Scattering theory

Solutions to Exercises \#2, 28.9.2007

1. Let A be a densely defined, symmetric, and semibounded operator. First assume that $(A u, u) \geq\|u\|^{2}$ for $u \in \mathscr{D}(A)$. Define $(u, v)_{D}=(A u, v)$ for $u, v \in \mathscr{D}(A)$. The assumptions on A ensure that this is an inner product in $\mathscr{D}(A)$, and the corresponding norm satisfies $\|u\|_{D} \geq\|u\|$.
Let D be the completion of $\left(\mathscr{D}(A),\|\cdot\|_{D}\right)$. That is, $D=C / \sim$ where C is the set of Cauchy sequences in $\left(\mathscr{D}(A),\|\cdot\|_{D}\right)$ and $\left(u_{j}\right) \sim\left(v_{j}\right)$ iff $\left\|u_{j}-v_{j}\right\|_{D} \rightarrow 0$, and where $\left\|\left[u_{j}\right]\right\|_{D}=\lim \left\|u_{j}\right\|_{D}$. Since any Cauchy sequence in $\left(\mathscr{D}(A),\|\cdot\|_{D}\right)$ converges in H, there is a natural linear map from D to H given by $\left[u_{j}\right] \mapsto u$ if $\left\|u_{j}-u\right\| \rightarrow 0$. We may identify D with a subspace of H if this map is injective, and this is the case: if $\left(u_{j}\right)$ is Cauchy in $\left(\mathscr{D}(A),\|\cdot\|_{D}\right)$ and $\left\|u_{j}-u\right\| \rightarrow 0$, then $\left\|u_{j}-u\right\|_{D}=$ $\lim _{k \rightarrow \infty}\left\|u_{j}-u_{k}\right\|_{D} \rightarrow 0$ as $j \rightarrow \infty$.
Let $\mathscr{D}\left(A_{D}\right)=D \cap \mathscr{D}\left(A^{*}\right)$ and define A_{D} as the restriction of A^{*} to $\mathscr{D}\left(A_{D}\right)$. Since $\mathscr{D}(A) \subset \mathscr{D}\left(A_{D}\right)$, we have that $\mathscr{D}\left(A_{D}\right)$ is a dense linear subspace of H. We will show that A_{D} is self-adjoint in three steps.

Step 1: A_{D} is symmetric. This follows from

$$
\left(A_{D} u, v\right)=(u, v)_{D}, \quad u \in \mathscr{D}\left(A_{D}\right), v \in D .
$$

To show this take sequences $u_{j}, v_{k} \in \mathscr{D}(A)$ with $\left\|u_{j}-u\right\|_{D} \rightarrow 0$ and $\left\|v_{k}-v\right\|_{D} \rightarrow 0$. Then

$$
\left(A_{D} u, v\right)=\lim _{k}\left(A^{*} u, v_{k}\right)=\lim _{k}\left(u, A v_{k}\right)=\lim _{k} \lim _{j}\left(u_{j}, A v_{k}\right)=(u, v)_{D} .
$$

Step 2: $\mathscr{R}\left(A_{D}\right)=H$. We let $f \in H$ and find $u \in \mathscr{D}\left(A_{D}\right)$ satisfying $A_{D} u=f$. Since

$$
|(f, v)| \leq\|f\|\|v\| \leq\|f\|\|v\|_{D}, \quad v \in D
$$

there is a unique $u \in D$ with $(u, v)_{D}=(f, v)$ for all $v \in D$. Since $(u, A w)=(u, w)_{D}=(f, w)$ for $w \in \mathscr{D}(A)$, one has $u \in \mathscr{D}\left(A^{*}\right)$. Consequently $u \in \mathscr{D}\left(A_{D}\right)$ and $A_{D} u=f$.
Step 3: A_{D} self-adjoint. In fact, any symmetric operator with full range is self-adjoint. Let $v \in \mathscr{D}\left(A_{D}^{*}\right)$, so $\left(A_{D} u, v\right)=\left(u, A_{D}^{*} v\right)$ for $u \in \mathscr{D}\left(A_{D}\right)$. Choose $\tilde{v} \in \mathscr{D}\left(A_{D}\right)$ with $A_{D} \tilde{v}=A_{D}^{*} v$. Then $\left(A_{D} u, \tilde{v}\right)=\left(u, A_{D} \tilde{v}\right)=$
$\left(u, A_{D}^{*} v\right)$ by symmetry, so $\left(A_{D} u, v-\tilde{v}\right)=0$ for $u \in \mathscr{D}\left(A_{D}\right)$. One has $v=\tilde{v}$ since $\mathscr{R}\left(A_{D}\right)=H$, and it follows that A_{D} is self-adjoint.
We have proved the Friedrichs extension theorem when $(A u, u) \geq\|u\|^{2}$. If $(A u, u) \geq c\|u\|^{2}$ we define $\tilde{A}=A+(1-c) I$ so $(\tilde{A} u, u) \geq\|u\|^{2}$, and let \tilde{A}_{D} be the Friedrichs extension of \tilde{A}. Then $\tilde{A}_{D}-(1-c) I$ is a self-adjoint extension of A.
2. Let $H=L^{2}(I), I=(-1,1)$, and define A with domain $\mathscr{D}(A)=C_{0}^{\infty}(I)$ by $A u=-u^{\prime \prime}$. The symmetry of A follows by integration by parts (see Ex. 1, Problem 5). The Poincaré inequality $\|u\| \leq 2\left\|u^{\prime}\right\|$ for $u \in C_{0}^{\infty}(I)^{1}$ implies

$$
(A u, u)=-\int_{-1}^{1} u^{\prime \prime} \bar{u} d t=\int_{-1}^{1}\left|u^{\prime}\right|^{2} d t \geq \frac{1}{4}\|u\|^{2} .
$$

Therefore, A is semibounded with lower bound $\frac{1}{4}$. We use Problem 1 to determine the Friedrichs extension of A (note that the first part of the proof works when A has a positive lower bound). One has $\|u\|_{D}=$ $(A u, u)^{1 / 2}=\left\|u^{\prime}\right\|$, and D is the completion of $C_{0}^{\infty}(I)$ with respect to this norm. One has

$$
D=\left\{u \in H^{1}(I) ; u(\pm 1)=0\right\}=H_{0}^{1}(I) .^{2}
$$

One has $A^{*} u=-u^{\prime \prime}$ with domain $\mathscr{D}\left(A^{*}\right)=H^{2}(I)$ (Ex. 1, Problem 5). Therefore, the Friedrichs extension is given by $A_{D}: u \mapsto-u^{\prime \prime}$ with domain $\mathscr{D}\left(A_{D}\right)=H^{2}(I) \cap H_{0}^{1}(I)$. Thus the Friedrichs extension corresponds to Dirichlet boundary conditions.
3. Let $H=L^{2}(\mathbf{R})$ and let $A: u \mapsto i\left(x^{2} u^{\prime}+x u\right)$ with $\mathscr{D}(A)=C_{0}^{\infty}(\mathbf{R})$. The symmetry of A is an integration by parts: for $u, v \in C_{0}^{\infty}(\mathbf{R})$

$$
\begin{aligned}
(A u, v) & =\int i\left(x^{2} u^{\prime}+x u\right) \bar{v} d x=\int i\left(-2 x u \bar{v}-x^{2} u \bar{v}^{\prime}+x u \bar{v}\right) d x \\
& =\int u \overline{i\left(x^{2} v^{\prime}+x v\right)} d x=(u, A v) .
\end{aligned}
$$

We wish to compute the defect indices $n_{ \pm}(A)=\operatorname{dim} \operatorname{ker}\left(A^{*} \pm i\right)$. Here A is symmetric but not closed, but closable operators have the property

[^0]that $(\bar{A})^{*}=A^{* 3}$ so in fact $n_{ \pm}(A)=n_{ \pm}(\bar{A})$. We will show that $n_{ \pm}(A)=1$ so by a theorem in the lectures \bar{A} has a self-adjoint extension, and then also A has one.
We obtain by using distributional derivatives that
\[

$$
\begin{aligned}
v \in \mathscr{D}\left(A^{*}\right) & \Leftrightarrow \exists v^{*} \in L^{2}:\left(u, v^{*}\right)=\left(i\left(x^{2} u^{\prime}+x u\right), v\right) \forall u \in C_{0}^{\infty} \\
& \Leftrightarrow \exists v^{*} \in L^{2}:\left(u, v^{*}\right)=\left(u, i\left(x^{2} v^{\prime}+x v\right)\right) \forall u \in C_{0}^{\infty} .
\end{aligned}
$$
\]

Thus $\mathscr{D}\left(A^{*}\right)=\left\{v \in L^{2} ; x^{2} v^{\prime}+x v \in L^{2}\right\}$ and $A^{*} v=i\left(x^{2} v^{\prime}+x v\right)$. If $v=v_{ \pm} \in \operatorname{ker}\left(A^{*} \pm i\right)$ then

$$
x^{2} v^{\prime}+(x \pm 1) v=0, \quad v \in L^{2}, x^{2} v^{\prime}+x v \in L^{2}
$$

Working in $x \neq 0$ we have $v^{\prime}+\frac{x \pm 1}{x^{2}} v=0$, so $\left(v e^{\log |x| \mp 1 / x}\right)^{\prime}=0$ and

$$
v_{ \pm}(x)= \begin{cases}C_{ \pm, p}|x|^{-1} e^{ \pm 1 / x}, & x>0 \\ C_{ \pm, n}|x|^{-1} e^{ \pm 1 / x}, & x<0\end{cases}
$$

for some constants $C_{ \pm, p}$ and $C_{ \pm, n}$. This gives the general distributional solution to $\left(A^{*} \pm i\right) v_{ \pm}=0$ in $x \neq 0$. Since $v_{ \pm} \in L^{2}$ we must have $C_{+, p}=C_{-, n}=0$, and $C_{+, n}$ and $C_{-, p}$ are free parameters. Thus $n_{ \pm}(A)=$ $\operatorname{dim} \operatorname{ker}\left(A^{*} \pm i\right)=1$.
4. Let A be self-adjoint, and let E be the projection-valued measure for A. We write $d \mu_{x}(\lambda)=d\left(E_{\lambda} x, x\right)$, so μ_{x} is a finite positive Borel measure on \mathbf{R} for each $x \in H$. If g is a bounded Borel function, we know that $(g(A) x, x)=\int g(\lambda) d \mu_{x}(\lambda)$ defines a bounded operator $g(A)$ on H satisfy$\operatorname{ing} g(A)^{*}=\bar{g}(A)$, and $\|g(A) x\|^{2}=\int|g|^{2} d \mu_{x}$. By polarization, this implies $(g(A) x, h(A) x)=\int g \bar{h} d \mu_{x}=((g \bar{h})(A) x, x)$ for bounded Borel functions g, h, which again implies $g(A) h(A)=(g h)(A)$. We obtain for $\varphi \in C_{0}^{\infty}(\mathbf{R})$

$$
\int \varphi d \mu_{g(A) x}=(\varphi(A) g(A) x, g(A) x)=\left(\left(\varphi|g|^{2}\right)(A) x, x\right)=\int \varphi|g|^{2} d \mu_{x}
$$

so $d \mu_{g(A) x}=|g|^{2} d \mu_{x}$ if g is bounded Borel.
Let now g be a Borel function on \mathbf{R}, not necessarily bounded. Let $\chi_{n}=$ $\chi_{\{|g| \leq n\}}$ and $g_{n}=\chi_{n} g$. Define

$$
\mathscr{D}(g(A))=\left\{x \in H ; \int|g|^{2} d \mu_{x}<\infty\right\} .
$$

[^1]If $x \in H$, we want to show that $\chi_{n}(A) x \in \mathscr{D}(g(A))$ and $\chi_{n}(A) x \rightarrow x$. The first fact follows since $\int|g|^{2} d \mu_{\chi_{n}(A) x}=\int \chi_{n}|g|^{2} d \mu_{x}<\infty$, and for the second fact we use

$$
\begin{aligned}
\left\|\chi_{n}(A) x-x\right\|^{2} & =\left\|\left(1-\chi_{n}\right)(A) x\right\|^{2}=\int\left|1-\chi_{n}(\lambda)\right|^{2} d \mu_{x}=\int_{\{|g|>n\}} d \mu_{x} \\
& \leq \frac{1}{n^{2}} \int|g|^{2} d \mu_{x} \rightarrow 0
\end{aligned}
$$

We see that $\mathscr{D}(g(A))$ is a dense linear subspace of H since $\int|g|^{2} d \mu_{c x}=$ $|c|^{2} \int|g|^{2} d \mu_{x}$ and since

$$
\int\left|g_{n}\right|^{2} d \mu_{x+y}=\left\|g_{n}(A)(x+y)\right\|^{2} \leq 2\left(\left\|g_{n}(A) x\right\|^{2}+\left\|g_{n}(A) y\right\|^{2}\right)
$$

If $x \in \mathscr{D}(g(A))$ then $\left(g_{n}(A) x\right)$ is Cauchy in H since

$$
\left\|g_{m}(A) x-g_{n}(A) x\right\|^{2}=\int\left|g_{m}-g_{n}\right|^{2} d \mu_{x} \rightarrow 0, \quad m, n \rightarrow \infty
$$

We may define $g(A) x=\lim g_{n}(A) x$. Then $g(A)$ is a linear operator with domain $\mathscr{D}(g(A))$, and it satisfies

$$
(g(A) x, x)=\int g d \mu_{x}
$$

In fact this condition determines $g(A)$ uniquely. It remains to show that $g(A)$ is self-adjoint if g is real. Let $y \in \mathscr{D}\left(g(A)^{*}\right)$, i.e. for some $y^{*} \in H$ one has

$$
(g(A) x, y)=\left(x, y^{*}\right) \quad \text { for } x \in \mathscr{D}(g(A))
$$

Then using that $\left(g_{n}(A) x, y\right)=\left(x, g_{n}(A) y\right)$ we get $\left(x, g_{n}(A) y-y^{*}\right) \rightarrow 0$ for $x \in \mathscr{D}(g(A))$, hence $g_{n}(A) y \rightarrow y^{*}$ weakly and so $\left\|g_{n}(A) y\right\|^{2} \leq C$. This shows that $y \in \mathscr{D}(g(A))$ and $g(A)$ is self-adjoint.

[^0]: ${ }^{1}$ Proof: $\|u\|^{2}=\int_{I} u \bar{u} d t=-\int_{I}\left(u^{\prime} \bar{u}+u \bar{u}^{\prime}\right) t d t=-2 \int_{I} \operatorname{Re}\left(u \bar{u}^{\prime}\right) t d t \leq 2\|u\|\left\|u^{\prime}\right\|$.
 ${ }^{2}$ In fact, if $\left(u_{j}\right)$ is a Cauchy sequence in $\left(C_{0}^{\infty}(I),\|\cdot\|_{D}\right)$, then $\left(u_{j}\right)$ is Cauchy in $H^{1}(I)$ by the Poincaré inequality, hence converges in $H^{1}(I)$ to some $u \in H^{1}(I)$. By Sobolev embedding one also has uniform convergence in \bar{I}, so $u(\pm 1)=0$. Conversely, if $u \in H^{1}(I)$ and $u(\pm 1)=0$, one can produce $u_{j} \in C_{0}^{\infty}(I)$ with $u_{j} \rightarrow u$ in $H^{1}(I)$ by using suitable cutoffs and mollifiers, see e.g. Evans, Partial differential equations, Sec. 5.5.

[^1]: ${ }^{3}$ Since $A \subset \bar{A},(\bar{A})^{*} \subset A^{*}$ by Ex. 1, Problem 2. Let $v \in \mathscr{D}\left(A^{*}\right)$, so $(A u, v)=\left(u, A^{*} v\right)$ for $u \in \mathscr{D}(A)$. We obtain $(\bar{A} u, v)=\left(u, A^{*} v\right)$ for $u \in \mathscr{D}(\bar{A})$ by approximating u with $u_{j} \in \mathscr{D}(A)$ so that $u_{j} \rightarrow u$ and $A u_{j} \rightarrow \bar{A} u$, and we get $A^{*} \subset(\bar{A})^{*}$.

