
Scattering theory
Solutions to Exercises #2, 28.9.2007

1. Let A be a densely defined, symmetric, and semibounded operator. First
assume that (Au, u) ≥ ‖u‖2 for u ∈ D(A). Define (u, v)D = (Au, v) for
u, v ∈ D(A). The assumptions on A ensure that this is an inner product
in D(A), and the corresponding norm satisfies ‖u‖D ≥ ‖u‖.
Let D be the completion of (D(A), ‖ · ‖D). That is, D = C/∼ where
C is the set of Cauchy sequences in (D(A), ‖ · ‖D) and (uj) ∼ (vj) iff
‖uj − vj‖D → 0, and where ‖[uj]‖D = lim ‖uj‖D. Since any Cauchy
sequence in (D(A), ‖ · ‖D) converges in H, there is a natural linear map
from D to H given by [uj] 7→ u if ‖uj − u‖ → 0. We may identify D
with a subspace of H if this map is injective, and this is the case: if
(uj) is Cauchy in (D(A), ‖ · ‖D) and ‖uj − u‖ → 0, then ‖uj − u‖D =
limk→∞‖uj − uk‖D → 0 as j →∞.

Let D(AD) = D∩D(A∗) and define AD as the restriction of A∗ to D(AD).
Since D(A) ⊂ D(AD), we have that D(AD) is a dense linear subspace of
H. We will show that AD is self-adjoint in three steps.

Step 1: AD is symmetric. This follows from

(ADu, v) = (u, v)D, u ∈ D(AD), v ∈ D.

To show this take sequences uj, vk ∈ D(A) with ‖uj − u‖D → 0 and
‖vk − v‖D → 0. Then

(ADu, v) = lim
k

(A∗u, vk) = lim
k

(u,Avk) = lim
k

lim
j

(uj, Avk) = (u, v)D.

Step 2: R(AD) = H. We let f ∈ H and find u ∈ D(AD) satisfying
ADu = f . Since

|(f, v)| ≤ ‖f‖ ‖v‖ ≤ ‖f‖‖v‖D, v ∈ D,

there is a unique u ∈ D with (u, v)D = (f, v) for all v ∈ D. Since
(u,Aw) = (u,w)D = (f, w) for w ∈ D(A), one has u ∈ D(A∗). Conse-
quently u ∈ D(AD) and ADu = f .

Step 3: AD self-adjoint. In fact, any symmetric operator with full range
is self-adjoint. Let v ∈ D(A∗D), so (ADu, v) = (u,A∗Dv) for u ∈ D(AD).
Choose ṽ ∈ D(AD) with ADṽ = A∗Dv. Then (ADu, ṽ) = (u,ADṽ) =



(u,A∗Dv) by symmetry, so (ADu, v − ṽ) = 0 for u ∈ D(AD). One has
v = ṽ since R(AD) = H, and it follows that AD is self-adjoint.

We have proved the Friedrichs extension theorem when (Au, u) ≥ ‖u‖2.
If (Au, u) ≥ c‖u‖2 we define Ã = A+ (1− c)I so (Ãu, u) ≥ ‖u‖2, and let
ÃD be the Friedrichs extension of Ã. Then ÃD − (1− c)I is a self-adjoint
extension of A.

2. Let H = L2(I), I = (−1, 1), and define A with domain D(A) = C∞0 (I)
by Au = −u′′. The symmetry of A follows by integration by parts (see
Ex. 1, Problem 5). The Poincaré inequality ‖u‖ ≤ 2‖u′‖ for u ∈ C∞0 (I) 1

implies

(Au, u) = −
∫ 1

−1

u′′ū dt =

∫ 1

−1

|u′|2 dt ≥ 1

4
‖u‖2.

Therefore, A is semibounded with lower bound 1
4
. We use Problem 1

to determine the Friedrichs extension of A (note that the first part of
the proof works when A has a positive lower bound). One has ‖u‖D =
(Au, u)1/2 = ‖u′‖, and D is the completion of C∞0 (I) with respect to this
norm. One has

D = {u ∈ H1(I) ; u(±1) = 0} = H1
0 (I).2

One has A∗u = −u′′ with domain D(A∗) = H2(I) (Ex. 1, Problem 5).
Therefore, the Friedrichs extension is given by AD : u 7→ −u′′ with domain
D(AD) = H2(I) ∩ H1

0 (I). Thus the Friedrichs extension corresponds to
Dirichlet boundary conditions.

3. Let H = L2(R) and let A : u 7→ i(x2u′ + xu) with D(A) = C∞0 (R). The
symmetry of A is an integration by parts: for u, v ∈ C∞0 (R)

(Au, v) =

∫
i(x2u′ + xu)v̄ dx =

∫
i(−2xuv̄ − x2uv̄′ + xuv̄) dx

=

∫
ui(x2v′ + xv) dx = (u,Av).

We wish to compute the defect indices n±(A) = dim ker (A∗ ± i). Here
A is symmetric but not closed, but closable operators have the property

1Proof: ‖u‖2 =
∫

I
uū dt = −

∫
I
(u′ū + uū′)t dt = −2

∫
I

Re (uū′)t dt ≤ 2‖u‖‖u′‖.
2In fact, if (uj) is a Cauchy sequence in (C∞0 (I), ‖ · ‖D), then (uj) is Cauchy in H1(I)

by the Poincaré inequality, hence converges in H1(I) to some u ∈ H1(I). By Sobolev
embedding one also has uniform convergence in Ī, so u(±1) = 0. Conversely, if u ∈ H1(I)
and u(±1) = 0, one can produce uj ∈ C∞0 (I) with uj → u in H1(I) by using suitable
cutoffs and mollifiers, see e.g. Evans, Partial differential equations, Sec. 5.5.



that (Ā)∗ = A∗ 3 so in fact n±(A) = n±(Ā). We will show that n±(A) = 1
so by a theorem in the lectures Ā has a self-adjoint extension, and then
also A has one.

We obtain by using distributional derivatives that

v ∈ D(A∗) ⇔ ∃ v∗ ∈ L2 : (u, v∗) = (i(x2u′ + xu), v) ∀ u ∈ C∞0
⇔ ∃ v∗ ∈ L2 : (u, v∗) = (u, i(x2v′ + xv)) ∀ u ∈ C∞0 .

Thus D(A∗) = {v ∈ L2 ; x2v′ + xv ∈ L2} and A∗v = i(x2v′ + xv). If
v = v± ∈ ker(A∗ ± i) then

x2v′ + (x± 1)v = 0, v ∈ L2, x2v′ + xv ∈ L2.

Working in x 6= 0 we have v′ + x±1
x2 v = 0, so (velog |x|∓1/x)′ = 0 and

v±(x) =

{
C±,p|x|−1e±1/x, x > 0,

C±,n|x|−1e±1/x, x < 0,

for some constants C±,p and C±,n. This gives the general distributional
solution to (A∗ ± i)v± = 0 in x 6= 0. Since v± ∈ L2 we must have
C+,p = C−,n = 0, and C+,n and C−,p are free parameters. Thus n±(A) =
dim ker (A∗ ± i) = 1.

4. Let A be self-adjoint, and let E be the projection-valued measure for A.
We write dµx(λ) = d(Eλx, x), so µx is a finite positive Borel measure
on R for each x ∈ H. If g is a bounded Borel function, we know that
(g(A)x, x) =

∫
g(λ) dµx(λ) defines a bounded operator g(A) on H satisfy-

ing g(A)∗ = ḡ(A), and ‖g(A)x‖2 =
∫
|g|2 dµx. By polarization, this implies

(g(A)x, h(A)x) =
∫
gh̄ dµx = ((gh̄)(A)x, x) for bounded Borel functions

g, h, which again implies g(A)h(A) = (gh)(A). We obtain for ϕ ∈ C∞0 (R)∫
ϕdµg(A)x = (ϕ(A)g(A)x, g(A)x) = ((ϕ|g|2)(A)x, x) =

∫
ϕ|g|2 dµx,

so dµg(A)x = |g|2dµx if g is bounded Borel.

Let now g be a Borel function on R, not necessarily bounded. Let χn =
χ{|g|≤n} and gn = χng. Define

D(g(A)) = {x ∈ H ;

∫
|g|2 dµx <∞}.

3Since A ⊂ Ā, (Ā)∗ ⊂ A∗ by Ex. 1, Problem 2. Let v ∈ D(A∗), so (Au, v) = (u, A∗v)
for u ∈ D(A). We obtain (Āu, v) = (u, A∗v) for u ∈ D(Ā) by approximating u with
uj ∈ D(A) so that uj → u and Auj → Āu, and we get A∗ ⊂ (Ā)∗.



If x ∈ H, we want to show that χn(A)x ∈ D(g(A)) and χn(A)x → x.
The first fact follows since

∫
|g|2 dµχn(A)x =

∫
χn|g|2 dµx <∞, and for the

second fact we use

‖χn(A)x− x‖2 = ‖(1− χn)(A)x‖2 =

∫
|1− χn(λ)|2 dµx =

∫
{|g|>n}

dµx

≤ 1

n2

∫
|g|2 dµx → 0.

We see that D(g(A)) is a dense linear subspace of H since
∫
|g|2 dµcx =

|c|2
∫
|g|2 dµx and since∫
|gn|2 dµx+y = ‖gn(A)(x+ y)‖2 ≤ 2(‖gn(A)x‖2 + ‖gn(A)y‖2).

If x ∈ D(g(A)) then (gn(A)x) is Cauchy in H since

‖gm(A)x− gn(A)x‖2 =

∫
|gm − gn|2 dµx → 0, m, n→∞.

We may define g(A)x = lim gn(A)x. Then g(A) is a linear operator with
domain D(g(A)), and it satisfies

(g(A)x, x) =

∫
g dµx.

In fact this condition determines g(A) uniquely. It remains to show that
g(A) is self-adjoint if g is real. Let y ∈ D(g(A)∗), i.e. for some y∗ ∈ H
one has

(g(A)x, y) = (x, y∗) for x ∈ D(g(A)).

Then using that (gn(A)x, y) = (x, gn(A)y) we get (x, gn(A)y − y∗) → 0
for x ∈ D(g(A)), hence gn(A)y → y∗ weakly and so ‖gn(A)y‖2 ≤ C. This
shows that y ∈ D(g(A)) and g(A) is self-adjoint.


