Scattering theory Solutions to Exercises #4, 12.10.2007

1. Let μ be a finite positive Borel measure on **R**. Define $P = \{x; \mu(\{x\}) \neq 0\}$ to be the set of pure points of μ (by the lectures, P is countable and so has Lebesgue measure zero). Let $\mu_{pp}(E) = \mu(E \cap P)$ and $\mu_{cont}(E) = \mu(E \cap P^c)$ for Borel sets E. These are finite positive Borel measures, and on P^c one has the Lebesgue decomposition $\mu_{cont} = \mu_{ac} + \mu_{sing}$ where μ_{ac} is absolutely continuous and μ_{sing} is singular with respect to Lebesgue measure, and there is a Borel set $S \subset P^c$ with Lebesgue measure zero such that μ_{sing} is concentrated on S (i.e. $\mu_{sing}(E) = \mu_{sing}(E \cap S)$ for all Borel E). Let $C = \mathbf{R} \setminus (P \cup S)$. Then μ_{pp}, μ_{ac} and μ_{sing} are finite positive Borel measures concentrated on P, C, and S, respectively.

Define H'_{pp} as the closure of $\{\chi_P f ; f \in C_c(\mathbf{R})\}$ in H, similarly for H'_{ac} and H'_{sing} . Then for any $f \in H$ there exist $f_j \in C_c(\mathbf{R})$ with $||f_j - f|| \to 0$, so we may write f as

$$f = \lim f_j = \lim (\chi_P f_j + \chi_C f_j + \chi_S f_j) = \lim \chi_P f_j + \lim \chi_C f_j + \lim \chi_S f_j.$$

One has $H = H'_{\rm pp} \oplus H'_{\rm ac} \oplus H'_{\rm sing}$ since clearly the spaces are orthogonal. It remains to show that $f \in H'_{\rm pp}$ iff the spectral measure μ_f is pure point, i.e. $H'_{\rm pp} = H_{\rm pp}$. The cases for $H'_{\rm ac}$ and $H'_{\rm sing}$ are similar. Since A is multiplication by λ , it follows from the proof of Prop. 1.7.9 in the lectures that $d\mu_f = |f|^2 d\mu$. Now $f \in H'_{\rm pp}$ iff $f = \lim \chi_P f_j$ for $f_j \in C_c(\mathbf{R})$. For such f one has

$$\mu_f(E) = \int_E |f|^2 \, d\mu = \lim \int_E \chi_P |f_j|^2 \, d\mu = \int_{E \cap P} |f|^2 \, d\mu = \int_E |f|^2 \, d\mu_{\rm PP}$$

so μ_f is pure point. Conversely, let $d\mu_f = |f|^2 d\mu$ be pure point. Note that

$$|f|^2 d\mu = |f|^2 d\mu_{\rm pp} + |f|^2 d\mu_{\rm ac} + |f|^2 d\mu_{\rm sing}.$$

Thus $|f|^2 d\mu - |f|^2 d\mu_{\rm pp}$ is both pure point and continuous, hence must be zero, and so f = 0 μ -a.e. on P^c . If $f_j \in C_c(\mathbf{R})$ and $f_j \to f$ in H, then $(1 - \chi_P)f_j \to 0$ so $\chi_P f_j \to f$ in H, and therefore $f \in H'_{\rm pp}$.

2. Let $H = \ell^2$ and $(Lu)_n = u_{n+1}$, $(Ru)_n = u_{n-1}$. These are bounded operators and $(Lu, v) = \sum u_{n+1}\bar{v}_n = \sum u_n\bar{v}_{n-1} = (u, Rv)$ so $L^* = R$ and $R^* = L$. Thus A = L + R is bounded and self-adjoint. Let $U : H \mapsto$

 $L^2(0,1), (u_n) \mapsto \sum u_n e^{2\pi i nx}$. This map is unitary by Parseval's theorem, and ULU^{-1} and URU^{-1} are given by multiplication with $e^{-2\pi i x}$ and $e^{2\pi i x}$, respectively. Thus

$$UAU^{-1}f(x) = 2\cos(2\pi x)f(x), \quad f \in L^2(0,1).$$

If φ is bounded Borel then $\varphi(A)$ is given by ¹

$$U\varphi(A)U^{-1}f(x) = \varphi(2\cos(2\pi x))f(x), \quad f \in L^{2}(0,1).$$

If $u \in H$ and f = Uu then for $\varphi \in C_c(\mathbf{R})$

$$\int \varphi \, d\mu_u = (\varphi(A)u, u) = (U\varphi(A)U^{-1}f, f) = \int_0^1 \varphi(2\cos(2\pi x))|f(x)|^2 \, dx$$
$$= \int_0^{1/2} \varphi(2\cos(2\pi x))|f(x)|^2 \, dx + \int_{1/2}^1 \varphi(2\cos(2\pi y))|f(y)|^2 \, dy.$$

We change variables by $x(\lambda) = y(\lambda) = \frac{1}{2\pi} \cos^{-1}(\frac{\lambda}{2})$ in these integrals to get

$$\int \varphi \, d\mu_u = \frac{1}{4\pi} \int_{-2}^2 \varphi(\lambda) \frac{|f(x(\lambda))|^2}{\sqrt{1 - \lambda^2/4}} \, d\lambda + \frac{1}{4\pi} \int_{-2}^2 \varphi(\lambda) \frac{|f(y(\lambda))|^2}{\sqrt{1 - \lambda^2/4}} \, d\lambda.$$

It follows that $d\mu_u(\lambda) = \frac{1}{4\pi(1-\lambda^2/4)^{1/2}} [|f(x(\lambda))|^2 + |f(y(\lambda))|^2]\chi_{(-2,2)}(\lambda) d\lambda.$

3. We first show that the resolvent R(z) is analytic in $\rho(A)$. Let $z_0 \in \rho(A)$ and let $M = ||R(z_0)||$, so that $||(A - z_0)u|| \ge \frac{1}{M}||u||$ for $u \in \mathscr{D}(A)$. If $|z - z_0| < 1/2M$ then $||(A - z)u|| \ge ||(A - z_0)u|| - |z - z_0|||u|| \ge \frac{1}{2M}||u||$, so $B(z_0, 1/2M) \subset \rho(A)$ by Ex. 3, Problem 1, and

$$||R(z)|| \le 2M, ||z - z_0|| < \frac{1}{2M}.$$

This shows that $\rho(A)$ is open. The resolvent identity $R(z) - R(z_0) = (z - z_0)R(z)R(z_0)$ from the lectures implies

$$||R(z) - R(z_0)|| \le 2M^2 |z - z_0|, \quad |z - z_0| < \frac{1}{2M},$$

¹See proof of Theorem 1.7.6 in the lectures, which says that $\varphi(A)$ corresponds to $\varphi(M_a)$, $a = 2\cos(2\pi x)$, where M_a is multiplication by a in $L^2(0,1)$. One has $\varphi(M_a)f(x) = \varphi(a(x))f(x)$ since the spectral projection for M_a is $E_{\lambda}f = \chi_{(-\infty,\lambda)}(M_a)f = \chi_{\{a<\lambda\}}f$ by Example 1.4.1 in the lectures. From this fact we obtain $s(M_a)f(x) = s(a(x))f(x)$ for simple functions s, thus for general φ .

and for $u, v \in H$

$$\frac{(R(z)u,v) - (R(z_0)u,v)}{z - z_0} \to (R(z_0)^2 u, v) \text{ as } z \to z_0.$$

Therefore $z \mapsto (R(z)u, v)$ is analytic in $\rho(A)$.

Let λ be an isolated point of $\sigma(A)$, so $\overline{B(\lambda, \delta)} \cap \sigma(A) = \{\lambda\}$ for some $\delta > 0$, and define

$$(P_{\lambda}u, v) = -\frac{1}{2\pi i} \oint_{\Gamma_{\lambda}} (R(z)u, v) dz, \quad u, v \in H$$

whenever Γ_{λ} is a simple closed curve in $B(\lambda, \delta) \setminus \{\lambda\}$ which goes around λ once counterclockwise (i.e. $\operatorname{Ind}(\Gamma_{\lambda}, \lambda) = 1$). Since $z \mapsto (R(z)u, v)$ is analytic in $B(\lambda, \delta) \setminus \{\lambda\}$, Cauchy's theorem (see e.g. Rudin, Real and complex analysis, Theorem 10.35) implies that the definition is independent of the choice of Γ_{λ} . By choosing $\Gamma_{\lambda} = \partial B(\lambda, \delta/2)$, we obtain

$$|(P_{\lambda}u, v)| \le C_{\lambda, \delta} ||u|| ||v||,$$

and the integral defines P_{λ} as a bounded linear operator on H.

It remains to show that P_{λ} is an orthogonal projection onto ker $(A - \lambda)$, i.e. $P_{\lambda}^2 = P_{\lambda}^* = P_{\lambda}$ and $\mathscr{R}(P - \lambda) = \text{ker}(A - \lambda)$. To do this we write $P_{\lambda}u$ as an *H*-valued Bochner integral

$$P_{\lambda}u = -\frac{1}{2\pi i} \oint_{\Gamma_{\lambda}} R(z)u \, dz$$

and note that the integral can be approximated by Riemann sums in the H norm. Then, choosing $\Gamma_{\lambda} = \partial B(\lambda, \delta/4)$ and $\Gamma'_{\lambda} = \partial B(\lambda, \delta/2)$ we have

$$(P_{\lambda}^{2}u, v) = \frac{1}{(2\pi i)^{2}} \oint_{\Gamma_{\lambda}} \oint_{\Gamma_{\lambda}'} (R(z)R(w)u, v) \, dw \, dz$$
$$= \frac{1}{(2\pi i)^{2}} \oint_{\Gamma_{\lambda}} \oint_{\Gamma_{\lambda}'} \frac{((R(z) - R(w))u, v)}{z - w} \, dw \, dz.$$

Since $\oint_{\Gamma'_{\lambda}} (z-w)^{-1} dw = -2\pi i$ and $\oint_{\Gamma_{\lambda}} (z-w)^{-1} dz = 0$ we have $P_{\lambda}^2 = P_{\lambda}$. Choosing $\Gamma_{\lambda} = \partial B(\lambda, r)$ gives

$$(P_{\lambda}u, v) = -\frac{1}{2\pi i} \int_{0}^{2\pi} (R(\lambda + re^{i\theta})u, v) ire^{i\theta} dr,$$
$$(u, P_{\lambda}v) = \overline{(P_{\lambda}v, u)} = -\frac{1}{2\pi i} \int_{0}^{2\pi} \overline{(R(\lambda + re^{i\theta})v, u)} ire^{-i\theta} dr.$$

Since $R(z)^* = R(\bar{z})$ one gets $\overline{(R(\lambda + re^{i\theta})v, u)} = (R(\lambda + re^{-i\theta})u, v)$, and $P_{\lambda}^* = P_{\lambda}$ follows by changing variables $\theta \mapsto -\theta$ in the second integral.

Finally, we show $\ker(A - \lambda) = \mathscr{R}(P_{\lambda})$. If $u \in \ker(A - \lambda)$ then $(A - z)u = (\lambda - z)u$ so $R(z)u = (\lambda - z)^{-1}u$. We see that $u \in \mathscr{R}(P_{\lambda})$ since $u = P_{\lambda}u$:

$$P_{\lambda}u = -\frac{1}{2\pi i} \oint_{\Gamma_{\lambda}} (\lambda - z)^{-1} u \, dz = -\frac{1}{2\pi i} \int_{0}^{2\pi} \frac{u}{-re^{i\theta}} ire^{i\theta} \, d\theta = u.$$

On the other hand, if $u = P_{\lambda}v$ then $(A - \lambda)u = 0$ since

$$(A - \lambda)P_{\lambda}u = -\frac{1}{2\pi i} \oint_{\Gamma_{\lambda}} (z - \lambda)R(z)u\,dz = 0.$$

Here we used the fact that $||(z-\lambda)R(z)|| \leq C$ near λ^2 , so λ is a removable singularity for the analytic function $z \mapsto (z-\lambda)R(z)$ and the integral over Γ_{λ} is zero by Cauchy's theorem.

4. Let $\lambda \in \sigma(A)$ be isolated. If λ is not an eigenvalue, then ker $(A - \lambda) = \{0\}$ so $P_{\lambda} \equiv 0$ by Problem 3. Then Morera's theorem would imply that R(z) is analytic (in particular bounded) near λ , which is impossible since λ was in the spectrum.

Let $\lambda \in \sigma_d(A)$. Then $0 < \dim \ker(A - \lambda) < \infty$ by definition. Define $A_{\lambda} = A - \lambda|_{\mathscr{D}(A_{\lambda})}$ where $\mathscr{D}(A_{\lambda}) = \mathscr{D}(A) \cap \ker(A - \lambda)^{\perp}$. Then $A_{\lambda} : \mathscr{D}(A_{\lambda}) \to \ker(A - \lambda)^{\perp}$ is self-adjoint³. Since $\ker(A_{\lambda}) = \{0\}$ we see that 0 is not an eigenvalue of A_{λ} , so 0 cannot be an isolated point of $\sigma(A_{\lambda})$ by the first part. Since $\sigma(A_{\lambda}) \subset (-\lambda + \sigma(A))^4$ we must have $0 \in \rho(A_{\lambda})$, so indeed A_{λ} has a bounded inverse.

Suppose now that $0 < \dim \ker(A-\lambda) < \infty$ and $A_{\lambda} : \mathscr{D}(A_{\lambda}) \to \ker(A-\lambda)^{\perp}$ is bijective and has a bounded inverse. Clearly λ is an eigenvalue of Awith finite multiplicity. We need to show that λ is an isolated point of $\sigma(A)$, and to do this it is enough to construct the resolvent R(z) for znear $\lambda, z \neq \lambda$. Let $f \in H$ and consider the equation (A - z)u = f. We have a splitting of H into closed subspaces,

$$H = \ker(A - \lambda) \oplus \ker(A - \lambda)^{\perp}.$$

²This follows from the estimate $||R(z)|| \leq \operatorname{dist}(z, \sigma(A))^{-1}$, which follows from the functional calculus fact that $||\varphi(A)|| = ||\varphi||_{L^{\infty}(\sigma(A))}$ when we consider the choice $\varphi(x) = (x-z)^{-1}$.

³If $v \in \ker(A - \lambda)$ then $((A - \lambda)u, v) = (u, (A - \lambda)v) = 0$ for $u \in \mathscr{D}(A)$ so $A - \lambda$ maps into $\ker(A - \lambda)^{\perp}$. One has $(A_{\lambda}u, v) = (u, (A - \lambda)v)$ for $u \in \mathscr{D}(A_{\lambda}), v \in \mathscr{D}(A)$, which shows that A_{λ} is self-adjoint.

⁴Proof: if $z + \lambda \in \rho(A)$ then $||(A - z - \lambda)u|| \ge c||u||$ for $u \in \mathscr{D}(A)$, hence for $u \in \mathscr{D}(A_{\lambda})$, so $z \in \rho(A_{\lambda})$.

Let P be the orthogonal projection onto $\ker(A-\lambda)$, and write $f = f_1 + f_2$, $u = u_1 + u_2$ where $f_1 = Pf$, $u_1 = Pu$. We would like to solve

$$(A-z)u_1 = f_1,$$

 $(A-z)u_2 = f_2.$

Since $(A-z)Pf = (\lambda - z)Pf = (\lambda - z)f_1$ we may take $u_1 = (\lambda - z)^{-1}Pf$. Also, for $u_2 \in \mathscr{D}(A) \cap \ker(A - \lambda)^{\perp}$ one has

$$(A - z)u_2 = (A_{\lambda} + (\lambda - z))u_2 = (I + (\lambda - z)A_{\lambda}^{-1})A_{\lambda}u_2$$

and $I + (\lambda - z)A_{\lambda}^{-1}$ is invertible for z near λ by Neumann series. Thus we may take $u_2 = A_{\lambda}^{-1}(I + (\lambda - z)A_{\lambda}^{-1})^{-1}f_2$. The operator

$$\tilde{R}(z)f = (\lambda - z)^{-1}Pf + A_{\lambda}^{-1}(I + (\lambda - z)A_{\lambda}^{-1})^{-1}(I - P)f$$

is then bounded on H if z is close to λ , and $(A - z)\tilde{R}(z) = I$. One sees that $\tilde{R}(z)$ maps H onto $\mathscr{D}(A)$ by using the splitting above, so A - z is bijective and has a bounded inverse. Thus points $z \neq \lambda$ near λ are in $\rho(A)$, so λ is an isolated point of $\sigma(A)$ as desired.