
Scattering theory
Solutions to Exercises #4, 12.10.2007

1. Let µ be a finite positive Borel measure on R. Define P = {x ; µ({x}) 6=
0} to be the set of pure points of µ (by the lectures, P is countable and
so has Lebesgue measure zero). Let µpp(E) = µ(E ∩ P ) and µcont(E) =
µ(E ∩ P c) for Borel sets E. These are finite positive Borel measures, and
on P c one has the Lebesgue decomposition µcont = µac + µsing where µac

is absolutely continuous and µsing is singular with respect to Lebesgue
measure, and there is a Borel set S ⊂ P c with Lebesgue measure zero
such that µsing is concentrated on S (i.e. µsing(E) = µsing(E ∩ S) for all
Borel E). Let C = Rr (P ∪S). Then µpp, µac and µsing are finite positive
Borel measures concentrated on P , C, and S, respectively.

Define H ′
pp as the closure of {χP f ; f ∈ Cc(R)} in H, similarly for H ′

ac

and H ′
sing. Then for any f ∈ H there exist fj ∈ Cc(R) with ‖fj − f‖ → 0,

so we may write f as

f = lim fj = lim(χP fj + χCfj + χSfj) = lim χP fj + lim χCfj + lim χSfj.

One has H = H ′
pp ⊕ H ′

ac ⊕ H ′
sing since clearly the spaces are orthogonal.

It remains to show that f ∈ H ′
pp iff the spectral measure µf is pure point,

i.e. H ′
pp = Hpp. The cases for H ′

ac and H ′
sing are similar. Since A is

multiplication by λ, it follows from the proof of Prop. 1.7.9 in the lectures
that dµf = |f |2 dµ. Now f ∈ H ′

pp iff f = lim χP fj for fj ∈ Cc(R). For
such f one has

µf (E) =

∫
E

|f |2 dµ = lim

∫
E

χP |fj|2 dµ =

∫
E∩P

|f |2 dµ =

∫
E

|f |2 dµpp

so µf is pure point. Conversely, let dµf = |f |2 dµ be pure point. Note
that

|f |2 dµ = |f |2 dµpp + |f |2 dµac + |f |2 dµsing.

Thus |f |2 dµ−|f |2 dµpp is both pure point and continuous, hence must be
zero, and so f = 0 µ-a.e. on P c. If fj ∈ Cc(R) and fj → f in H, then
(1− χP )fj → 0 so χP fj → f in H, and therefore f ∈ H ′

pp.

2. Let H = `2 and (Lu)n = un+1, (Ru)n = un−1. These are bounded op-
erators and (Lu, v) =

∑
un+1v̄n =

∑
unv̄n−1 = (u, Rv) so L∗ = R and

R∗ = L. Thus A = L + R is bounded and self-adjoint. Let U : H 7→



L2(0, 1), (un) 7→
∑

une
2πinx. This map is unitary by Parseval’s theorem,

and ULU−1 and URU−1 are given by multiplication with e−2πix and e2πix,
respectively. Thus

UAU−1f(x) = 2 cos(2πx)f(x), f ∈ L2(0, 1).

If ϕ is bounded Borel then ϕ(A) is given by 1

Uϕ(A)U−1f(x) = ϕ(2 cos(2πx))f(x), f ∈ L2(0, 1).

If u ∈ H and f = Uu then for ϕ ∈ Cc(R)∫
ϕ dµu = (ϕ(A)u, u) = (Uϕ(A)U−1f, f) =

∫ 1

0

ϕ(2 cos(2πx))|f(x)|2 dx

=

∫ 1/2

0

ϕ(2 cos(2πx))|f(x)|2 dx +

∫ 1

1/2

ϕ(2 cos(2πy))|f(y)|2 dy.

We change variables by x(λ) = y(λ) = 1
2π

cos−1(λ
2
) in these integrals to

get∫
ϕ dµu =

1

4π

∫ 2

−2

ϕ(λ)
|f(x(λ))|2√

1− λ2/4
dλ +

1

4π

∫ 2

−2

ϕ(λ)
|f(y(λ))|2√

1− λ2/4
dλ.

It follows that dµu(λ) = 1
4π(1−λ2/4)1/2 [|f(x(λ))|2 + |f(y(λ))|2]χ(−2,2)(λ) dλ.

3. We first show that the resolvent R(z) is analytic in ρ(A). Let z0 ∈ ρ(A)
and let M = ‖R(z0)‖, so that ‖(A − z0)u‖ ≥ 1

M
‖u‖ for u ∈ D(A). If

|z − z0| < 1/2M then ‖(A− z)u‖ ≥ ‖(A− z0)u‖ − |z − z0|‖u‖ ≥ 1
2M
‖u‖,

so B(z0, 1/2M) ⊂ ρ(A) by Ex. 3, Problem 1, and

‖R(z)‖ ≤ 2M, |z − z0| <
1

2M
.

This shows that ρ(A) is open. The resolvent identity R(z) − R(z0) =
(z − z0)R(z)R(z0) from the lectures implies

‖R(z)−R(z0)‖ ≤ 2M2|z − z0|, |z − z0| <
1

2M
,

1See proof of Theorem 1.7.6 in the lectures, which says that ϕ(A) corresponds to ϕ(Ma),
a = 2 cos(2πx), where Ma is multiplication by a in L2(0, 1). One has ϕ(Ma)f(x) =
ϕ(a(x))f(x) since the spectral projection for Ma is Eλf = χ(−∞,λ)(Ma)f = χ{a<λ}f by
Example 1.4.1 in the lectures. From this fact we obtain s(Ma)f(x) = s(a(x))f(x) for
simple functions s, thus for general ϕ.



and for u, v ∈ H

(R(z)u, v)− (R(z0)u, v)

z − z0

→ (R(z0)
2u, v) as z → z0.

Therefore z 7→ (R(z)u, v) is analytic in ρ(A).

Let λ be an isolated point of σ(A), so B(λ, δ) ∩ σ(A) = {λ} for some
δ > 0, and define

(Pλu, v) = − 1

2πi

∮
Γλ

(R(z)u, v) dz, u, v ∈ H

whenever Γλ is a simple closed curve in B(λ, δ)r{λ} which goes around λ
once counterclockwise (i.e. Ind(Γλ, λ) = 1). Since z 7→ (R(z)u, v) is ana-
lytic in B(λ, δ)r{λ}, Cauchy’s theorem (see e.g. Rudin, Real and complex
analysis, Theorem 10.35) implies that the definition is independent of the
choice of Γλ. By choosing Γλ = ∂B(λ, δ/2), we obtain

|(Pλu, v)| ≤ Cλ,δ‖u‖‖v‖,

and the integral defines Pλ as a bounded linear operator on H.

It remains to show that Pλ is an orthogonal projection onto ker(A − λ),
i.e. P 2

λ = P ∗
λ = Pλ and R(P − λ) = ker(A− λ). To do this we write Pλu

as an H-valued Bochner integral

Pλu = − 1

2πi

∮
Γλ

R(z)u dz

and note that the integral can be approximated by Riemann sums in the
H norm. Then, choosing Γλ = ∂B(λ, δ/4) and Γ′

λ = ∂B(λ, δ/2) we have

(P 2
λu, v) =

1

(2πi)2

∮
Γλ

∮
Γ′

λ

(R(z)R(w)u, v) dw dz

=
1

(2πi)2

∮
Γλ

∮
Γ′

λ

((R(z)−R(w))u, v)

z − w
dw dz.

Since
∮

Γ′
λ
(z−w)−1 dw = −2πi and

∮
Γλ

(z−w)−1 dz = 0 we have P 2
λ = Pλ.

Choosing Γλ = ∂B(λ, r) gives

(Pλu, v) = − 1

2πi

∫ 2π

0

(R(λ + reiθ)u, v) ireiθ dr,

(u, Pλv) = (Pλv, u) = − 1

2πi

∫ 2π

0

(R(λ + reiθ)v, u) ire−iθ dr.



Since R(z)∗ = R(z̄) one gets (R(λ + reiθ)v, u) = (R(λ + re−iθ)u, v), and
P ∗

λ = Pλ follows by changing variables θ 7→ −θ in the second integral.

Finally, we show ker(A− λ) = R(Pλ). If u ∈ ker(A− λ) then (A− z)u =
(λ− z)u so R(z)u = (λ− z)−1u. We see that u ∈ R(Pλ) since u = Pλu:

Pλu = − 1

2πi

∮
Γλ

(λ− z)−1u dz = − 1

2πi

∫ 2π

0

u

−reiθ
ireiθ dθ = u.

On the other hand, if u = Pλv then (A− λ)u = 0 since

(A− λ)Pλu = − 1

2πi

∮
Γλ

(z − λ)R(z)u dz = 0.

Here we used the fact that ‖(z−λ)R(z)‖ ≤ C near λ 2, so λ is a removable
singularity for the analytic function z 7→ (z−λ)R(z) and the integral over
Γλ is zero by Cauchy’s theorem.

4. Let λ ∈ σ(A) be isolated. If λ is not an eigenvalue, then ker(A−λ) = {0}
so Pλ ≡ 0 by Problem 3. Then Morera’s theorem would imply that R(z)
is analytic (in particular bounded) near λ, which is impossible since λ was
in the spectrum.

Let λ ∈ σd(A). Then 0 < dim ker(A − λ) < ∞ by definition. Define
Aλ = A − λ|D(Aλ) where D(Aλ) = D(A) ∩ ker(A − λ)⊥. Then Aλ :
D(Aλ) → ker(A − λ)⊥ is self-adjoint 3. Since ker(Aλ) = {0} we see that
0 is not an eigenvalue of Aλ, so 0 cannot be an isolated point of σ(Aλ) by
the first part. Since σ(Aλ) ⊂ (−λ + σ(A)) 4 we must have 0 ∈ ρ(Aλ), so
indeed Aλ has a bounded inverse.

Suppose now that 0 < dim ker(A−λ) < ∞ and Aλ : D(Aλ) → ker(A−λ)⊥

is bijective and has a bounded inverse. Clearly λ is an eigenvalue of A
with finite multiplicity. We need to show that λ is an isolated point of
σ(A), and to do this it is enough to construct the resolvent R(z) for z
near λ, z 6= λ. Let f ∈ H and consider the equation (A − z)u = f . We
have a splitting of H into closed subspaces,

H = ker(A− λ)⊕ ker(A− λ)⊥.

2This follows from the estimate ‖R(z)‖ ≤ dist(z, σ(A))−1, which follows from the
functional calculus fact that ‖ϕ(A)‖ = ‖ϕ‖L∞(σ(A)) when we consider the choice ϕ(x) =
(x− z)−1.

3If v ∈ ker(A− λ) then ((A− λ)u, v) = (u, (A− λ)v) = 0 for u ∈ D(A) so A− λ maps
into ker(A−λ)⊥. One has (Aλu, v) = (u, (A−λ)v) for u ∈ D(Aλ), v ∈ D(A), which shows
that Aλ is self-adjoint.

4Proof: if z +λ ∈ ρ(A) then ‖(A−z−λ)u‖ ≥ c‖u‖ for u ∈ D(A), hence for u ∈ D(Aλ),
so z ∈ ρ(Aλ).



Let P be the orthogonal projection onto ker(A−λ), and write f = f1+f2,
u = u1 + u2 where f1 = Pf , u1 = Pu. We would like to solve

(A− z)u1 = f1,

(A− z)u2 = f2.

Since (A− z)Pf = (λ− z)Pf = (λ− z)f1 we may take u1 = (λ− z)−1Pf .
Also, for u2 ∈ D(A) ∩ ker(A− λ)⊥ one has

(A− z)u2 = (Aλ + (λ− z))u2 = (I + (λ− z)A−1
λ )Aλu2

and I + (λ− z)A−1
λ is invertible for z near λ by Neumann series. Thus we

may take u2 = A−1
λ (I + (λ− z)A−1

λ )−1f2. The operator

R̃(z)f = (λ− z)−1Pf + A−1
λ (I + (λ− z)A−1

λ )−1(I − P )f

is then bounded on H if z is close to λ, and (A − z)R̃(z) = I. One sees
that R̃(z) maps H onto D(A) by using the splitting above, so A − z is
bijective and has a bounded inverse. Thus points z 6= λ near λ are in
ρ(A), so λ is an isolated point of σ(A) as desired.


