
Scattering theory
Solutions to Exercises #7, 16.11.2007

1. See proof of Lemma 2.2.4 in the lectures.

2. Let u = dσ be the surface measure of S2. Since u is a compactly supported
distribution, the Fourier transform is defined pointwise for all ξ ∈ R3 and

û(ξ) = 〈u, e−ix·ξ〉 =

∫
S2

e−i|ξ|ω·ξ̂ dω.

Here ξ̂ = ξ/|ξ|. We choose a positive orthonormal basis {η1, η2, ξ̂} of R3,
and introduce spherical coordinates

ω · η1 = sin φ cos θ,

ω · η2 = sin φ sin θ,

ω · ξ̂ = cos φ,

where 0 ≤ φ ≤ 1 and 0 ≤ θ < 2π. Then

û(ξ) =

∫ 2π

0

∫ π

0

e−i|ξ| cos φ sin φ dφ dθ = 2π

∫ π

0

e−i|ξ| cos φ sin φ dφ

= 2π

∫ 1

−1

e−i|ξ|t dt =
2π

i|ξ|
(ei|ξ| − e−i|ξ|) = 4π

sin|ξ|
|ξ|

.

3. Let u = dσ be the surface measure of Sn−1. We have

û(ξ) =

∫
Sn−1

e−iω·ξ dω =

∫
Sn−1

e−i|ξ|ω·ξ̂ dω.

Let {ξ̂, η2, . . . , ηn} be a positive orthonormal basis of Rn. We let Sn−1
+ =

{ω ∈ Sn−1 ; ω · ηn > 0}. If ω = x1ξ̂ + x2η2 + . . . + xnηn is identified with
x = (x1, . . . , xn) ∈ Sn−1, then

Sn−1
+ = {(x′, h(x′)) ; |x′| < 1}

where h(x′) =
√

1− |x′|2. Then we have dS(x′) =
√

1 + |∇h(x′)|2 dx′ =
(1− |x′|2)−1/2 dx′, and

û(ξ) = 2

∫
Sn−1

+

e−i|ξ|x1 dS(x) = 2

∫
|x′|<1

e−i|ξ|x1(1− |x′|2)−1/2 dx′

= 2

∫ 1

−1

e−i|ξ|x1

∫
|x′′|<

√
1−x2

1

(1− x2
1 − |x′′|2)−1/2 dx′′ dx1.



Here x′′ = (x2, . . . , xn−1). One has∫
|x′′|<

√
1−x2

1

(1−x2
1−|x′′|2)−1/2 dx′′ = (1−x2

1)
n−3

2

∫
|x′′|<1

(1−|x′′|2)−1/2 dx′′

= (1− x2
1)

n−3
2

1

2
σ(Sn−2)

by the definition of surface measure on Sn−2. We use that

σ(Sn−2) =
2π

n−1
2

Γ(n−1
2

)
.

We have

û(ξ) =
2π

n−1
2

Γ(n−1
2

)

∫ 1

−1

e−i|ξ|t(1− t2)
n−3

2 dt =
4π

n−1
2

Γ(n−1
2

)

∫ 1

0

cos(t|ξ|)(1− t2)
n−3

2 dt

since (1 − t2)
n−3

2 is even in t. From Abramowitz and Stegun, Handbook
of Mathematical Functions, formula 9.1.20,

Js(r) =
2(1

2
r)s

π
1
2 Γ(s + 1

2
)

∫ 1

0

(1− t2)s− 1
2 cos(rt) dt, s > −1/2.

Therefore
û(ξ) = (2π)n/2|ξ|−

n−2
2 Jn−2

2
(|ξ|).

4. The claim is easy to prove if M is a hyperplane. In the case where M
is a general hypersurface, we want to reduce to the hyperplane case by
”flattening” M . This can be done as follows. Let x0 ∈ M , and choose
Cartesian coordinates so that x0 = 0 and M is given near 0 as the graph
of a C2 function h, with ∇h(0) = 0. Then for some δ > 0 one has

M ∩B(0, δ) = {(x′, h(x′)) ; |x′| < δ}.

We identify x′ with (x′, h(x′)). The normal is

ν(x′) = (1 + |∇h(x′)|2)−1/2(−∇h(x′), 1).

Consider the map

F (y′, yn) = (y′, h(y′)) + ynν(y′).



Near 0, F is C1 since h is C2. If ν(y′) = (ν ′(y′), νn(y′)), the Jacobian
matrix DF = (∂kFj)

n
j,k=1 is given by

DF (y′, yn) =

(
In−1 + ynDν ′(y′) ν ′(y′)

∇h(y′) + yn∇νn(y′) νn(y′)

)
.

One has F (0) = 0 and DF (0) = I, so the inverse function theorem shows
that F : U → V is a diffeomorphism from some ball U centered at 0 onto
some neighborhood V of 0.

If χ ∈ C∞
0 (V ) then changing coordinates x = F (y) gives

1

2ε

∫
Mε

(χf̃)(x) dx =
1

2ε

∫
F−1(V ∩Mε)

(χf̃)(F (y))|det DF (y)| dy.

Since F−1(V ∩Mε) = U ∩ {|yn| < ε} for ε small 1 , and since supp(χ ◦F )
is contained in the open ball U , the last integral may be written as

1

2ε

∫ ε

−ε

g(yn) dyn

where g(yn) =
∫

U0
(χf̃)(F (y′, yn))|det DF (y′, yn)| dy′, U0 = U ∩ {yn = 0}.

Then since g is continuous,

lim
ε→0

1

2ε

∫ ε

−ε

g(yn) dyn = g(0) =

∫
U0

(χf)(y′)|det DF (y′, 0)| dy′.

The determinant is (1 + |∇h(y′)|2)1/2, which shows that

lim
ε→0

1

2ε

∫
Mε

(χf̃)(x) dx =

∫
M

χf dS.

The claim follows by choosing a suitable partition of unity and applying
the preceding argument in each coordinate patch.

1If y ∈ U ∩{|yn| < ε} then (y′, h(y′))+ynν(y′) ∈ Mε, so y ∈ F−1(V ∩Mε). Conversely,
let z ∈ U and F (z) ∈ Mε. Let y0 = (y′, h(y′)) be a point on M ∩ B(0, ε) closest to F (z).
If γ is any C2 curve on M with γ(0) = y0, then r(t) = |γ(t)−F (z)|2 has a local minimum
at t = 0, hence r′(0) = 2(y0 − F (z)) · γ̇(0) = 0. This implies that y0 − F (z) is orthogonal
to any tangent vector of M at y0, so F (z) = y0 + ynν(y0) = F (y′, yn) for some yn. Then

|yn| = |F (z)− y0| = dist(F (z),M ∩B(0, ε)) < ε.

It follows that z = y ∈ U ∩ {|yn| < ε}.


