## Scattering theory

Solutions to Exercises \#6, 09.11.2007

1. Let $T \in L\left(B_{1}, B_{2}\right)$ be Fredholm. Assume first that $T$ is injective, and let $n=\operatorname{dim}\left(B_{2} / \operatorname{im}(T)\right)$. Then there is $S: \mathbf{C}^{n} \rightarrow B_{2}$ such that the map

$$
T_{1}: B_{1} \times \mathbf{C}^{n} \rightarrow B_{2},(x, y) \mapsto T x+S y,
$$

is linear, bounded, and bijective. ${ }^{1}$ By the open mapping theorem $T_{1}$ is a homeomorphism, which shows that the range $\operatorname{im}(T)=T_{1}\left(B_{1} \times\{0\}\right)$ is closed. If $T$ was not injective we can consider $T^{\prime}: B_{1} / \operatorname{ker}(T) \rightarrow B_{2},[x] \mapsto$ $T x$. Then $T^{\prime}$ is Fredholm with range $\operatorname{im}(T)$ and injective, so $\operatorname{im}(T)$ is closed also in this case.
Let now $T_{1} \in L\left(B_{1}, B_{2}\right)$ and $T_{2} \in L\left(B_{2}, B_{3}\right)$ be Fredholm. Now $T_{1}$ : $\operatorname{ker}\left(T_{2} T_{1}\right) \rightarrow \operatorname{ker}\left(T_{2}\right)$ with kernel $\operatorname{ker}\left(T_{1}\right)$, so there is an isomorphism of $\operatorname{ker}\left(T_{2} T_{1}\right) / \operatorname{ker}\left(T_{1}\right)$ and a subspace of $\operatorname{ker}\left(T_{2}\right)$. Consequently dim $\operatorname{ker}\left(T_{2} T_{1}\right) \leq$ $\operatorname{dim} \operatorname{ker}\left(T_{1}\right)+\operatorname{dim} \operatorname{ker}\left(T_{2}\right)<\infty$. Also, since $\operatorname{im}\left(T_{2} T_{1}\right) \subset \operatorname{im}\left(T_{2}\right) \subset B_{3}$, we have

$$
\left(B_{3} / \operatorname{im}\left(T_{2} T_{1}\right)\right) /\left(\operatorname{im}\left(T_{2}\right) / \operatorname{im}\left(T_{2} T_{1}\right)\right)=B_{3} / \operatorname{im}\left(T_{2}\right),
$$

so $\operatorname{dim} \operatorname{coker}\left(T_{2} T_{1}\right) \leq \operatorname{dim} \operatorname{im}\left(T_{2}\right) / \operatorname{im}\left(T_{2} T_{1}\right)+\operatorname{dim} \operatorname{coker}\left(T_{2}\right)$. But $T_{2}$ : $B_{2} / \operatorname{im}\left(T_{1}\right) \rightarrow \operatorname{im}\left(T_{2}\right) / \operatorname{im}\left(T_{2} T_{1}\right)$ is surjective, so $\operatorname{dim} \operatorname{im}\left(T_{2}\right) / \operatorname{im}\left(T_{2} T_{1}\right) \leq$ dim $\operatorname{coker}\left(T_{1}\right)$. This shows that $T_{2} T_{1}$ is Fredholm.
2. Assume first that $T$ is bijective. Then $T$ has a bounded inverse by the open mapping theorem, and

$$
T+S=T\left(I+T^{-1} S\right)
$$

If $\|S\|$ is small enough then $\left\|T^{-1} S\right\|<1 / 2$, so $I+T^{-1} S$ is invertible by Neumann series. Then also $T+S$ is bijective, so $\operatorname{dim} \operatorname{ker}(T+S) \leq$ $\operatorname{dim} \operatorname{ker}(T)=0, \operatorname{dim} \operatorname{coker}(T+S) \leq \operatorname{dim} \operatorname{coker}(T)=0$, and $\operatorname{ind}(T+S)=$ $\operatorname{ind}(T)=0$.

If $T: B_{1} \rightarrow B_{2}$ is Fredholm but not bijective, there exists a closed subspace $V_{1}$ of $B_{1}$ and a finite dimensional subspace $V_{2}$ of $B_{2}$ such that $B_{1}=$

[^0]$V_{1} \oplus \operatorname{ker}(T)$ and $B_{2}=V_{2} \oplus \operatorname{im}(T) .{ }^{2}$ Let $q_{2}: B_{2} \rightarrow B_{2} / V_{2}$ be the quotient map, and define $T^{\prime}=\left.q_{2} T\right|_{V_{1}}$ and $S^{\prime}=\left.q_{2} S\right|_{V_{1}}$. Then $T^{\prime}, S^{\prime}: V_{1} \rightarrow B_{2} / V_{2}$ and $T^{\prime}$ is bijective and $\left\|S^{\prime}\right\| \leq\|S\|$. If $\|S\|$ is small enough then $T^{\prime}+S^{\prime}$ is bijective. We prove the statements for $T+S$ in four steps.
Step 1: $\operatorname{dim} \operatorname{ker}(T+S) \leq \operatorname{dim} \operatorname{ker}(T)$.
If $x \in \operatorname{ker}(T+S)$ then $x=v_{1}+w$ where $v_{1} \in V_{1}$ and $w \in \operatorname{ker}(T)$. Thus $(T+S) v_{1}=-S w$, so $\left(T^{\prime}+S^{\prime}\right) v_{1}=-q_{2} S w$ and consequently
\[

$$
\begin{equation*}
x=\left(I-\left(T^{\prime}+S^{\prime}\right)^{-1} q_{2} S\right) w . \tag{1}
\end{equation*}
$$

\]

If $\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis of $\operatorname{ker}(T)$, the corresponding vectors $\left\{x_{1}, \ldots, x_{m}\right\}$ span $\operatorname{ker}(T+S)$.
Step 2. $\operatorname{dim} \operatorname{coker}(T+S) \leq \operatorname{dim} \operatorname{coker}(T)$.
Since $T^{\prime}+S^{\prime}$ is bijective, any $y \in B_{2}$ has the form $y=(T+S) v_{1}+v_{2}$ for some $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$. Thus in $B_{2} / \operatorname{im}(T+S),[y]=\left[v_{2}\right]$. Consequently

$$
\begin{equation*}
B_{2} / \operatorname{im}(T+S)=\left\{\left[v_{2}\right] ; v_{2} \in V_{2}\right\} \tag{2}
\end{equation*}
$$

so dim $\operatorname{coker}(T+S) \leq \operatorname{dim} V_{2}=\operatorname{dim} \operatorname{coker}(T)$.
Step 3. $\operatorname{ker}(T) \cong(T+S)^{-1}\left(V_{2}\right)$.
The computation leading to (1) shows that any $x \in(T+S)^{-1}\left(V_{2}\right)$ is of the form (1) for some $w \in \operatorname{ker}(T)$. Conversely, if $x=\left(I-\left(T^{\prime}+S^{\prime}\right)^{-1} q_{2} S\right) w$ for some $w \in \operatorname{ker}(T)$, then $q_{2}(T+S) x=0$ so $x \in(T+S)^{-1}\left(V_{2}\right)$. We see that $I-\left(T^{\prime}+S^{\prime}\right)^{-1} q_{2} S$ gives for $\|S\|$ small an isomorphism $\operatorname{ker}(T) \cong$ $(T+S)^{-1}\left(V_{2}\right)$.
Step 4. $\operatorname{ind}(T+S)=\operatorname{ind}(T)$.
Consider the map $M$ which is a restriction of $T+S$ between finite dimensional spaces,

$$
M:(T+S)^{-1}\left(V_{2}\right) \rightarrow V_{2}, x \mapsto(T+S) x .
$$

By the rank-nullity theorem for matrices,

$$
\operatorname{dim} \operatorname{ker}(M)+\operatorname{dim} \operatorname{im}(M)=\operatorname{dim}(T+S)^{-1}\left(V_{2}\right)
$$

[^1]By Step 3 we have $\operatorname{dim}(T+S)^{-1}\left(V_{2}\right)=\operatorname{dim} \operatorname{ker}(T)$, and clearly $\operatorname{ker}(M)=$ $\operatorname{ker}(T+S)$. Finally, we have the isomorphism

$$
V_{2} \cong \operatorname{im}(M) \oplus \operatorname{coker}(T+S), \quad v_{2} \mapsto\left(P_{\operatorname{im}(M)} v_{2},\left[v_{2}\right]\right)
$$

Here we have used (2). The result follows.
3. One has

$$
\frac{1}{x-i \varepsilon}-\frac{1}{x+i \varepsilon}=\frac{2 i \varepsilon}{x^{2}+\varepsilon^{2}}=2 \pi i j_{\varepsilon}(x)
$$

where $j(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$ and $j_{\varepsilon}(x)=\varepsilon^{-1} j(x / \varepsilon)$. Since $\int j(x) d x=2 \pi^{-1} \int_{0}^{\infty}(1+$ $\left.x^{2}\right)^{-1} d x$, the substitution $x=\tan \theta$ gives $\int j(x) d x=2 \pi^{-1} \int_{0}^{\pi / 2} d \theta=1$. Therefore, for $\varphi \in C_{c}(\mathbf{R})$

$$
\left\langle\frac{1}{x-i \varepsilon}-\frac{1}{x+i \varepsilon}, \varphi\right\rangle=2 \pi i \int j_{\varepsilon}(x) \varphi(x) d x=2 \pi i \int j(x) \varphi(\varepsilon x) d x
$$

The last expression has the limit $2 \pi i \varphi(0)$ as $\varepsilon \rightarrow 0$ by dominated convergence.
Let $\varphi \in C_{c}(\mathbf{R})$ and define

$$
\varphi_{\varepsilon}(t)=\frac{1}{2 \pi i} \int\left(\frac{1}{t-\lambda-i \varepsilon}-\frac{1}{t-\lambda+i \varepsilon}\right) \varphi(\lambda) d \lambda=\left(j_{\varepsilon} * \varphi\right)(t)
$$

Since $\varphi$ is bounded and uniformly continuous, one has $\varphi_{\varepsilon} \rightarrow \varphi$ in $L^{\infty}$ as $\varepsilon \rightarrow 0^{3}$. Let $A$ be self-adjoint and let $d \mu_{v}$ be the spectral measure for $v \in H$. Then

$$
\left|\left(\left[\varphi_{\varepsilon}(A)-\varphi(A)\right] v, v\right)\right|=\left|\int\left[\varphi_{\varepsilon}(t)-\varphi(t)\right] d \mu_{v}(t)\right| \leq\left\|\varphi_{\varepsilon}-\varphi\right\|_{L^{\infty}}\|v\|^{2}
$$

since $\mu_{v}(\mathbf{R})=\|v\|^{2}$. It follows that $\varphi_{\varepsilon}(A) \rightarrow \varphi(A)$ in the operator norm as $\varepsilon \rightarrow 0$. This ends the proof because

$$
\varphi_{\varepsilon}(A)=\frac{1}{2 \pi i} \int(R(\lambda+i \varepsilon)-R(\lambda-i \varepsilon)) \varphi(\lambda) d \lambda .
$$

[^2]4. The function $V$ is real valued, so the operator $u \mapsto V u$ with domain $H^{2}\left(\mathbf{R}^{3}\right)$ is symmetric. Since $-\Delta$ with domain $H^{2}\left(\mathbf{R}^{3}\right)$ is self-adjoint, by Kato's theorem $-\Delta+V$ will be self-adjoint if for some $a<1$ one has
$$
\|V u\|_{L^{2}} \leq a\|-\Delta u\|_{L^{2}}+b\|u\|_{L^{2}}, \quad u \in H^{2}\left(\mathbf{R}^{3}\right)
$$

We have $\left\|V_{1} u\right\|_{L^{2}} \leq\left\|V_{1}\right\|_{L^{\infty}}\|u\|_{L^{2}}$, so it is enough to consider $V_{2}$. Now if $f \in L^{2}$ then for $t>0$

$$
\begin{aligned}
\left\|(-\Delta+i t)^{-1} f\right\|_{L^{\infty}} & \leq(2 \pi)^{-n}\left\|\left((-\Delta+i t)^{-1} f\right)^{\wedge}\right\|_{L^{1}} \\
& \leq(2 \pi)^{-n} \int_{\mathbf{R}^{3}}\left|\left(|\xi|^{2}+i t\right)^{-1} \hat{f}(\xi)\right| d \xi \\
& \leq(2 \pi)^{-n} \int_{\mathbf{R}^{3}}\left(|\xi|^{4}+t^{2}\right)^{-1 / 2}|\hat{f}(\xi)| d \xi \\
& \leq(2 \pi)^{-n}\left(\int_{\mathbf{R}^{3}} \frac{1}{t^{2}+|\xi|^{4}} d \xi\right)^{1 / 2}\|\hat{f}\|_{L^{2}} .
\end{aligned}
$$

Here $\int_{\mathbf{R}^{3}} \frac{1}{t^{2}+|\xi|^{4}} d \xi=t^{-1 / 2} \int_{\mathbf{R}^{3}} \frac{1}{1+|\xi|^{4}} d \xi \leq C_{0} t^{-1 / 2}$ for some absolute constant $C_{0}$. It follows that for any $\varepsilon>0$ there is $t>0$ such that

$$
\left\|(-\Delta+i t)^{-1} f\right\|_{L^{\infty}} \leq \varepsilon\|f\|_{L^{2}}, \quad f \in L^{2}
$$

Then for $u \in H^{2}\left(\mathbf{R}^{3}\right)$, the choice $f=(-\Delta+i t) u$ gives

$$
\begin{aligned}
\left\|V_{2} u\right\|_{L^{2}} & \leq\|u\|_{L^{\infty}}\left\|V_{2}\right\|_{L^{2}} \leq \varepsilon\left\|V_{2}\right\|_{L^{2}}\|(-\Delta+i t) u\|_{L^{2}} \\
& \leq \varepsilon\left\|V_{2}\right\|_{L^{2}}\|-\Delta u\|_{L^{2}}+\varepsilon t\left\|V_{2}\right\|_{L^{2}}\|u\|_{L^{2}} .
\end{aligned}
$$

Choosing $\varepsilon$ small enough gives the desired norm estimate with $a<1$ (in fact one may take $a$ arbitrarily close to 0 ).


[^0]:    ${ }^{1}$ In fact, let $S_{0}: \mathbf{C}^{n} \rightarrow B_{2} / \operatorname{im}(T)$ be an isomorphism and let $q: B_{2} \rightarrow B_{2} / \operatorname{im}(T)$ be the quotient map. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of $\mathbf{C}^{n}$ we define $S e_{j}$ to be some element of $q^{-1}\left(S_{0} e_{j}\right)$, and define $S$ on $\mathbf{C}^{n}$ by linearity. Then $T_{1}$ is linear and bounded. If $T_{1}(x, y)=0$ then $0=q T_{1}(x, y)=q S y=S_{0} y$ so $y=0$ and then also $x=0$. For surjectivity let $z \in B_{2}$ and consider the equation $T x+S y=z$. Applying $q$ gives $S_{0} y=q z$, and the choice $y=S_{0}^{-1}(q z)$ gives $q(z-S y)=0$ so there is $x \in B_{1}$ with $z-S y=T x$. Thus $T_{1}$ is bijective.

[^1]:    ${ }^{2}$ This is clear in a Hilbert space, since any closed subspace has an orthogonal complement. In a Banach space it is easy to show that any closed subspace with finite dimension or codimension has a complement, see Rudin, Functional Analysis, Lemma 4.21.

[^2]:    ${ }^{3}$ Let $\delta>0$, and choose $R>0$ so that $\int_{|y| \geq R} j(y) d y \leq\left(4\|\varphi\|_{L^{\infty}}\right)^{-1} \delta$. Then choose $\varepsilon_{0}>0$ so that $\left|\varphi\left(x-\varepsilon_{0} y\right)-\varphi(x)\right| \leq \delta / 2$ if $|y| \leq R$ and $x \in \mathbf{R}$. Then
    $\left|\varphi_{\varepsilon}(x)-\varphi(x)\right|=\left|\int j(y)[\varphi(x-\varepsilon y)-\varphi(x)] d y\right| \leq 2\|\varphi\|_{L^{\infty}} \int_{|y| \geq R} j(y) d y+\sup _{|y| \leq R}|\varphi(x-\varepsilon y)-\varphi(x)|$.
    This is $\leq \delta$ if $\varepsilon<\varepsilon_{0}$.

