Scattering theory
Solutions to Exercises #4, 12.10.2007

1. Let p be a finite positive Borel measure on R. Define P = {z; u({z}) #
0} to be the set of pure points of p (by the lectures, P is countable and
so has Lebesgue measure zero). Let pp,(E) = p(E N P) and peont(E) =
w(E N P°) for Borel sets E. These are finite positive Borel measures, and
on P¢ one has the Lebesgue decomposition ficont = flac + fsing Where fiac
is absolutely continuous and pgne is singular with respect to Lebesgue
measure, and there is a Borel set S C P° with Lebesgue measure zero
such that pigne is concentrated on S (i.e. psing(E) = psing(E N S) for all
Borel E). Let C = R~ (PUS). Then fi,p, flac and figne are finite positive
Borel measures concentrated on P, C', and S, respectively.

Define H] as the closure of {xpf; f € C.(R)} in H, similarly for H,
and HY,,. Then for any f € H there exist f; € C.(R) with || f; — f|| — 0,

sing*
so we may write f as

f=1lim f; = lim(xpf; + xcfj + xsf;) = limxpf; + lim xc f; + lim x5 f;.

One has H = H|, & H, ® H,, since clearly the spaces are orthogonal.
It remains to show that f € H| iff the spectral measure y; is pure point,
ie. H, = Hy, The cases for H, and Hg,, are similar. Since A is
multiplication by J, it follows from the proof of Prop. 1.7.9 in the lectures
that duy = |f|?dp. Now f € H] iff f = limypf; for f; € C.(R). For

such f one has

uf(E)Z/EIfIZdu:lim/ExP!ijdu:/Emplf|2du=[E|f|2dupp

so py is pure point. Conversely, let du; = |f|*du be pure point. Note
that

|f|2dﬂ = |f|2 dpipp + |f|2dﬂac + |f|2d,using'

Thus |f|* dp — | f]? dpypp is both pure point and continuous, hence must be
zero, and so f = 0 p-a.e. on P°. If f; € C.(R) and f; — f in H, then
(1 =xp)fj — 0so xpf; — fin H, and therefore f € H] .

2. Let H = (* and (Lu), = upy1, (Ru), = u,_1. These are bounded op-
erators and (Lu,v) = Y Up10p = >, UpUp—1 = (u, Rv) so L* = R and
R* = L. Thus A = L + R is bounded and self-adjoint. Let U : H —



L2(0,1), (un) — > u,e?™™®. This map is unitary by Parseval’s theorem,
and ULU ! and URU ! are given by multiplication with e 2™ and e
respectively. Thus

27rza:

UAU ' f(z) = 2cos(2mz) f(z), f € L*(0,1).
If ¢ is bounded Borel then ¢(A) is given by !

Up(A)U ™ f(x) = ¢(2cos(2m)) f(x), f € L*(0,1).
If w e H and f = Uu then for ¢ € C.(R)

[ i = (A = AU ) = [ eosera)lf@)P s

1/2 1
- / (2 cos(2me))| f () di + /1/290(2608(27Ty))|f(y)|2dy.

We change variables by z(\) = y(\) = % cos_l(%) in these integrals to

get

o=z oo [ oo
It follows that dr,(3) = grr=sezgra L (@D + £ Fhx-a2(h) X

3. We first show that the resolvent R(z) is analytic in p(A). Let 2y € p(A)
and let M = ||R(z)||, so that ||(A — zo)ul| > +;||lul| for u € 2(A4). If
|2 — 2| < 1/2M then [[(A — 2)ull > [[(A — z0)ull — |2 — 2ol [ull = 557 ]lull,
so B(zo,1/2M) C p(A) by Ex. 3, Problem 1, and

1

<2M —
IRG) < 2M, |z = 2] < 5o

This shows that p(A) is open. The resolvent identity R(z) — R(z) =
(z — 20)R(2)R(29) from the lectures implies

1

R(z) — R < 2M?|z — — —
IR(E) — (o)l < 2M%z = 2ol |2 = 20| < 57

!See proof of Theorem 1.7.6 in the lectures, which says that ¢(A) corresponds to ¢(M,),
a = 2cos(2mx), where M, is multiplication by a in L?(0,1). One has o(M,)f(x) =
¢(a(x))f(x) since the spectral projection for M, is Exf = X(—oo,x)(Ma)f = X{a<r}f by
Example 1.4.1 in the lectures. From this fact we obtain s(M,)f(z) = s(a(z))f(x) for
simple functions s, thus for general ¢



and for u,v € H
(R(z)u,v) — (R(z0)u,v)

Z— 20

— (R(20)%u,v) as z — 2.

Therefore z — (R(z)u,v) is analytic in p(A).

Let A be an isolated point of o(A), so B(A,d) No(A) = {A} for some
0 > 0, and define

1
(Pyu,v) = —— @ (R(2)u,v)dz, wu,ve H
211 Ty

whenever Iy is a simple closed curve in B(A, d) ~\ {\} which goes around A
once counterclockwise (i.e. Ind(I'y, A) = 1). Since z — (R(z)u,v) is ana-
lytic in B(A,0)~{A}, Cauchy’s theorem (see e.g. Rudin, Real and complex
analysis, Theorem 10.35) implies that the definition is independent of the
choice of T'y. By choosing I'y = 0B(\,§/2), we obtain

|(Pau, v)| < Cxslfulllfvf],

and the integral defines P\ as a bounded linear operator on H.

It remains to show that P, is an orthogonal projection onto ker(A — A),
ie. P} =P; =Py and Z(P — \) = ker(A — \). To do this we write P\u
as an H-valued Bochner integral

Py = . R(2)udz

27 Jp,

and note that the integral can be approximated by Riemann sums in the

H norm. Then, choosing I'y = 0B(\,§/4) and I'\ = 0B(\, §/2) we have

(P2, v) = @ 75 A f (R R ) v d

e ]g (R~ Rr) g,

Since ., (2 —w) ™" dw = —2mi and §. (2 —w)~" dz = 0 we have P} = Py.
A

Choosing I'y = 0B(\, r) gives

1 2 ‘ '
(Pu,v) = —5— i (RO + re®)u, v)ire” dr,
- 1 2w '
(u, Pyv) = (Pywv,u) = —5— (RO +re®)v, u) ire™™ dr.
2 Jo




Since R(z)* = R(z) one gets (R(A + re®)v,u) = (R(A + re )u, v), and
Py = P, follows by changing variables # — —6 in the second integral.
Finally, we show ker(A — \) = Z(Py). If u € ker(A — \) then (A — z)u =
(A = 2)uso R(z)u = (A — 2)"tu. We see that u € Z(Py) since u = Pyu:
1 1 2m
Py =—— A—2) tudy = —— .
A 27i F,\( ?) " udz 27i Jo —ret?

On the other hand, if u = Pyv then (A — A)u = 0 since

ire’ df = u.

1
(A= XNPu=——9¢ (z—ANR(2)udz =0.
™ Ty
Here we used the fact that |[(z —A)R(2)|| < C near A 2, so \ is a removable
singularity for the analytic function z — (z— A)R(z) and the integral over
Iy is zero by Cauchy’s theorem.

4. Let A € 0(A) be isolated. If A is not an eigenvalue, then ker(A —\) = {0}
so P, =0 by Problem 3. Then Morera’s theorem would imply that R(z)
is analytic (in particular bounded) near A, which is impossible since A was
in the spectrum.

Let A € 04(A). Then 0 < dim ker(A — A\) < oo by definition. Define
Ay = A — Mg, where 2(A)) = 2(A) Nker(A — \)*. Then A, :
PD(Ay) — ker(A — \)* is self-adjoint 2. Since ker(A,) = {0} we see that
0 is not an eigenvalue of A, so 0 cannot be an isolated point of o(A,) by
the first part. Since o(Ay) C (—A+ o(A)) * we must have 0 € p(A4,), so
indeed A, has a bounded inverse.

Suppose now that 0 < dim ker(A—\) < oo and A4, : Z(A,) — ker(A—\)*
is bijective and has a bounded inverse. Clearly A is an eigenvalue of A
with finite multiplicity. We need to show that A is an isolated point of
o(A), and to do this it is enough to construct the resolvent R(z) for z
near A\, z # A. Let f € H and consider the equation (A — 2)u = f. We
have a splitting of H into closed subspaces,

H = ker(A — \) @ ker(A — \)*.

2This follows from the estimate ||R(z)| < dist(z,0(A4))~!, which follows from the
functional calculus fact that ||o(A)|| = [|¢ll L (o(a)) When we consider the choice ¢(z) =
(r—2)~L.

3If v € ker(A — \) then ((A — Nu,v) = (u, (A — A\)v) =0 for u € Z(A) so A — X\ maps
into ker(A —\)*. One has (Ayu,v) = (u, (A—\)v) for u € Z(Ay),v € Z(A), which shows
that A, is self-adjoint.

4Proof: if z+ X € p(A) then [[(A—2z—N)u|| > c|jul| for u € Z(A), hence for u € Z(A,),
50 z € p(Ay).




Let P be the orthogonal projection onto ker(A— \), and write f = f1+ fa,
u = uy + up where f; = Pf, uy = Pu. We would like to solve

(A—2)us = fi,
(A — Z)’LLQ = fg.

Since (A—2)Pf = (A—2)Pf = (A —2)f1 we may take u; = (A —2)"'Pf.
Also, for us € 2(A) Nker(A — \)* one has

(A= 2)ug = (Ay + (A= 2))ug = (I + (A — 2) A} ) Ayuy

and I + (A — 2) A ! is invertible for 2 near A by Neumann series. Thus we
may take uy = Ay (I + (A — 2) A1) "L fo. The operator

R(z)f =(A=2)"Pf+ AL T+ (A= 2)A) (I = P)f

is then bounded on H if 2 is close to A, and (A4 — 2)R(z) = I. One sees
that R(z) maps H onto Z(A) by using the splitting above, so A — z is
bijective and has a bounded inverse. Thus points z # A near A are in
p(A), so A is an isolated point of o(A) as desired.



