Scattering theory

Solutions to Exercises \#7, 16.11.2007

1. See proof of Lemma 2.2.4 in the lectures.
2. Let $u=d \sigma$ be the surface measure of S^{2}. Since u is a compactly supported distribution, the Fourier transform is defined pointwise for all $\xi \in \mathbf{R}^{3}$ and

$$
\hat{u}(\xi)=\left\langle u, e^{-i x \cdot \xi}\right\rangle=\int_{S^{2}} e^{-i|\xi| \omega \cdot \hat{\xi}} d \omega
$$

Here $\hat{\xi}=\xi /|\xi|$. We choose a positive orthonormal basis $\left\{\eta_{1}, \eta_{2}, \hat{\xi}\right\}$ of \mathbf{R}^{3}, and introduce spherical coordinates

$$
\begin{aligned}
\omega \cdot \eta_{1} & =\sin \phi \cos \theta \\
\omega \cdot \eta_{2} & =\sin \phi \sin \theta \\
\omega \cdot \hat{\xi} & =\cos \phi
\end{aligned}
$$

where $0 \leq \phi \leq 1$ and $0 \leq \theta<2 \pi$. Then

$$
\begin{aligned}
\hat{u}(\xi)=\int_{0}^{2 \pi} \int_{0}^{\pi} e^{-i|\xi| \cos \phi} \sin \phi d \phi d \theta & =2 \pi \int_{0}^{\pi} e^{-i|\xi| \cos \phi} \sin \phi d \phi \\
=2 \pi \int_{-1}^{1} e^{-i|\xi| t} d t & =\frac{2 \pi}{i|\xi|}\left(e^{i|\xi|}-e^{-i|\xi|}\right)=4 \pi \frac{\sin |\xi|}{|\xi|}
\end{aligned}
$$

3. Let $u=d \sigma$ be the surface measure of S^{n-1}. We have

$$
\hat{u}(\xi)=\int_{S^{n-1}} e^{-i \omega \cdot \xi} d \omega=\int_{S^{n-1}} e^{-i|\xi| \omega \cdot \hat{\xi}} d \omega .
$$

Let $\left\{\hat{\xi}, \eta_{2}, \ldots, \eta_{n}\right\}$ be a positive orthonormal basis of \mathbf{R}^{n}. We let $S_{+}^{n-1}=$ $\left\{\omega \in S^{n-1} ; \omega \cdot \eta_{n}>0\right\}$. If $\omega=x_{1} \hat{\xi}+x_{2} \eta_{2}+\ldots+x_{n} \eta_{n}$ is identified with $x=\left(x_{1}, \ldots, x_{n}\right) \in S^{n-1}$, then

$$
S_{+}^{n-1}=\left\{\left(x^{\prime}, h\left(x^{\prime}\right)\right) ;\left|x^{\prime}\right|<1\right\}
$$

where $h\left(x^{\prime}\right)=\sqrt{1-\left|x^{\prime}\right|^{2}}$. Then we have $d S\left(x^{\prime}\right)=\sqrt{1+\left|\nabla h\left(x^{\prime}\right)\right|^{2}} d x^{\prime}=$ $\left(1-\left|x^{\prime}\right|^{2}\right)^{-1 / 2} d x^{\prime}$, and

$$
\begin{aligned}
& \hat{u}(\xi)=2 \int_{S_{+}^{n-1}} e^{-i|\xi| x_{1}} d S(x)=2 \int_{\left|x^{\prime}\right|<1} e^{-i|\xi| x_{1}}\left(1-\left|x^{\prime}\right|^{2}\right)^{-1 / 2} d x^{\prime} \\
&=2 \int_{-1}^{1} e^{-i|\xi| x_{1}} \int_{\left|x^{\prime \prime}\right|<\sqrt{1-x_{1}^{2}}}\left(1-x_{1}^{2}-\left|x^{\prime \prime}\right|^{2}\right)^{-1 / 2} d x^{\prime \prime} d x_{1} .
\end{aligned}
$$

Here $x^{\prime \prime}=\left(x_{2}, \ldots, x_{n-1}\right)$. One has

$$
\begin{aligned}
\int_{\left|x^{\prime \prime}\right|<\sqrt{1-x_{1}^{2}}}\left(1-x_{1}^{2}-\left|x^{\prime \prime}\right|^{2}\right)^{-1 / 2} d x^{\prime \prime}=\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} & \int_{\left|x^{\prime \prime}\right|<1}\left(1-\left|x^{\prime \prime}\right|^{2}\right)^{-1 / 2} d x^{\prime \prime} \\
& =\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} \frac{1}{2} \sigma\left(S^{n-2}\right)
\end{aligned}
$$

by the definition of surface measure on S^{n-2}. We use that

$$
\sigma\left(S^{n-2}\right)=\frac{2 \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)}
$$

We have
$\hat{u}(\xi)=\frac{2 \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{-1}^{1} e^{-i|\xi| t}\left(1-t^{2}\right)^{\frac{n-3}{2}} d t=\frac{4 \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{1} \cos (t|\xi|)\left(1-t^{2}\right)^{\frac{n-3}{2}} d t$
since $\left(1-t^{2}\right)^{\frac{n-3}{2}}$ is even in t. From Abramowitz and Stegun, Handbook of Mathematical Functions, formula 9.1.20,

$$
J_{s}(r)=\frac{2\left(\frac{1}{2} r\right)^{s}}{\pi^{\frac{1}{2}} \Gamma\left(s+\frac{1}{2}\right)} \int_{0}^{1}\left(1-t^{2}\right)^{s-\frac{1}{2}} \cos (r t) d t, \quad s>-1 / 2
$$

Therefore

$$
\hat{u}(\xi)=(2 \pi)^{n / 2}|\xi|^{-\frac{n-2}{2}} J_{\frac{n-2}{2}}(|\xi|) .
$$

4. The claim is easy to prove if M is a hyperplane. In the case where M is a general hypersurface, we want to reduce to the hyperplane case by "flattening" M. This can be done as follows. Let $x_{0} \in M$, and choose Cartesian coordinates so that $x_{0}=0$ and M is given near 0 as the graph of a C^{2} function h, with $\nabla h(0)=0$. Then for some $\delta>0$ one has

$$
M \cap B(0, \delta)=\left\{\left(x^{\prime}, h\left(x^{\prime}\right)\right) ;\left|x^{\prime}\right|<\delta\right\}
$$

We identify x^{\prime} with $\left(x^{\prime}, h\left(x^{\prime}\right)\right)$. The normal is

$$
\nu\left(x^{\prime}\right)=\left(1+\left|\nabla h\left(x^{\prime}\right)\right|^{2}\right)^{-1 / 2}\left(-\nabla h\left(x^{\prime}\right), 1\right) .
$$

Consider the map

$$
F\left(y^{\prime}, y_{n}\right)=\left(y^{\prime}, h\left(y^{\prime}\right)\right)+y_{n} \nu\left(y^{\prime}\right)
$$

Near $0, F$ is C^{1} since h is C^{2}. If $\nu\left(y^{\prime}\right)=\left(\nu^{\prime}\left(y^{\prime}\right), \nu_{n}\left(y^{\prime}\right)\right)$, the Jacobian matrix $D F=\left(\partial_{k} F_{j}\right)_{j, k=1}^{n}$ is given by

$$
D F\left(y^{\prime}, y_{n}\right)=\left(\begin{array}{cc}
I_{n-1}+y_{n} D \nu^{\prime}\left(y^{\prime}\right) & \nu^{\prime}\left(y^{\prime}\right) \\
\nabla h\left(y^{\prime}\right)+y_{n} \nabla \nu_{n}\left(y^{\prime}\right) & \nu_{n}\left(y^{\prime}\right)
\end{array}\right) .
$$

One has $F(0)=0$ and $D F(0)=I$, so the inverse function theorem shows that $F: U \rightarrow V$ is a diffeomorphism from some ball U centered at 0 onto some neighborhood V of 0 .
If $\chi \in C_{0}^{\infty}(V)$ then changing coordinates $x=F(y)$ gives

$$
\frac{1}{2 \varepsilon} \int_{M_{\varepsilon}}(\chi \tilde{f})(x) d x=\frac{1}{2 \varepsilon} \int_{F^{-1}\left(V \cap M_{\varepsilon}\right)}(\chi \tilde{f})(F(y))|\operatorname{det} D F(y)| d y
$$

Since $F^{-1}\left(V \cap M_{\varepsilon}\right)=U \cap\left\{\left|y_{n}\right|<\varepsilon\right\}$ for ε small ${ }^{1}$, and since $\operatorname{supp}(\chi \circ F)$ is contained in the open ball U, the last integral may be written as

$$
\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} g\left(y_{n}\right) d y_{n}
$$

where $g\left(y_{n}\right)=\int_{U_{0}}(\chi \tilde{f})\left(F\left(y^{\prime}, y_{n}\right)\right)\left|\operatorname{det} D F\left(y^{\prime}, y_{n}\right)\right| d y^{\prime}, U_{0}=U \cap\left\{y_{n}=0\right\}$. Then since g is continuous,

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} g\left(y_{n}\right) d y_{n}=g(0)=\int_{U_{0}}(\chi f)\left(y^{\prime}\right)\left|\operatorname{det} D F\left(y^{\prime}, 0\right)\right| d y^{\prime}
$$

The determinant is $\left(1+\left|\nabla h\left(y^{\prime}\right)\right|^{2}\right)^{1 / 2}$, which shows that

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{M_{\varepsilon}}(\chi \tilde{f})(x) d x=\int_{M} \chi f d S
$$

The claim follows by choosing a suitable partition of unity and applying the preceding argument in each coordinate patch.

[^0]
[^0]: ${ }^{1}$ If $y \in U \cap\left\{\left|y_{n}\right|<\varepsilon\right\}$ then $\left(y^{\prime}, h\left(y^{\prime}\right)\right)+y_{n} \nu\left(y^{\prime}\right) \in M_{\varepsilon}$, so $y \in F^{-1}\left(V \cap M_{\varepsilon}\right)$. Conversely, let $z \in U$ and $F(z) \in M_{\varepsilon}$. Let $y_{0}=\left(y^{\prime}, h\left(y^{\prime}\right)\right)$ be a point on $M \cap \overline{B(0, \varepsilon)}$ closest to $F(z)$. If γ is any C^{2} curve on M with $\gamma(0)=y_{0}$, then $r(t)=|\gamma(t)-F(z)|^{2}$ has a local minimum at $t=0$, hence $r^{\prime}(0)=2\left(y_{0}-F(z)\right) \cdot \dot{\gamma}(0)=0$. This implies that $y_{0}-F(z)$ is orthogonal to any tangent vector of M at y_{0}, so $F(z)=y_{0}+y_{n} \nu\left(y_{0}\right)=F\left(y^{\prime}, y_{n}\right)$ for some y_{n}. Then

 $$
 \left|y_{n}\right|=\left|F(z)-y_{0}\right|=\operatorname{dist}(F(z), M \cap \overline{B(0, \varepsilon)})<\varepsilon .
 $$

 It follows that $z=y \in U \cap\left\{\left|y_{n}\right|<\varepsilon\right\}$.

