
Scattering theory
Solutions to Exercises #1, 21.9.2007

1. The norm ‖ · ‖A is induced by the inner product (u, v)A = (u, v)+(Au, Av)
on D(A), and D(A) becomes an inner product space.

”A closed =⇒ (D(A), ‖ · ‖A) Hilbert”: Let (uj) be a Cauchy sequence in
(D(A), ‖ · ‖A). Then ∀ ε ∃ M such that

‖uj − uk‖2A = ‖uj − uk‖2 + ‖A(uj − uk)‖2 < ε2 whenever j, k ≥M.

Therefore (uj) and (Auj) are Cauchy in H and converge to u ∈ H and
v ∈ H, respectively. Since A is closed one has u ∈ D(A) and v = Au, and
‖uj − u‖A → 0 as j →∞. This shows that (D(A), ‖ · ‖A) is Hilbert.

”(D(A), ‖ · ‖A) Hilbert =⇒ A closed”: Let (uj) be a sequence in D(A)
with uj → u and Auj → v in H. We need to show that u ∈ D(A) and
Auj → Au. One has that (uj) and (Auj) are Cauchy in H, which implies
that (uj) is Cauchy in (D(A), ‖ · ‖A). Since this space is complete there
exists ũ ∈ D(A) with ‖uj − ũ‖A → 0. This implies convergence in H, and
since limits are unique one has u = ũ ∈ D(A) and Auj → Au.

2. Recall that v ∈ D(A∗) iff ∃ v∗ ∈ H such that (u, v∗) = (Au, v) ∀ u ∈ D(A)
(and then A∗v = v∗).

(i) Let vj ∈ D(A∗) with vj → v and A∗vj → v∗ in H. Then

(u, A∗vj) = (Au, vj) ∀ u ∈ D(A)

=⇒ (u, v∗) = (Au, v) ∀ u ∈ D(A).

This shows that v ∈ D(A∗), A∗v = v∗, and A∗vj → A∗v.

(ii) Let A ⊂ B, show B∗ ⊂ A∗. One has

v ∈ D(B∗) =⇒ (u, B∗v) = (Bu, v) ∀ u ∈ D(B)

=⇒ (u, B∗v) = (Au, v) ∀ u ∈ D(A)

and therefore v ∈ D(A∗) and B∗v = A∗v.

3. If A is symmetric then (Au, u) = (u, Au) = (Au, u), so (Au, u) ∈ R for
u ∈ D(A). Conversely, let Q(u) = (Au, u), and assume that Q(u) ∈ R for
u ∈ D(A). Note that Q(cu) = Q(u) if |c| = 1. By polarization

4(Au, v) = Q(u + v)−Q(u− v) + iQ(u + iv)− iQ(u− iv),

4(Av, u) = Q(u + v)−Q(u− v)− iQ(u + iv) + iQ(u− iv).

This shows that (Au, v) = (Av, u) = (u, Av) for u, v ∈ D(A).



4. (i) Since A is closable, there is a closed operator B ⊃ A. Therefore,
G (A) ⊂ G (B). Define

D(Ā) = {x ∈ H ; (x, y) ∈ G (A) for some y ∈ H}.

Then D(Ā) is a subspace of H, and for x ∈ D(Ā) we define Āx = y if
(x, y) ∈ G (A). This is well defined since G (A) ⊂ G (B), and (x, y), (x, ỹ) ∈
G (A) implies y = Bx = ỹ. One has A ⊂ Ā ⊂ B, and since this is valid
for any closed B ⊃ A we have the desired unique closed extension.

(ii) A symmetric implies A ⊂ A∗, so A is closable by Exercise 2, part (i). If
x, y ∈ D(Ā) then (x, Āx), (y, Āy) ∈ G (A), so there are sequences (xj), (yj)
in D(A) with xj → x, Axj → Āx, and yj → y, Ayj → Āy. By symmetry
(Axj, yj) = (xj, Ayj), and taking limits shows that (Āx, y) = (x, Āy) so Ā
is symmetric. Finally, if A has a self-adjoint extension B then Ā ⊂ B so
Ā has a self-adjoint extension, and if Ā has a self-adjoint extension then
clearly A has one.

5. Let A : u 7→ u′′ with domain D(A) = C2
0(I) in L2(I), where I = (−1, 1).

Then A is densely defined since C2
0 functions are dense in L2. Also, A is

symmetric by an integration by parts: for u, v ∈ C2
0(I)

(Au, v) =

∫ 1

−1

u′′v̄ dt = −
∫ 1

−1

u′v̄′ dt =

∫ 1

−1

uv̄′′ dt = (u, Av). (1)

We have

D(A∗) = {v ∈ L2(I) ; ∃ w ∈ L2(I) s.t. (u′′, v) = (u, w) for u ∈ C2
0(I)}.

By looking at u ∈ C∞0 (I) one sees that v ∈ D(A∗) if and only if v ∈
L2(I) and the distributional derivative v′′ is in L2(I). Therefore one has
D(A∗) = {v ∈ L2(I) ; v′′ ∈ L2(I)} = H2(I) 1 , and also A∗v = v′′ for
v ∈ D(A∗).

1The last equality may be seen as follows. Let v, v′′ ∈ L2(I). We want to show
|〈v′, ϕ〉| ≤ C‖ϕ‖L2(I) for ϕ ∈ C∞0 (I), which will imply v′ ∈ L2(I). If ϕ ∈ C∞0 (I) is given,
we decompose ϕ = ϕ0 + cψ where c =

∫ 1

−1
ϕdt and ψ ∈ C∞0 (I) is a fixed function with∫ 1

−1
ψ dt = 1. Then

∫ 1

−1
ϕ0 dt = 0, and we have ϕ0 = Φ′ where Φ ∈ C∞0 (I) is defined by

Φ(t) =
∫ t

−1
ϕ0(s) ds. Then

〈v′, ϕ〉 = 〈v′,Φ′ + cψ〉 = −〈v′′,Φ〉 − c〈v, ψ′〉

which implies |〈v′, ϕ〉| ≤ C‖ϕ‖L2(I) since |c| ≤ C‖φ‖L2(I) and ‖Φ‖L2(I) ≤ C‖ϕ‖L2(I).



To obtain a self-adjoint extension of A, we impose boundary conditions
on the domain. A straightforward choice is Dirichlet boundary conditions.
Define AD : u 7→ u′′ with domain

D(AD) = {u ∈ H2(I) ; u(±1) = 0} = H2(I) ∩H1
0 (I).

Note that H2(I) ⊂ C1(Ī) by Sobolev embedding, so the pointwise values
exist. Then AD is a densely defined operator, which is symmetric because
(1) is valid for u, v ∈ D(AD). Also

v ∈ D(A∗D) ⇔ ∃ w ∈ L2 s.t. (u′′, v) = (u, w) for u ∈ H2 ∩H1
0

⇔ v ∈ L2, v′′ ∈ L2, (u, v′′) = (u′′, v) for u ∈ H2 ∩H1
0

⇔ v ∈ H2, (u, v′′) = (u′′, v) for u ∈ H2 ∩H1
0 .

The condition (u, v′′) = (u′′, v) means that (uv̄′)(1)−(uv̄′)(−1) = (u′v̄)(1)−
(u′v̄)(−1) for u ∈ H2 ∩H1

0 . Since u(±1) = 0 and u′(±1) can be arbitrary,
this implies v(±1) = 0. It follows that D(A∗D) = D(AD) and AD is
self-adjoint.


