Scattering theory

Solutions to Exercises \#3, 5.10.2007

1. Let $\lambda \in \mathbf{R}$ (we already know that $\mathbf{C} \backslash \mathbf{R} \subset \rho(A)$). The inequality

$$
\|(A-\lambda) u\| \geq M\|u\|, \quad u \in \mathscr{D}(A)
$$

shows that $A-\lambda$ is injective so λ is not an eigenvalue. Since A is selfadjoint it has no residual spectrum, and we know that $\mathscr{R}(A-\lambda)$ is dense. We show that $\mathscr{R}(A-\lambda)=H$. If $f \in H$ let $f_{j} \in \mathscr{R}(A-\lambda)$ with $f_{j} \rightarrow f$, so $f_{j}=(A-\lambda) u_{j}$ for some $u_{j} \in \mathscr{D}(A)$ and $(A-\lambda) u_{j} \rightarrow f$. Then $\left(u_{j}\right)$ is Cauchy in H because

$$
\left\|u_{j}-u_{k}\right\| \leq \frac{1}{M}\left\|(A-\lambda)\left(u_{j}-u_{k}\right)\right\|=\frac{1}{M}\left\|(A-\lambda) u_{j}-(A-\lambda) u_{k}\right\|
$$

It follows that $u_{j} \rightarrow u$ for some $u \in H$, but since also $(A-\lambda) u_{j} \rightarrow f$ and $A-\lambda$ is closed (it is self-adjoint), we have $u \in \mathscr{D}(A)$ and $(A-\lambda) u=f$. Further, $\|u\| \leq \frac{1}{M}\|(A-\lambda) u\|=\frac{1}{M}\|f\|$.
We have shown that $A-\lambda: \mathscr{D}(A) \rightarrow H$ is bijective and that $(A-\lambda)^{-1}$: $f \mapsto u$ is a bounded linear operator on H with norm $\leq 1 / M$. Therefore, $\lambda \in \rho(A)$. If $z \in \mathbf{C}$ and $|z-\lambda|<M$, then for $u \in \mathscr{D}(A)$ one has

$$
\begin{aligned}
\|(A-z) u\| & =\|(A-\lambda) u+(\lambda-z) u\| \geq\|(A-\lambda) u\|-|\lambda-z|\|u\| \\
& \geq(M-|\lambda-z|)\|u\| .
\end{aligned}
$$

By the first part of this problem, we obtain $z \in \rho(A)$.
2. It is enough to show that

$$
\lambda \in \rho(A) \Leftrightarrow \exists \varepsilon>0 \forall u \in \mathscr{D}(A),\|u\|=1:\|(A-\lambda) u\| \geq \varepsilon .
$$

If $\lambda \in \rho(A)$ and $u \in \mathscr{D}(A),\|u\|=1$, then

$$
1=\|u\|=\left\|(A-\lambda)^{-1}(A-\lambda) u\right\| \leq C\|(A-\lambda) u\| .
$$

Conversely, if $\|(A-\lambda) u\| \geq \varepsilon$ whenever $u \in \mathscr{D}(A)$ and $\|u\|=1$, then $\|(A-\lambda) v\| \geq \varepsilon\|v\|$ for any $v \in \mathscr{D}(A)$ (take $u=v /\|v\|$), so $\lambda \in \rho(A)$ by Problem 1.
3. Let $H=L^{2}(\mathbf{R}), A u=-u^{\prime \prime}$ with domain $\mathscr{D}(A)=H^{2}(\mathbf{R})$. Then using distributional derivatives, and the fact that C_{0}^{∞} is dense in H^{2}, we get

$$
\begin{aligned}
v \in \mathscr{D}\left(A^{*}\right) & \Leftrightarrow \exists v^{*} \in L^{2}:\left(-u^{\prime \prime}, v\right)=\left(u, v^{*}\right) \quad \forall u \in H^{2} \\
& \Leftrightarrow v \in L^{2} \text { and } v^{\prime \prime} \in L^{2} .
\end{aligned}
$$

Then $\mathscr{D}\left(A^{*}\right)=H^{2}(\mathbf{R})=\mathscr{D}(A)^{1}$ and $A^{*} u=-u^{\prime \prime}$, so A is self-adjoint and $\sigma(A) \subset \mathbf{R}$. We also have

$$
\|(A-\lambda) u\|^{2}=\|A u\|^{2}+\lambda^{2}\|u\|^{2}-\lambda(A u, u)-\lambda(u, A u), \quad u \in H^{2} .
$$

Since $(A u, u)=\left(-u^{\prime \prime}, u\right)=\left\|u^{\prime}\right\|^{2} \geq 0$ for $u \in C_{0}^{\infty}$ and thus for $u \in H^{2}$, it follows for $\lambda<0$ that

$$
\|(A-\lambda) u\| \geq|\lambda|\|u\|, \quad u \in H^{2}
$$

By Problem $1, \lambda \in \rho(A)$ if $\lambda<0$, so $\sigma(A) \subset[0, \infty)$.
It remains to show that $\sigma(A)=[0, \infty)$. Let $\lambda \geq 0$, and write $\lambda=k^{2}$ where $k \geq 0$. The idea is that $u(x)=e^{i k x}$ satisfies $(A-\lambda) u=0$ but is not an eigenfunction since $u \notin L^{2}$. However, we will approximate u by $u_{j} \in L^{2}$ with $\left\|u_{j}\right\|=1$, and Problem 2 will show that $\lambda \in \sigma(A)$.
Let $\chi \in C_{0}^{\infty}(\mathbf{R})$ with $\|\chi\|_{L^{2}}=1$, and let $u_{j}(x)=j^{-1 / 2} \chi(x / j) e^{i k x}$. Since $\|\chi(x / j)\|_{L^{2}}=j^{1 / 2}$ we have $u_{j} \in C_{0}^{\infty}(\mathbf{R})$ and $\left\|u_{j}\right\|=1$. Also,
$(A-\lambda) u_{j}=j^{-1 / 2}\left[\chi(x / j)\left((A-\lambda) e^{i k x}\right)-2 i k j^{-1} \chi^{\prime}(x / j) e^{i k x}-j^{-2} \chi^{\prime \prime}(x / j) e^{i k x}\right]$, and since $(A-\lambda) e^{i k x}=0$ we obtain

$$
\left\|(A-\lambda) u_{j}\right\| \leq 2 j^{-3 / 2} k\left\|\chi^{\prime}(x / j)\right\|+j^{-5 / 2}\left\|\chi^{\prime \prime}(x / j)\right\| \leq C j^{-1} .
$$

Thus any $\lambda \geq 0$ is an approximate eigenvalue, so $\lambda \in \sigma(A)$ by Problem 2.
4. Let $H=L^{2}(I), I=(0,1)$, and for $z \in \mathbf{C}$ define $A_{z}: u \mapsto i u^{\prime}$ with domain $\mathscr{D}\left(A_{z}\right)=\left\{u \in H^{1}(I) ; u(1)=z u(0)\right\}$. The domain contains $C_{0}^{\infty}(I)$ so A_{z} is densely defined, and

$$
v \in \mathscr{D}\left(A_{z}^{*}\right) \Leftrightarrow \exists v^{*} \in L^{2}:\left(i u^{\prime}, v\right)=\left(u, v^{*}\right) \quad \forall u \in \mathscr{D}\left(A_{z}\right) .
$$

By looking at $u \in C_{0}^{\infty}(I)$ we obtain $\mathscr{D}\left(A_{z}^{*}\right) \subset H^{1}(I)$ and $A_{z}^{*} v=i v^{\prime}$ for $v \in \mathscr{D}\left(A_{z}^{*}\right)$. If $u, v \in H^{1}(I)$ then

$$
\left(i u^{\prime}, v\right)=i(u \bar{v})(1)-i(u \bar{v})(0)+\left(u, i v^{\prime}\right) .
$$

[^0]Thus, we have

$$
v \in \mathscr{D}\left(A_{z}^{*}\right) \Leftrightarrow v \in H^{1}(I),(z \bar{v}(1)-\bar{v}(0)) u(0)=0 \quad \forall u \in \mathscr{D}\left(A_{z}\right) .
$$

Since $u(0)$ can be arbitrary we get $\mathscr{D}\left(A_{z}^{*}\right)=\left\{v \in H^{1}(I) ; v(1)=\frac{1}{\bar{z}} v(0)\right\}$. But $z=1 / \bar{z}$ iff $|z|=1$, and it follows that A_{z} is self-adjoint iff $|z|=1$.
Let $z=e^{i \theta}$ where $\theta \in[0,2 \pi)$. We first determine the eigenvalues of A_{z}. If $\left(A_{z}-\lambda\right) u=0$ then $u^{\prime}+i \lambda u=0$ in I, which is equivalent with $\left(u e^{i \lambda t}\right)^{\prime}=0$ in I. The general distributional solution is $u=C e^{-i \lambda t}$, and this is in $\mathscr{D}\left(A_{z}\right)$ iff $C e^{-i \lambda}=C z$. We have $C=0$ unless $\lambda \in-\theta+2 \pi \mathbf{Z}$, and thus the set of eigenvalues is exactly $-\theta+2 \pi \mathbf{Z}$.
We claim that $\sigma\left(A_{z}\right)=-\theta+2 \pi \mathbf{Z}$. To prove this let $\lambda \in \mathbf{R} \backslash(-\theta+2 \pi \mathbf{Z})$. We already know that $A_{z}-\lambda$ is injective. For surjectivity let $f \in L^{2}(I)$, and write the equation $\left(A_{z}-\lambda\right) u=f$ as $\left(u e^{i \lambda t}\right)^{\prime}=-i f e^{i \lambda t}$. The general distributional solution in I is given by

$$
u(t)=e^{-i \lambda t}\left(u(0)-i \int_{0}^{t} f(s) e^{i \lambda s} d s\right) .
$$

Since $f \in L^{2}(I)$ one always has $u \in H^{1}(I)$, and $u \in \mathscr{D}\left(A_{z}\right)$ provided that

$$
\begin{aligned}
& e^{-i \lambda}\left(u(0)-i \int_{0}^{1} f(s) e^{i \lambda s} d s\right)=z u(0) \\
& \Leftrightarrow u(0)=i\left(1-e^{i \lambda} z\right)^{-1} \int_{0}^{1} f(s) e^{i \lambda s} d s .
\end{aligned}
$$

Thus $A-\lambda$ is surjective, and $u=(A-\lambda)^{-1} f$ satisfies

$$
\|u\| \leq|u(0)|+\left\|\int_{0}^{t} f(s) e^{i \lambda s} d s\right\| \leq C_{z, \lambda}\|f\|_{L^{2}} .
$$

Therefore $\lambda \in \rho(A)$, and $\sigma\left(A_{z}\right)=-\theta+2 \pi \mathbf{Z}$.

[^0]: ${ }^{1}$ If $v, v^{\prime \prime} \in L^{2}$ then by Fourier transform $\hat{v}, \xi^{2} \hat{v} \in L^{2}$, so $\|v\|_{H^{2}}=\left\|\left(1+\xi^{2}\right) \hat{v}\right\|_{L^{2}}<\infty$.

