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1. Let T ∈ L(B1, B2) be Fredholm. Assume first that T is injective, and let
n = dim(B2/im(T )). Then there is S : Cn → B2 such that the map

T1 : B1 ×Cn → B2, (x, y) 7→ Tx+ Sy,

is linear, bounded, and bijective. 1 By the open mapping theorem T1 is
a homeomorphism, which shows that the range im(T ) = T1(B1 × {0}) is
closed. If T was not injective we can consider T ′ : B1/ker(T )→ B2, [x] 7→
Tx. Then T ′ is Fredholm with range im(T ) and injective, so im(T ) is
closed also in this case.

Let now T1 ∈ L(B1, B2) and T2 ∈ L(B2, B3) be Fredholm. Now T1 :
ker(T2T1) → ker(T2) with kernel ker(T1), so there is an isomorphism of
ker(T2T1)/ ker(T1) and a subspace of ker(T2). Consequently dim ker(T2T1) ≤
dim ker(T1) + dim ker(T2) <∞. Also, since im(T2T1) ⊂ im(T2) ⊂ B3, we
have

(B3/im(T2T1))/(im(T2)/im(T2T1)) = B3/im(T2),

so dim coker(T2T1) ≤ dim im(T2)/im(T2T1) + dim coker(T2). But T2 :
B2/im(T1) → im(T2)/im(T2T1) is surjective, so dim im(T2)/im(T2T1) ≤
dim coker(T1). This shows that T2T1 is Fredholm.

2. Assume first that T is bijective. Then T has a bounded inverse by the
open mapping theorem, and

T + S = T (I + T−1S).

If ‖S‖ is small enough then ‖T−1S‖ < 1/2, so I + T−1S is invertible
by Neumann series. Then also T + S is bijective, so dim ker(T + S) ≤
dim ker(T ) = 0, dim coker(T +S) ≤ dim coker(T ) = 0, and ind(T +S) =
ind(T ) = 0.

If T : B1 → B2 is Fredholm but not bijective, there exists a closed subspace
V1 of B1 and a finite dimensional subspace V2 of B2 such that B1 =

1In fact, let S0 : Cn → B2/im(T ) be an isomorphism and let q : B2 → B2/im(T ) be
the quotient map. If {e1, . . . , en} is a basis of Cn we define Sej to be some element of
q−1(S0ej), and define S on Cn by linearity. Then T1 is linear and bounded. If T1(x, y) = 0
then 0 = qT1(x, y) = qSy = S0y so y = 0 and then also x = 0. For surjectivity let z ∈ B2

and consider the equation Tx + Sy = z. Applying q gives S0y = qz, and the choice
y = S−1

0 (qz) gives q(z−Sy) = 0 so there is x ∈ B1 with z−Sy = Tx. Thus T1 is bijective.



V1 ⊕ ker(T ) and B2 = V2 ⊕ im(T ). 2 Let q2 : B2 → B2/V2 be the quotient
map, and define T ′ = q2T |V1 and S ′ = q2S|V1 . Then T ′, S ′ : V1 → B2/V2

and T ′ is bijective and ‖S ′‖ ≤ ‖S‖. If ‖S‖ is small enough then T ′+S ′ is
bijective. We prove the statements for T + S in four steps.

Step 1: dim ker(T + S) ≤ dim ker(T ).

If x ∈ ker(T + S) then x = v1 + w where v1 ∈ V1 and w ∈ ker(T ). Thus
(T + S)v1 = −Sw, so (T ′ + S ′)v1 = −q2Sw and consequently

x = (I − (T ′ + S ′)−1q2S)w. (1)

If {w1, . . . , wm} is a basis of ker(T ), the corresponding vectors {x1, . . . , xm}
span ker(T + S).

Step 2. dim coker(T + S) ≤ dim coker(T ).

Since T ′ + S ′ is bijective, any y ∈ B2 has the form y = (T + S)v1 + v2 for
some v1 ∈ V1 and v2 ∈ V2. Thus in B2/im(T+S), [y] = [v2]. Consequently

B2/im(T + S) = {[v2] ; v2 ∈ V2}, (2)

so dim coker(T + S) ≤ dim V2 = dim coker(T ).

Step 3. ker(T ) ∼= (T + S)−1(V2).

The computation leading to (1) shows that any x ∈ (T+S)−1(V2) is of the
form (1) for some w ∈ ker(T ). Conversely, if x = (I − (T ′ + S ′)−1q2S)w
for some w ∈ ker(T ), then q2(T + S)x = 0 so x ∈ (T + S)−1(V2). We
see that I − (T ′ + S ′)−1q2S gives for ‖S‖ small an isomorphism ker(T ) ∼=
(T + S)−1(V2).

Step 4. ind(T + S) = ind(T ).

Consider the map M which is a restriction of T +S between finite dimen-
sional spaces,

M : (T + S)−1(V2)→ V2, x 7→ (T + S)x.

By the rank-nullity theorem for matrices,

dim ker(M) + dim im(M) = dim (T + S)−1(V2).

2This is clear in a Hilbert space, since any closed subspace has an orthogonal comple-
ment. In a Banach space it is easy to show that any closed subspace with finite dimension
or codimension has a complement, see Rudin, Functional Analysis, Lemma 4.21.



By Step 3 we have dim (T +S)−1(V2) = dim ker(T ), and clearly ker(M) =
ker(T + S). Finally, we have the isomorphism

V2
∼= im(M)⊕ coker(T + S), v2 7→ (Pim(M)v2, [v2]).

Here we have used (2). The result follows.

3. One has
1

x− iε
− 1

x+ iε
=

2iε

x2 + ε2
= 2πijε(x)

where j(x) = 1
π

1
1+x2 and jε(x) = ε−1j(x/ε). Since

∫
j(x) dx = 2π−1

∫∞
0

(1+

x2)−1 dx, the substitution x = tan θ gives
∫
j(x) dx = 2π−1

∫ π/2
0

dθ = 1.
Therefore, for ϕ ∈ Cc(R)〈 1

x− iε
− 1

x+ iε
, ϕ
〉

= 2πi

∫
jε(x)ϕ(x) dx = 2πi

∫
j(x)ϕ(εx) dx.

The last expression has the limit 2πiϕ(0) as ε→ 0 by dominated conver-
gence.

Let ϕ ∈ Cc(R) and define

ϕε(t) =
1

2πi

∫ ( 1

t− λ− iε
− 1

t− λ+ iε

)
ϕ(λ) dλ = (jε ∗ ϕ)(t).

Since ϕ is bounded and uniformly continuous, one has ϕε → ϕ in L∞ as
ε → 0 3 . Let A be self-adjoint and let dµv be the spectral measure for
v ∈ H. Then

|([ϕε(A)− ϕ(A)]v, v)| =
∣∣∣ ∫ [ϕε(t)− ϕ(t)] dµv(t)

∣∣∣ ≤ ‖ϕε − ϕ‖L∞‖v‖2
since µv(R) = ‖v‖2. It follows that ϕε(A) → ϕ(A) in the operator norm
as ε→ 0. This ends the proof because

ϕε(A) =
1

2πi

∫
(R(λ+ iε)−R(λ− iε))ϕ(λ) dλ.

3Let δ > 0, and choose R > 0 so that
∫
|y|≥R

j(y) dy ≤ (4‖ϕ‖L∞)−1δ. Then choose
ε0 > 0 so that |ϕ(x− ε0y)− ϕ(x)| ≤ δ/2 if |y| ≤ R and x ∈ R. Then

|ϕε(x)−ϕ(x)| =
∣∣∣ ∫ j(y)[ϕ(x−εy)−ϕ(x)] dy

∣∣∣ ≤ 2‖ϕ‖L∞
∫
|y|≥R

j(y) dy+ sup
|y|≤R

|ϕ(x−εy)−ϕ(x)|.

This is ≤ δ if ε < ε0.



4. The function V is real valued, so the operator u 7→ V u with domain
H2(R3) is symmetric. Since −∆ with domain H2(R3) is self-adjoint, by
Kato’s theorem −∆ + V will be self-adjoint if for some a < 1 one has

‖V u‖L2 ≤ a‖−∆u‖L2 + b‖u‖L2 , u ∈ H2(R3).

We have ‖V1u‖L2 ≤ ‖V1‖L∞‖u‖L2 , so it is enough to consider V2. Now if
f ∈ L2 then for t > 0

‖(−∆ + it)−1f‖L∞ ≤ (2π)−n‖((−∆ + it)−1f )̂ ‖L1

≤ (2π)−n
∫

R3

|(|ξ|2 + it)−1f̂(ξ)| dξ

≤ (2π)−n
∫

R3

(|ξ|4 + t2)−1/2|f̂(ξ)| dξ

≤ (2π)−n
(∫

R3

1

t2 + |ξ|4
dξ
)1/2

‖f̂‖L2 .

Here
∫
R3

1
t2+|ξ|4 dξ = t−1/2

∫
R3

1
1+|ξ|4 dξ ≤ C0t

−1/2 for some absolute con-
stant C0. It follows that for any ε > 0 there is t > 0 such that

‖(−∆ + it)−1f‖L∞ ≤ ε‖f‖L2 , f ∈ L2.

Then for u ∈ H2(R3), the choice f = (−∆ + it)u gives

‖V2u‖L2 ≤ ‖u‖L∞‖V2‖L2 ≤ ε‖V2‖L2‖(−∆ + it)u‖L2

≤ ε‖V2‖L2‖−∆u‖L2 + εt‖V2‖L2‖u‖L2 .

Choosing ε small enough gives the desired norm estimate with a < 1 (in
fact one may take a arbitrarily close to 0).


