Scattering theory

Solutions to Exercises #9, 10.12.2007

1. Let $\varphi \in C_0^{\infty}(\mathbf{R})$, and assume $\operatorname{supp}(\varphi) \subset [-R, R]$. Then

$$\int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} \, dx = \int_{\varepsilon \le |x| \le R} \frac{\varphi(x) - \varphi(0)}{x} \, dx$$

since 1/x is an odd function. We have

$$\left|\frac{\varphi(x)-\varphi(0)}{x}\right| \leq \frac{\|\nabla\varphi\|_{L^{\infty}}|x|}{|x|} = \|\nabla\varphi\|_{L^{\infty}}.$$

This shows that $\lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \varphi(x)/x \, dx$ is well defined, and we obtain a linear map p.v. 1/x on $C_0^{\infty}(\mathbf{R})$ satisfying

$$|\langle \mathbf{p.v.}, \frac{1}{x}, \varphi \rangle| \le 2R \|\nabla \varphi\|_{L^{\infty}}, \quad \varphi \in C_0^{\infty}([-R, R]).$$

Thus p.v. $1/x \in \mathscr{D}'(\mathbf{R})$.

We have $\log |x| \in L^1_{loc}(\mathbf{R})$ since the function is continuous outside 0 and

$$\int_0^1 |\log x| \, dx = \int_0^\infty t e^{-t} \, dt < \infty$$

by the substitution $x = e^{-t}$. Thus $\log |x| \in \mathscr{D}'(\mathbf{R})$, and for $\varphi \in C_0^{\infty}([-R, R])$ one has

$$\begin{split} \langle \frac{d}{dx} \log |x|, \varphi \rangle &= -\lim_{\varepsilon \to 0} \int_{\varepsilon \le |x| \le R} \log |x| \ \varphi'(x) \, dx \\ &= (\varphi(\varepsilon) - \varphi(-\varepsilon)) \log \varepsilon + \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} \, dx. \end{split}$$

Since $|(\varphi(\varepsilon) - \varphi(-\varepsilon)) \log \varepsilon| \le 2 ||\nabla \varphi||_{L^{\infty}} \varepsilon |\log \varepsilon|$ and

$$\lim_{\varepsilon \to 0} \varepsilon |\log \varepsilon| = \lim_{t \to \infty} t e^{-t} = 0$$

by taking $\varepsilon = e^{-t}$, we obtain $d/dx(\log |x|) = \text{p.v. } 1/x$.

2. If $\varepsilon > 0$ then $1/(x \pm i\varepsilon)$ is a C^{∞} function, and if $\varphi \in C_0^{\infty}([-R, R])$ then

$$\begin{split} \langle \frac{1}{x+i\varepsilon} + \frac{1}{x-i\varepsilon}, \varphi \rangle &= 2 \int \frac{x}{x^2 + \varepsilon^2} \varphi(x) \, dx = 2 \lim_{\delta \to 0} \int_{|x| \ge \delta} \frac{x}{x^2 + \varepsilon^2} \varphi(x) \, dx \\ &= 2 \langle \text{p.v.}, \frac{1}{x}, \varphi \rangle + 2 \lim_{\delta \to 0} \int_{\delta \le |x| \le R} \left(\frac{x}{x^2 + \varepsilon^2} - \frac{1}{x} \right) \varphi(x) \, dx \\ &= 2 \langle \text{p.v.}, \frac{1}{x}, \varphi \rangle - 2\varepsilon^2 \lim_{\delta \to 0} \int_{\delta \le |x| \le R} \frac{1}{x(x^2 + \varepsilon^2)} \varphi(x) \, dx \\ &= 2 \langle \text{p.v.}, \frac{1}{x}, \varphi \rangle - 2 \lim_{\delta \to 0} \int_{\delta \le |t| \le R/\varepsilon} \frac{1}{t(t^2 + 1)} (\varphi(\varepsilon t) - \varphi(0)) \, dx, \end{split}$$

where in the last equality we used the substitution $x = \varepsilon t$ and the fact that $1/t(t^2 + 1)$ is odd in t. The integrand in the last integral is bounded by $\|\nabla \varphi\|_{L^{\infty}} \varepsilon |t|/|t|(t^2 + 1) = \|\nabla \varphi\|_{L^{\infty}} \varepsilon/(t^2 + 1)$. Since $1/(t^2 + 1)$ is integrable in **R**, we conclude that the limit of the last integral as $\delta \to 0$ and $\varepsilon \to 0$ is zero. This shows the claim.

3. If a > -1 then x_{+}^{a} is in $L_{\text{loc}}^{1}(\mathbf{R})$ and hence in $\mathscr{D}'(\mathbf{R})$. For a > 0 and $\varphi \in C_{0}^{\infty}(\mathbf{R})$ we have

$$\left\langle \frac{d}{dx}x^a_+,\varphi\right\rangle = -\lim_{\delta\to 0}\int_{\delta}^{\infty}x^a\varphi'(x)\,dx = \lim_{\delta\to 0}(\delta^a\varphi(\delta) + a\int_{\delta}^{\infty}x^{a-1}\varphi(x)\,dx).$$

Since a > 0 we may take the limit as $\delta \to 0$, and $d/dx(x_+^a) = ax_+^{a-1}$.

4. Let $\tilde{\mu} \in C^1(\overline{\mathbf{R}_+}; \mathbf{R})$ and $(1+t)|\tilde{\mu}'(t)| \leq N\tilde{\mu}(t), t \geq 0$. If $t \geq 0$ define $a(t) = (1+t)^N \tilde{\mu}(t)$, and compute

$$a'(t) = (1+t)^{N-1} (N\tilde{\mu}(t) + (1+t)\tilde{\mu}'(t)) \ge 0.$$

This shows that $(1+s)^N \tilde{\mu}(s) \leq (1+t)^N \tilde{\mu}(t)$ if $0 \leq s \leq t$, which gives one direction of the inequality. The other direction follows by considering $a(t) = (1+t)^{-N} \tilde{\mu}(t)$.