Scattering theory

Solutions to Exercises \#1, 21.9.2007

1. The norm $\|\cdot\|_{A}$ is induced by the inner product $(u, v)_{A}=(u, v)+(A u, A v)$ on $\mathscr{D}(A)$, and $\mathscr{D}(A)$ becomes an inner product space.
$" A$ closed $\Longrightarrow\left(\mathscr{D}(A),\|\cdot\|_{A}\right)$ Hilbert": Let $\left(u_{j}\right)$ be a Cauchy sequence in $\left(\mathscr{D}(A),\|\cdot\|_{A}\right)$. Then $\forall \varepsilon \exists M$ such that

$$
\left\|u_{j}-u_{k}\right\|_{A}^{2}=\left\|u_{j}-u_{k}\right\|^{2}+\left\|A\left(u_{j}-u_{k}\right)\right\|^{2}<\varepsilon^{2} \quad \text { whenever } j, k \geq M .
$$

Therefore $\left(u_{j}\right)$ and $\left(A u_{j}\right)$ are Cauchy in H and converge to $u \in H$ and $v \in H$, respectively. Since A is closed one has $u \in \mathscr{D}(A)$ and $v=A u$, and $\left\|u_{j}-u\right\|_{A} \rightarrow 0$ as $j \rightarrow \infty$. This shows that $\left(\mathscr{D}(A),\|\cdot\|_{A}\right)$ is Hilbert.
$"\left(\mathscr{D}(A),\|\cdot\|_{A}\right)$ Hilbert $\Longrightarrow A$ closed": Let $\left(u_{j}\right)$ be a sequence in $\mathscr{D}(A)$ with $u_{j} \rightarrow u$ and $A u_{j} \rightarrow v$ in H. We need to show that $u \in \mathscr{D}(A)$ and $A u_{j} \rightarrow A u$. One has that $\left(u_{j}\right)$ and $\left(A u_{j}\right)$ are Cauchy in H, which implies that $\left(u_{j}\right)$ is Cauchy in $\left(\mathscr{D}(A),\|\cdot\|_{A}\right)$. Since this space is complete there exists $\tilde{u} \in \mathscr{D}(A)$ with $\left\|u_{j}-\tilde{u}\right\|_{A} \rightarrow 0$. This implies convergence in H, and since limits are unique one has $u=\tilde{u} \in \mathscr{D}(A)$ and $A u_{j} \rightarrow A u$.
2. Recall that $v \in \mathscr{D}\left(A^{*}\right)$ iff $\exists v^{*} \in H$ such that $\left(u, v^{*}\right)=(A u, v) \forall u \in \mathscr{D}(A)$ (and then $A^{*} v=v^{*}$).
(i) Let $v_{j} \in \mathscr{D}\left(A^{*}\right)$ with $v_{j} \rightarrow v$ and $A^{*} v_{j} \rightarrow v^{*}$ in H. Then

$$
\begin{aligned}
& \left(u, A^{*} v_{j}\right)=\left(A u, v_{j}\right) \forall u \in \mathscr{D}(A) \\
\Longrightarrow & \left(u, v^{*}\right)=(A u, v) \forall u \in \mathscr{D}(A) .
\end{aligned}
$$

This shows that $v \in \mathscr{D}\left(A^{*}\right), A^{*} v=v^{*}$, and $A^{*} v_{j} \rightarrow A^{*} v$.
(ii) Let $A \subset B$, show $B^{*} \subset A^{*}$. One has

$$
\begin{aligned}
v \in \mathscr{D}\left(B^{*}\right) & \Longrightarrow\left(u, B^{*} v\right)=(B u, v) \forall u \in \mathscr{D}(B) \\
& \Longrightarrow\left(u, B^{*} v\right)=(A u, v) \forall u \in \mathscr{D}(A)
\end{aligned}
$$

and therefore $v \in \mathscr{D}\left(A^{*}\right)$ and $B^{*} v=A^{*} v$.
3. If A is symmetric then $(A u, u)=(u, A u)=\overline{(A u, u)}$, so $(A u, u) \in \mathbf{R}$ for $u \in \mathscr{D}(A)$. Conversely, let $Q(u)=(A u, u)$, and assume that $Q(u) \in \mathbf{R}$ for $u \in \mathscr{D}(A)$. Note that $Q(c u)=Q(u)$ if $|c|=1$. By polarization

$$
\begin{aligned}
& 4(A u, v)=Q(u+v)-Q(u-v)+i Q(u+i v)-i Q(u-i v), \\
& 4(A v, u)=Q(u+v)-Q(u-v)-i Q(u+i v)+i Q(u-i v) .
\end{aligned}
$$

This shows that $(A u, v)=\overline{(A v, u)}=(u, A v)$ for $u, v \in \mathscr{D}(A)$.
4. (i) Since A is closable, there is a closed operator $B \supset A$. Therefore, $\mathscr{G}(A) \subset \mathscr{G}(B)$. Define

$$
\mathscr{D}(\bar{A})=\{x \in H ;(x, y) \in \overline{\mathscr{G}(A)} \text { for some } y \in H\} .
$$

Then $\mathscr{D}(\bar{A})$ is a subspace of H, and for $x \in \mathscr{D}(\bar{A})$ we define $\bar{A} x=y$ if $\underline{(x, y)} \in \overline{\mathscr{G}(A)}$. This is well defined since $\overline{\mathscr{G}(A)} \subset \mathscr{G}(B)$, and $(x, y),(x, \tilde{y}) \in$ $\overline{\mathscr{G}(A)}$ implies $y=B x=\tilde{y}$. One has $A \subset \bar{A} \subset B$, and since this is valid for any closed $B \supset A$ we have the desired unique closed extension.
(ii) A symmetric implies $A \subset A^{*}$, so A is closable by Exercise 2, part (i). If $x, y \in \mathscr{D}(\bar{A})$ then $(x, \bar{A} x),(y, \bar{A} y) \in \overline{\mathscr{G}(A)}$, so there are sequences $\left(x_{j}\right),\left(y_{j}\right)$ in $\mathscr{D}(A)$ with $x_{j} \rightarrow x, A x_{j} \rightarrow \bar{A} x$, and $y_{j} \rightarrow y, A y_{j} \rightarrow \bar{A} y$. By symmetry $\left(A x_{j}, y_{j}\right)=\left(x_{j}, A y_{j}\right)$, and taking limits shows that $(\bar{A} x, y)=(x, \bar{A} y)$ so \bar{A} is symmetric. Finally, if A has a self-adjoint extension B then $\bar{A} \subset B$ so \bar{A} has a self-adjoint extension, and if \bar{A} has a self-adjoint extension then clearly A has one.
5. Let $A: u \mapsto u^{\prime \prime}$ with domain $\mathscr{D}(A)=C_{0}^{2}(I)$ in $L^{2}(I)$, where $I=(-1,1)$. Then A is densely defined since C_{0}^{2} functions are dense in L^{2}. Also, A is symmetric by an integration by parts: for $u, v \in C_{0}^{2}(I)$

$$
\begin{equation*}
(A u, v)=\int_{-1}^{1} u^{\prime \prime} \bar{v} d t=-\int_{-1}^{1} u^{\prime} \bar{v}^{\prime} d t=\int_{-1}^{1} u \bar{v}^{\prime \prime} d t=(u, A v) . \tag{1}
\end{equation*}
$$

We have

$$
\mathscr{D}\left(A^{*}\right)=\left\{v \in L^{2}(I) ; \exists w \in L^{2}(I) \text { s.t. }\left(u^{\prime \prime}, v\right)=(u, w) \text { for } u \in C_{0}^{2}(I)\right\} .
$$

By looking at $u \in C_{0}^{\infty}(I)$ one sees that $v \in \mathscr{D}\left(A^{*}\right)$ if and only if $v \in$ $L^{2}(I)$ and the distributional derivative $v^{\prime \prime}$ is in $L^{2}(I)$. Therefore one has $\mathscr{D}\left(A^{*}\right)=\left\{v \in L^{2}(I) ; v^{\prime \prime} \in L^{2}(I)\right\}=H^{2}(I)^{1}$, and also $A^{*} v=v^{\prime \prime}$ for $v \in \mathscr{D}\left(A^{*}\right)$.

[^0]$$
\left\langle v^{\prime}, \varphi\right\rangle=\left\langle v^{\prime}, \Phi^{\prime}+c \psi\right\rangle=-\left\langle v^{\prime \prime}, \Phi\right\rangle-c\left\langle v, \psi^{\prime}\right\rangle
$$
which implies $\left|\left\langle v^{\prime}, \varphi\right\rangle\right| \leq C\|\varphi\|_{L^{2}(I)}$ since $|c| \leq C\|\phi\|_{L^{2}(I)}$ and $\|\Phi\|_{L^{2}(I)} \leq C\|\varphi\|_{L^{2}(I)}$.

To obtain a self-adjoint extension of A, we impose boundary conditions on the domain. A straightforward choice is Dirichlet boundary conditions. Define $A_{D}: u \mapsto u^{\prime \prime}$ with domain

$$
\mathscr{D}\left(A_{D}\right)=\left\{u \in H^{2}(I) ; u(\pm 1)=0\right\}=H^{2}(I) \cap H_{0}^{1}(I) .
$$

Note that $H^{2}(I) \subset C^{1}(\bar{I})$ by Sobolev embedding, so the pointwise values exist. Then A_{D} is a densely defined operator, which is symmetric because (1) is valid for $u, v \in \mathscr{D}\left(A_{D}\right)$. Also

$$
\begin{aligned}
v \in \mathscr{D}\left(A_{D}^{*}\right) & \Leftrightarrow \exists w \in L^{2} \text { s.t. }\left(u^{\prime \prime}, v\right)=(u, w) \text { for } u \in H^{2} \cap H_{0}^{1} \\
& \Leftrightarrow v \in L^{2}, v^{\prime \prime} \in L^{2},\left(u, v^{\prime \prime}\right)=\left(u^{\prime \prime}, v\right) \text { for } u \in H^{2} \cap H_{0}^{1} \\
& \Leftrightarrow v \in H^{2},\left(u, v^{\prime \prime}\right)=\left(u^{\prime \prime}, v\right) \text { for } u \in H^{2} \cap H_{0}^{1} .
\end{aligned}
$$

The condition $\left(u, v^{\prime \prime}\right)=\left(u^{\prime \prime}, v\right)$ means that $\left(u \bar{v}^{\prime}\right)(1)-\left(u \bar{v}^{\prime}\right)(-1)=\left(u^{\prime} \bar{v}\right)(1)-$ $\left(u^{\prime} \bar{v}\right)(-1)$ for $u \in H^{2} \cap H_{0}^{1}$. Since $u(\pm 1)=0$ and $u^{\prime}(\pm 1)$ can be arbitrary, this implies $v(\pm 1)=0$. It follows that $\mathscr{D}\left(A_{D}^{*}\right)=\mathscr{D}\left(A_{D}\right)$ and A_{D} is self-adjoint.

[^0]: ${ }^{1}$ The last equality may be seen as follows. Let $v, v^{\prime \prime} \in L^{2}(I)$. We want to show $\left|\left\langle v^{\prime}, \varphi\right\rangle\right| \leq C\|\varphi\|_{L^{2}(I)}$ for $\varphi \in C_{0}^{\infty}(I)$, which will imply $v^{\prime} \in L^{2}(I)$. If $\varphi \in C_{0}^{\infty}(I)$ is given, we decompose $\varphi=\varphi_{0}+c \psi$ where $c=\int_{-1}^{1} \varphi d t$ and $\psi \in C_{0}^{\infty}(I)$ is a fixed function with $\int_{-1}^{1} \psi d t=1$. Then $\int_{-1}^{1} \varphi_{0} d t=0$, and we have $\varphi_{0}=\Phi^{\prime}$ where $\Phi \in C_{0}^{\infty}(I)$ is defined by $\Phi(t)=\int_{-1}^{t} \varphi_{0}(s) d s$. Then

