / d x(\log |x|)=$ p.v. $1 / x$.
2. If $\varepsilon>0$ then $1 /(x \pm i \varepsilon)$ is a C^{∞} function, and if $\varphi \in C_{0}^{\infty}([-R, R])$ then

$$
\begin{aligned}
\left\langle\frac{1}{x+i \varepsilon}\right. & \left.+\frac{1}{x-i \varepsilon}, \varphi\right\rangle=2 \int \frac{x}{x^{2}+\varepsilon^{2}} \varphi(x) d x=2 \lim _{\delta \rightarrow 0} \int_{|x| \geq \delta} \frac{x}{x^{2}+\varepsilon^{2}} \varphi(x) d x \\
& =2\left\langle\text { p.v. } \frac{1}{x}, \varphi\right\rangle+2 \lim _{\delta \rightarrow 0} \int_{\delta \leq|x| \leq R}\left(\frac{x}{x^{2}+\varepsilon^{2}}-\frac{1}{x}\right) \varphi(x) d x \\
& =2\left\langle\text { p.v. } \frac{1}{x}, \varphi\right\rangle-2 \varepsilon^{2} \lim _{\delta \rightarrow 0} \int_{\delta \leq|x| \leq R} \frac{1}{x\left(x^{2}+\varepsilon^{2}\right)} \varphi(x) d x \\
& =2\left\langle\text { p.v. } \frac{1}{x}, \varphi\right\rangle-2 \lim _{\delta \rightarrow 0} \int_{\delta \leq|t| \leq R / \varepsilon} \frac{1}{t\left(t^{2}+1\right)}(\varphi(\varepsilon t)-\varphi(0)) d x
\end{aligned}
$$

where in the last equality we used the substitution $x=\varepsilon t$ and the fact that $1 / t\left(t^{2}+1\right)$ is odd in t. The integrand in the last integral is bounded by $\|\nabla \varphi\|_{L^{\infty}} \varepsilon|t| /|t|\left(t^{2}+1\right)=\|\nabla \varphi\|_{L^{\infty}} \varepsilon /\left(t^{2}+1\right)$. Since $1 /\left(t^{2}+1\right)$ is integrable in \mathbf{R}, we conclude that the limit of the last integral as $\delta \rightarrow 0$ and $\varepsilon \rightarrow 0$ is zero. This shows the claim.
3. If $a>-1$ then x_{+}^{a} is in $L_{\mathrm{loc}}^{1}(\mathbf{R})$ and hence in $\mathscr{D}^{\prime}(\mathbf{R})$. For $a>0$ and $\varphi \in C_{0}^{\infty}(\mathbf{R})$ we have

$$
\left\langle\frac{d}{d x} x_{+}^{a}, \varphi\right\rangle=-\lim _{\delta \rightarrow 0} \int_{\delta}^{\infty} x^{a} \varphi^{\prime}(x) d x=\lim _{\delta \rightarrow 0}\left(\delta^{a} \varphi(\delta)+a \int_{\delta}^{\infty} x^{a-1} \varphi(x) d x\right)
$$

Since $a>0$ we may take the limit as $\delta \rightarrow 0$, and $d / d x\left(x_{+}^{a}\right)=a x_{+}^{a-1}$.
4. Let $\tilde{\mu} \in C^{1}\left(\overline{\mathbf{R}_{+}} ; \mathbf{R}\right)$ and $(1+t)\left|\tilde{\mu}^{\prime}(t)\right| \leq N \tilde{\mu}(t), t \geq 0$. If $t \geq 0$ define $a(t)=(1+t)^{N} \tilde{\mu}(t)$, and compute

$$
a^{\prime}(t)=(1+t)^{N-1}\left(N \tilde{\mu}(t)+(1+t) \tilde{\mu}^{\prime}(t)\right) \geq 0 .
$$

This shows that $(1+s)^{N} \tilde{\mu}(s) \leq(1+t)^{N} \tilde{\mu}(t)$ if $0 \leq s \leq t$, which gives one direction of the inequality. The other direction follows by considering $a(t)=(1+t)^{-N} \tilde{\mu}(t)$.

