Scattering theory Solutions to Exercises #5, 19.10.2007

- 1. Let $\lambda \in \sigma_{\text{ess}}(A)$ and let K be compact and self-adjoint. Assuming Weyl's criterion, there is a sequence $(u_j) \subset \mathscr{D}(A)$, $||u_j|| = 1$, with $u_j \to 0$ weakly and $||(A \lambda)u_j|| \to 0$. Any weakly convergent sequence is bounded, and therefore (Ku_j) converges to some $\tilde{u} \in H$ after taking a subsequence if necessary. But $(Ku_j, v) = (u_j, Kv) \to 0$ for any $v \in H$, so $\tilde{u} = 0$ and so $||(A + K \lambda)u_j|| \to 0$. The new sequence (u_j) is a Weyl sequence for A + K, so $\lambda \in \sigma_{\text{ess}}(A + K)$. The other direction, $\sigma_{\text{ess}}(A + K) \subset \sigma_{\text{ess}}(A)$, follows by writing A = (A + K) K and using the first part.
- 2. Let $\lambda \in \sigma_{\text{ess}}(A)$ and dim ker $(A \lambda) = \infty$. Choose an orthonormal set $\{u_j\}_{j=1}^{\infty}$ in ker $(A \lambda)$. Then $(u_j) \subset \mathscr{D}(A)$, $||u_j|| = 1$, and $(A \lambda)u_j = 0$ for all j. One has

$$\sum_{j=1}^{\infty} |(u_j, v)|^2 \le ||v||^2, \quad v \in H,$$

and therefore $(u_j, v) \to 0$ for all $v \in H$. This shows that (u_j) is a Weyl sequence.

3. Let $\lambda \in \sigma_{\text{ess}}(A)$ and dim ker $(A - \lambda) < \infty$. Consider the map

$$A_{\lambda} := A - \lambda : \mathscr{D}(A_{\lambda}) \to \ker(A - \lambda)^{\perp},$$

where $\mathscr{D}(A_{\lambda}) = \mathscr{D}(A) \cap \ker(A - \lambda)^{\perp}$. By Ex. 4, Problem 4, A_{λ} is selfadjoint and $0 \in \sigma(A_{\lambda})$. Since $\ker(A_{\lambda}) = \{0\}$ and A_{λ} has no residual spectrum, the range $\mathscr{R}(A_{\lambda})$ is dense.

We have that $A_{\lambda}^{-1} : \mathscr{R}(A_{\lambda}) \to \mathscr{D}(A_{\lambda})$ is unbounded. If $0 < \dim \ker(A - \lambda) < \infty$ this follows from Ex. 4, Problem 4. If $\ker(A - \lambda) = \{0\}$ this is true since otherwise one would have $||u|| = ||A_{\lambda}^{-1}A_{\lambda}u|| \leq C||(A - \lambda)u||$ for $u \in \mathscr{D}(A)$, which is a contradiction by Ex. 2, Problem 1.

Since A_{λ}^{-1} is unbounded, there is a sequence $(v_j) \subset \mathscr{R}(A_{\lambda})$ with $||v_j|| = 1$ and $||A_{\lambda}^{-1}v_j|| \to \infty$. Define

$$u_j = \frac{A_\lambda^{-1} v_j}{\|A_\lambda^{-1} v_j\|}.$$

Then $u_j \in \mathscr{D}(A) \cap \ker(A - \lambda)^{\perp}$, $||u_j|| = 1$, and $||(A - \lambda)u_j|| \to \infty$.

It remains to show that $(u_j, v) \to 0$ for all $v \in H$. In fact, it is enough to show this for v in a dense set. If $v \in \mathscr{D}((A_{\lambda}^{-1})^*)$ then

$$(u_j, v) = \frac{1}{\|A_{\lambda}^{-1}v_j\|} (A_{\lambda}^{-1}v_j, v) = \frac{1}{\|A_{\lambda}^{-1}v_j\|} (v_j, (A_{\lambda}^{-1})^* v) \to 0.$$

Also, $\mathscr{D}((A_{\lambda}^{-1})^*)$ is dense in H since $\mathscr{R}(A_{\lambda}) \subset \mathscr{D}((A_{\lambda}^{-1})^*)$, which follows because $(A_{\lambda}^{-1}u, A_{\lambda}f) = (u, f)$ for $u \in \mathscr{D}(A_{\lambda}^{-1})$. The proof is finished.

4. Let A be self-adjoint in H and let $(u_j) \subset \mathscr{D}(A)$, $||u_j|| = 1$, with $u_j \to 0$ weakly and $||(A - \lambda)u_j|| \to 0$. Then λ is an approximate eigenvalue, so $\lambda \in \sigma(A)$ by Ex. 3, Problem 2. If dim ker $(A - \lambda) = \infty$ then $\lambda \in \sigma_{ess}(A)$ by definition.

Assume that ker $(A-\lambda)$ is finite dimensional, so it has an orthonormal basis ϕ_1, \ldots, ϕ_N . Let $P: u \mapsto \sum_{m=1}^N (u, \phi_m) \phi_m$ be the orthogonal projection onto ker $(A - \lambda)$, and let $P_{\perp} = I - P$ be the orthogonal projection onto ker $(A - \lambda)^{\perp}$. Since $u_j \to 0$ weakly,

$$||Pu_j||^2 = \sum_{m=1}^N |(u_j, \phi_m)|^2 \to 0 \text{ as } j \to \infty,$$

and so $||P_{\perp}u_j|| \to 1$. Then for j sufficiently large we may define

$$v_j = \frac{1}{\|P_\perp u_j\|} P_\perp u_j.$$

Since $u_j \in \mathscr{D}(A)$, one has $P_{\perp}u_j \in \mathscr{D}(A)$ and so $v_j \in \mathscr{D}(A) \cap \ker(A - \lambda)^{\perp}$. Also, $||v_j|| = 1$, and

$$||(A - \lambda)v_j|| = \frac{1}{||P_\perp u_j||} ||(A - \lambda)u_j|| \to 0.$$

This shows that A_{λ}^{-1} is unbounded, since otherwise one would have $1 = ||v_j|| = ||A_{\lambda}^{-1}A_{\lambda}v_j|| \le C||(A-\lambda)v_j|| \to 0$, contradiction.

Since we know that $\lambda \in \sigma(A)$, dim ker $(A - \lambda) < \infty$ and A_{λ}^{-1} is unbounded, by Ex. 4, Problem 4 it must be true that $\lambda \in \sigma_{ess}(A)$.