Scattering theory
Solutions to Exercises #2, 28.9.2007

1. Let A be a densely defined, symmetric, and semibounded operator. First
assume that (Au,u) > ||ul|? for u € Z(A). Define (u,v)p = (Au,v) for
u,v € P(A). The assumptions on A ensure that this is an inner product
in Z(A), and the corresponding norm satisfies ||ul|p > ||u/|.

Let D be the completion of (Z(A),|-|p). That is, D = C/~ where
C' is the set of Cauchy sequences in (Z(A), ] -||p) and (u;) ~ (v;) iff
|lu; — vjllp — 0, and where ||[u;]||p = lim|ju;||p. Since any Cauchy
sequence in (Z(A),||-|lp) converges in H, there is a natural linear map
from D to H given by [u;] — w if ||u; — u|| — 0. We may identify D
with a subspace of H if this map is injective, and this is the case: if
(u;) is Cauchy in (Z2(A), |- |lp) and |ju; — u|]| — 0, then |u; — u|lp =
limy_ool|t; — ug|lp — 0 as j — oo.

Let 2(Ap) = DNZ(A*) and define Ap as the restriction of A* to Z(Ap).
Since Z(A) C Z(Ap), we have that Z(Ap) is a dense linear subspace of
H. We will show that Ap is self-adjoint in three steps.

Step 1: Ap is symmetric. This follows from
(Apu,v) = (u,v)p, ue€ P(Ap),ve D.

To show this take sequences u;, vy, € Z(A) with ||u; — ul[p — 0 and
|vg — v||p — 0. Then

(Apu,v) = lilgn(A*u,vk) = lilgn(u, Avy) = lilgn lim(u;, Avg) = (u,v)p.
j

Step 2: Z#(Ap) = H. We let f € H and find u € Z(Ap) satisfying
Apu = f. Since

[l < Al < 1A Hvllp, v e D,

there is a unique u € D with (u,v)p = (f,v) for all v € D. Since
(u, Aw) = (u,w)p = (f,w) for w € P(A), one has u € Z(A*). Conse-
quently u € Z(Ap) and Apu = f.

Step 8: Ap self-adjoint. In fact, any symmetric operator with full range
is self-adjoint. Let v € Z(A},), so (Apu,v) = (u, Ajv) for u € P(Ap).
Choose © € Z(Ap) with Apo = Ajv. Then (Apu,v) = (u,Ap?) =



(u, Ajv) by symmetry, so (Apu,v — 0) = 0 for u € Z(Ap). One has
v =0 since Z(Ap) = H, and it follows that Ap is self-adjoint.

We have proved the Friedrichs extension theorem when (Au,u) > |jul|?.
If (Au,u) > c|lul|? we define A = A+ (1 — )1 so (Au,u) > ||u)|?, and let
Ap be the Friedrichs extension of A. Then Ap — (1 —¢)I is a self-adjoint
extension of A.

2. Let H = L*(I), I = (—1,1), and define A with domain 2(A) = C§°(I)
by Au = —u”. The symmetry of A follows by integration by parts (see
Ex. 1, Problem 5). The Poincaré inequality |Ju|| < 2|[«/|| for v € C§(I) !
implies

1 1 1
(Au, ) = —/ WG dt = / W2 dt > Ll
1 1 4

Therefore, A is semibounded with lower bound %1. We use Problem 1
to determine the Friedrichs extension of A (note that the first part of
the proof works when A has a positive lower bound). One has |ju||p =
(Au,u)'/? = ||u/||, and D is the completion of C$°(I) with respect to this
norm. One has

D={ue H(I); u(£l) =0} = Hy(I).2

One has A*u = —u” with domain Z(A*) = H?*(I) (Ex. 1, Problem 5).
Therefore, the Friedrichs extension is given by Ap : u +— —u” with domain
9(Ap) = H*(I) N H}(I). Thus the Friedrichs extension corresponds to
Dirichlet boundary conditions.

3. Let H=L*R) and let A : u — i(z*u + zu) with 2(A) = C;°(R). The
symmetry of A is an integration by parts: for u,v € C§°(R)

(Au,v) = /z’(a:gu’ + zu)vdr = /i(—quT; — 2?ud’ + zud) dx
= /ui(a:%’ + zv) dx = (u, Av).

We wish to compute the defect indices ni(A) = dim ker (A* £ 7). Here
A is symmetric but not closed, but closable operators have the property

'Proof: [Ju||? = [;uudt = — [,(v't+ v’ )t dt = =2 [, Re (vt')t dt < 2|u|[|u/]].

?In fact, if (u;) is a Cauchy sequence in (C§°(I), || - ||p), then (u;) is Cauchy in H'(I)
by the Poincaré inequality, hence converges in H!(I) to some u € H'(I). By Sobolev
embedding one also has uniform convergence in I, so u(£1) = 0. Conversely, if u € H'(I)
and u(+1) = 0, one can produce u; € C§(I) with u; — u in H'(I) by using suitable
cutoffs and mollifiers, see e.g. Evans, Partial differential equations, Sec. 5.5.



that (A)* = A* 3 so in fact ni(A) = ni(A). We will show that ni(A) =1
so by a theorem in the lectures A has a self-adjoint extension, and then
also A has one.

We obtain by using distributional derivatives that
vE P(A*) & Fv e L?: (u,v*) = (i(z’u + 2u),v) Vu € CF
& vt e LP: (u,0") = (u, (2™ + 2v)) V u € CF°.

Thus 2(A*) = {v € L?; 2% + a2v € L*} and A*v = i(2% + av). If
v =wvy € ker(A* +1) then

22+ (z+1Dw=0, vel? 2% +avel’

Working in z # 0 we have v’ + Z5tv = 0, so (vels1?IF1/7) = ) and

() Cyplz|tef* x>0,
V4T ) =
Ciplz| et 2 <0,

for some constants C , and C4 ,. This gives the general distributional
solution to (A* £ 4)vx = 0 in © # 0. Since vy € L? we must have
Cyp,=C_, =0,and Cy, and C_, are free parameters. Thus ny(A) =
dim ker (A* +14) = 1.

4. Let A be self-adjoint, and let E be the projection-valued measure for A.
We write du,(\) = d(E\z,z), so u, is a finite positive Borel measure
on R for each x € H. If g is a bounded Borel function, we know that

= [ g(\) dp(X) defines a bounded operator g(A) on H satisfy-
1ng g(A) g(A) and Hg( z||?> = [|g|* dp.. By polarization, this implies
(9(A)z,h(A)x) = [ ghdu, = ((gh)(A)z,z) for bounded Borel functions
g, h, which agaln implies g(A)h(A) = (gh)(A). We obtain for ¢ € C§°(R)

/wdugmn = (p(A)g(A)z, g(A)x) = ((¢lg*)(A)z, z) = /solglzdux,

S0 dpg(ayz = |g|*dp, if g is bounded Borel.

Let now g be a Borel function on R, not necessarily bounded. Let x,, =
X{lgl<n} and gn = Xng. Define

P(g(A) = {zeH: / 192 dus < oo}

3Since A C A, (A)* C A* by Ex. 1, Problem 2. Let v € 2(A*), so (Au,v) = (u, A*v)
for u € 2(A). We obtain (Au,v) = (u, A*v) for u € @(ﬁ)iby approximating « with
uj € Z(A) so that u; — u and Au; — Au, and we get A* C (A)*.




If z € H, we want to show that x,(A)x € Z(g(A)) and x,(A)z — =.
The first fact follows since [|g|? dpy,(ayz = [ xnl9|* dpe < o0, and for the
second fact we use

o)z =l = 1= ) (el = [ = des = [,
{lgl>n}
1
< [laP dne 0.

We see that Z(g(A)) is a dense linear subspace of H since [|g|* dpe, =
c|? [1g]* dp, and since

/Ign|2dux+y = lga(A) (@ + )II* < 2(lga(A)z[* + llgn (A)y[I*)-
If v € 2(g(A)) then (g,(A)x) is Cauchy in H since

n%wn—%MMFaﬂ%—mwwea mn— oo,

We may define g(A)z = lim g, (A)x. Then g(A) is a linear operator with
domain Z(g(A)), and it satisfies

@mmmz/mM

In fact this condition determines g(A) uniquely. It remains to show that
g(A) is self-adjoint if g is real. Let y € Z(g(A)*), i.e. for some y* € H
one has

(9(A)x,y) = (z,y") for z € Z(g(A)).

Then using that (g,(A4)z,y) = (z,9.(A)y) we get (z,g,(A)y —y*) — 0
for x € 2(g(A)), hence g,(A)y — y* weakly and so ||g,(A)y||> < C. This
shows that y € Z(g(A)) and g(A) is self-adjoint.



