Scattering theory

Solutions to Exercises #6, 09.11.2007

1. Let $T \in L(B_1, B_2)$ be Fredholm. Assume first that T is injective, and let $n = \dim(B_2/\operatorname{im}(T))$. Then there is $S : \mathbb{C}^n \to B_2$ such that the map

$$T_1: B_1 \times \mathbf{C}^n \to B_2, \ (x, y) \mapsto Tx + Sy,$$

is linear, bounded, and bijective. ¹ By the open mapping theorem T_1 is a homeomorphism, which shows that the range $\operatorname{im}(T) = T_1(B_1 \times \{0\})$ is closed. If T was not injective we can consider $T' : B_1/\ker(T) \to B_2, [x] \mapsto Tx$. Then T' is Fredholm with range $\operatorname{im}(T)$ and injective, so $\operatorname{im}(T)$ is closed also in this case.

Let now $T_1 \in L(B_1, B_2)$ and $T_2 \in L(B_2, B_3)$ be Fredholm. Now T_1 : ker $(T_2T_1) \rightarrow \text{ker}(T_2)$ with kernel ker (T_1) , so there is an isomorphism of ker $(T_2T_1)/\text{ker}(T_1)$ and a subspace of ker (T_2) . Consequently dim ker $(T_2T_1) \leq \text{dim ker}(T_1) + \text{dim ker}(T_2) < \infty$. Also, since $\text{im}(T_2T_1) \subset \text{im}(T_2) \subset B_3$, we have

 $(B_3/\mathrm{im}(T_2T_1))/(\mathrm{im}(T_2)/\mathrm{im}(T_2T_1)) = B_3/\mathrm{im}(T_2),$

so dim coker $(T_2T_1) \leq \dim \operatorname{im}(T_2)/\operatorname{im}(T_2T_1) + \dim \operatorname{coker}(T_2)$. But $T_2 : B_2/\operatorname{im}(T_1) \to \operatorname{im}(T_2)/\operatorname{im}(T_2T_1)$ is surjective, so dim $\operatorname{im}(T_2)/\operatorname{im}(T_2T_1) \leq \dim \operatorname{coker}(T_1)$. This shows that T_2T_1 is Fredholm.

2. Assume first that T is bijective. Then T has a bounded inverse by the open mapping theorem, and

$$T + S = T(I + T^{-1}S).$$

If ||S|| is small enough then $||T^{-1}S|| < 1/2$, so $I + T^{-1}S$ is invertible by Neumann series. Then also T + S is bijective, so dim ker $(T + S) \leq$ dim ker(T) = 0, dim coker $(T + S) \leq$ dim coker(T) = 0, and ind(T + S) =ind(T) = 0.

If $T: B_1 \to B_2$ is Fredholm but not bijective, there exists a closed subspace V_1 of B_1 and a finite dimensional subspace V_2 of B_2 such that $B_1 =$

¹In fact, let $S_0 : \mathbb{C}^n \to B_2/\operatorname{im}(T)$ be an isomorphism and let $q : B_2 \to B_2/\operatorname{im}(T)$ be the quotient map. If $\{e_1, \ldots, e_n\}$ is a basis of \mathbb{C}^n we define Se_j to be some element of $q^{-1}(S_0e_j)$, and define S on \mathbb{C}^n by linearity. Then T_1 is linear and bounded. If $T_1(x, y) = 0$ then $0 = qT_1(x, y) = qSy = S_0y$ so y = 0 and then also x = 0. For surjectivity let $z \in B_2$ and consider the equation Tx + Sy = z. Applying q gives $S_0y = qz$, and the choice $y = S_0^{-1}(qz)$ gives q(z - Sy) = 0 so there is $x \in B_1$ with z - Sy = Tx. Thus T_1 is bijective.

 $V_1 \oplus \ker(T)$ and $B_2 = V_2 \oplus \operatorname{im}(T)$.² Let $q_2 : B_2 \to B_2/V_2$ be the quotient map, and define $T' = q_2 T|_{V_1}$ and $S' = q_2 S|_{V_1}$. Then $T', S' : V_1 \to B_2/V_2$ and T' is bijective and $||S'|| \leq ||S||$. If ||S|| is small enough then T' + S' is bijective. We prove the statements for T + S in four steps.

Step 1: dim $\ker(T+S) \leq \dim \ker(T)$.

If $x \in \ker(T+S)$ then $x = v_1 + w$ where $v_1 \in V_1$ and $w \in \ker(T)$. Thus $(T+S)v_1 = -Sw$, so $(T'+S')v_1 = -q_2Sw$ and consequently

$$x = (I - (T' + S')^{-1}q_2S)w.$$
 (1)

If $\{w_1, \ldots, w_m\}$ is a basis of ker(T), the corresponding vectors $\{x_1, \ldots, x_m\}$ span ker(T + S).

Step 2. dim $\operatorname{coker}(T+S) \leq \dim \operatorname{coker}(T)$.

Since T' + S' is bijective, any $y \in B_2$ has the form $y = (T + S)v_1 + v_2$ for some $v_1 \in V_1$ and $v_2 \in V_2$. Thus in $B_2/\operatorname{im}(T+S)$, $[y] = [v_2]$. Consequently

$$B_2/\mathrm{im}(T+S) = \{ [v_2] ; v_2 \in V_2 \},$$
(2)

so dim $\operatorname{coker}(T+S) \leq \dim V_2 = \dim \operatorname{coker}(T)$.

Step 3. $\ker(T) \cong (T+S)^{-1}(V_2).$

The computation leading to (1) shows that any $x \in (T+S)^{-1}(V_2)$ is of the form (1) for some $w \in \ker(T)$. Conversely, if $x = (I - (T' + S')^{-1}q_2S)w$ for some $w \in \ker(T)$, then $q_2(T+S)x = 0$ so $x \in (T+S)^{-1}(V_2)$. We see that $I - (T' + S')^{-1}q_2S$ gives for ||S|| small an isomorphism $\ker(T) \cong (T+S)^{-1}(V_2)$.

Step 4.
$$\operatorname{ind}(T+S) = \operatorname{ind}(T)$$
.

Consider the map M which is a restriction of T + S between finite dimensional spaces,

$$M: (T+S)^{-1}(V_2) \to V_2, \ x \mapsto (T+S)x.$$

By the rank-nullity theorem for matrices,

$$\dim \ker(M) + \dim \operatorname{im}(M) = \dim (T+S)^{-1}(V_2).$$

²This is clear in a Hilbert space, since any closed subspace has an orthogonal complement. In a Banach space it is easy to show that any closed subspace with finite dimension or codimension has a complement, see Rudin, Functional Analysis, Lemma 4.21.

By Step 3 we have dim $(T+S)^{-1}(V_2) = \dim \ker(T)$, and clearly $\ker(M) = \ker(T+S)$. Finally, we have the isomorphism

 $V_2 \cong \operatorname{im}(M) \oplus \operatorname{coker}(T+S), \ v_2 \mapsto (P_{\operatorname{im}(M)}v_2, [v_2]).$

Here we have used (2). The result follows.

3. One has

$$\frac{1}{x-i\varepsilon} - \frac{1}{x+i\varepsilon} = \frac{2i\varepsilon}{x^2 + \varepsilon^2} = 2\pi i j_{\varepsilon}(x)$$

where $j(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ and $j_{\varepsilon}(x) = \varepsilon^{-1} j(x/\varepsilon)$. Since $\int j(x) dx = 2\pi^{-1} \int_0^\infty (1+x^2)^{-1} dx$, the substitution $x = \tan \theta$ gives $\int j(x) dx = 2\pi^{-1} \int_0^{\pi/2} d\theta = 1$. Therefore, for $\varphi \in C_c(\mathbf{R})$

$$\left\langle \frac{1}{x-i\varepsilon} - \frac{1}{x+i\varepsilon}, \varphi \right\rangle = 2\pi i \int j_{\varepsilon}(x)\varphi(x) \, dx = 2\pi i \int j(x)\varphi(\varepsilon x) \, dx.$$

The last expression has the limit $2\pi i\varphi(0)$ as $\varepsilon \to 0$ by dominated convergence.

Let $\varphi \in C_c(\mathbf{R})$ and define

$$\varphi_{\varepsilon}(t) = \frac{1}{2\pi i} \int \left(\frac{1}{t - \lambda - i\varepsilon} - \frac{1}{t - \lambda + i\varepsilon} \right) \varphi(\lambda) \, d\lambda = (j_{\varepsilon} * \varphi)(t).$$

Since φ is bounded and uniformly continuous, one has $\varphi_{\varepsilon} \to \varphi$ in L^{∞} as $\varepsilon \to 0^{-3}$. Let A be self-adjoint and let $d\mu_v$ be the spectral measure for $v \in H$. Then

$$\left|\left(\left[\varphi_{\varepsilon}(A) - \varphi(A)\right]v, v\right)\right| = \left|\int \left[\varphi_{\varepsilon}(t) - \varphi(t)\right] d\mu_{v}(t)\right| \le \|\varphi_{\varepsilon} - \varphi\|_{L^{\infty}} \|v\|^{2}$$

since $\mu_v(\mathbf{R}) = ||v||^2$. It follows that $\varphi_{\varepsilon}(A) \to \varphi(A)$ in the operator norm as $\varepsilon \to 0$. This ends the proof because

$$\varphi_{\varepsilon}(A) = \frac{1}{2\pi i} \int (R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon))\varphi(\lambda) \, d\lambda.$$

³Let $\delta > 0$, and choose R > 0 so that $\int_{|y| \ge R} j(y) \, dy \le (4 \|\varphi\|_{L^{\infty}})^{-1} \delta$. Then choose $\varepsilon_0 > 0$ so that $|\varphi(x - \varepsilon_0 y) - \varphi(x)| \le \delta/2$ if $|y| \le R$ and $x \in \mathbf{R}$. Then

$$|\varphi_{\varepsilon}(x) - \varphi(x)| = \left| \int j(y) [\varphi(x - \varepsilon y) - \varphi(x)] \, dy \right| \le 2 \|\varphi\|_{L^{\infty}} \int_{|y| \ge R} j(y) \, dy + \sup_{|y| \le R} |\varphi(x - \varepsilon y) - \varphi(x)|.$$

This is $\leq \delta$ if $\varepsilon < \varepsilon_0$.

4. The function V is real valued, so the operator $u \mapsto Vu$ with domain $H^2(\mathbf{R}^3)$ is symmetric. Since $-\Delta$ with domain $H^2(\mathbf{R}^3)$ is self-adjoint, by Kato's theorem $-\Delta + V$ will be self-adjoint if for some a < 1 one has

$$||Vu||_{L^2} \le a ||-\Delta u||_{L^2} + b ||u||_{L^2}, \quad u \in H^2(\mathbf{R}^3).$$

We have $||V_1u||_{L^2} \leq ||V_1||_{L^{\infty}} ||u||_{L^2}$, so it is enough to consider V_2 . Now if $f \in L^2$ then for t > 0

$$\begin{aligned} \|(-\Delta + it)^{-1}f\|_{L^{\infty}} &\leq (2\pi)^{-n} \|((-\Delta + it)^{-1}f)^{\hat{}}\|_{L^{1}} \\ &\leq (2\pi)^{-n} \int_{\mathbf{R}^{3}} |(|\xi|^{2} + it)^{-1}\hat{f}(\xi)| \, d\xi \\ &\leq (2\pi)^{-n} \int_{\mathbf{R}^{3}} (|\xi|^{4} + t^{2})^{-1/2} |\hat{f}(\xi)| \, d\xi \\ &\leq (2\pi)^{-n} \Big(\int_{\mathbf{R}^{3}} \frac{1}{t^{2} + |\xi|^{4}} \, d\xi \Big)^{1/2} \|\hat{f}\|_{L^{2}}. \end{aligned}$$

Here $\int_{\mathbf{R}^3} \frac{1}{t^2 + |\xi|^4} d\xi = t^{-1/2} \int_{\mathbf{R}^3} \frac{1}{1 + |\xi|^4} d\xi \leq C_0 t^{-1/2}$ for some absolute constant C_0 . It follows that for any $\varepsilon > 0$ there is t > 0 such that

$$\|(-\Delta+it)^{-1}f\|_{L^{\infty}} \le \varepsilon \|f\|_{L^2}, \quad f \in L^2.$$

Then for $u \in H^2(\mathbf{R}^3)$, the choice $f = (-\Delta + it)u$ gives

$$\begin{aligned} \|V_2 u\|_{L^2} &\leq \|u\|_{L^{\infty}} \|V_2\|_{L^2} \leq \varepsilon \|V_2\|_{L^2} \|(-\Delta + it)u\|_{L^2} \\ &\leq \varepsilon \|V_2\|_{L^2} \|-\Delta u\|_{L^2} + \varepsilon t \|V_2\|_{L^2} \|u\|_{L^2}. \end{aligned}$$

Choosing ε small enough gives the desired norm estimate with a < 1 (in fact one may take a arbitrarily close to 0).