Scattering theory

Solutions to Exercises #1, 21.9.2007

1. The norm $\|\cdot\|_A$ is induced by the inner product $(u, v)_A = (u, v) + (Au, Av)$ on $\mathscr{D}(A)$, and $\mathscr{D}(A)$ becomes an inner product space.

"A closed $\implies (\mathscr{D}(A), \|\cdot\|_A)$ Hilbert": Let (u_j) be a Cauchy sequence in $(\mathscr{D}(A), \|\cdot\|_A)$. Then $\forall \varepsilon \exists M$ such that

$$|u_j - u_k||_A^2 = ||u_j - u_k||^2 + ||A(u_j - u_k)||^2 < \varepsilon^2$$
 whenever $j, k \ge M$.

Therefore (u_j) and (Au_j) are Cauchy in H and converge to $u \in H$ and $v \in H$, respectively. Since A is closed one has $u \in \mathscr{D}(A)$ and v = Au, and $||u_j - u||_A \to 0$ as $j \to \infty$. This shows that $(\mathscr{D}(A), || \cdot ||_A)$ is Hilbert. " $(\mathscr{D}(A), || \cdot ||_A)$ Hilbert $\implies A$ closed": Let (u_j) be a sequence in $\mathscr{D}(A)$ with $u_i \to u$ and $Au_i \to v$ in H. We need to show that $u \in \mathscr{D}(A)$ and

with $u_j \to u$ and $Au_j \to v$ in H. We need to show that $u \in \mathscr{D}(A)$ and $Au_j \to Au$. One has that (u_j) and (Au_j) are Cauchy in H, which implies that (u_j) is Cauchy in $(\mathscr{D}(A), \|\cdot\|_A)$. Since this space is complete there exists $\tilde{u} \in \mathscr{D}(A)$ with $\|u_j - \tilde{u}\|_A \to 0$. This implies convergence in H, and since limits are unique one has $u = \tilde{u} \in \mathscr{D}(A)$ and $Au_j \to Au$.

- 2. Recall that $v \in \mathscr{D}(A^*)$ iff $\exists v^* \in H$ such that $(u, v^*) = (Au, v) \forall u \in \mathscr{D}(A)$ (and then $A^*v = v^*$).
 - (i) Let $v_j \in \mathscr{D}(A^*)$ with $v_j \to v$ and $A^*v_j \to v^*$ in H. Then

$$(u, A^*v_j) = (Au, v_j) \ \forall \ u \in \mathscr{D}(A)$$
$$\implies (u, v^*) = (Au, v) \ \forall \ u \in \mathscr{D}(A).$$

This shows that $v \in \mathscr{D}(A^*)$, $A^*v = v^*$, and $A^*v_i \to A^*v$.

(ii) Let $A \subset B$, show $B^* \subset A^*$. One has

$$v \in \mathscr{D}(B^*) \implies (u, B^*v) = (Bu, v) \ \forall \ u \in \mathscr{D}(B)$$
$$\implies (u, B^*v) = (Au, v) \ \forall \ u \in \mathscr{D}(A)$$

and therefore $v \in \mathscr{D}(A^*)$ and $B^*v = A^*v$.

3. If A is symmetric then $(Au, u) = (u, Au) = \overline{(Au, u)}$, so $(Au, u) \in \mathbf{R}$ for $u \in \mathscr{D}(A)$. Conversely, let Q(u) = (Au, u), and assume that $Q(u) \in \mathbf{R}$ for $u \in \mathscr{D}(A)$. Note that Q(cu) = Q(u) if |c| = 1. By polarization

$$4(Au, v) = Q(u + v) - Q(u - v) + iQ(u + iv) - iQ(u - iv),$$

$$4(Av, u) = Q(u + v) - Q(u - v) - iQ(u + iv) + iQ(u - iv).$$

This shows that $(Au, v) = \overline{(Av, u)} = (u, Av)$ for $u, v \in \mathscr{D}(A)$.

4. (i) Since A is closable, there is a closed operator $B \supset A$. Therefore, $\overline{\mathscr{G}(A)} \subset \mathscr{G}(B)$. Define

$$\mathscr{D}(\bar{A}) = \{ x \in H ; (x, y) \in \overline{\mathscr{G}(A)} \text{ for some } y \in H \}.$$

Then $\mathscr{D}(\overline{A})$ is a subspace of H, and for $x \in \mathscr{D}(\overline{A})$ we define $\overline{A}x = y$ if $(x,y) \in \overline{\mathscr{G}(A)}$. This is well defined since $\overline{\mathscr{G}(A)} \subset \mathscr{G}(B)$, and $(x,y), (x,\tilde{y}) \in \overline{\mathscr{G}(A)}$ implies $y = Bx = \tilde{y}$. One has $A \subset \overline{A} \subset B$, and since this is valid for any closed $B \supset A$ we have the desired unique closed extension.

(ii) A symmetric implies $A \subset A^*$, so A is closable by Exercise 2, part (i). If $x, y \in \mathscr{D}(\bar{A})$ then $(x, \bar{A}x), (y, \bar{A}y) \in \overline{\mathscr{G}(A)}$, so there are sequences $(x_j), (y_j)$ in $\mathscr{D}(A)$ with $x_j \to x, Ax_j \to \bar{A}x$, and $y_j \to y, Ay_j \to \bar{A}y$. By symmetry $(Ax_j, y_j) = (x_j, Ay_j)$, and taking limits shows that $(\bar{A}x, y) = (x, \bar{A}y)$ so \bar{A} is symmetric. Finally, if A has a self-adjoint extension B then $\bar{A} \subset B$ so \bar{A} has a self-adjoint extension, and if \bar{A} has a self-adjoint extension then clearly A has one.

5. Let $A: u \mapsto u''$ with domain $\mathscr{D}(A) = C_0^2(I)$ in $L^2(I)$, where I = (-1, 1). Then A is densely defined since C_0^2 functions are dense in L^2 . Also, A is symmetric by an integration by parts: for $u, v \in C_0^2(I)$

$$(Au, v) = \int_{-1}^{1} u'' \bar{v} \, dt = -\int_{-1}^{1} u' \bar{v}' \, dt = \int_{-1}^{1} u \bar{v}'' \, dt = (u, Av).$$
(1)

We have

$$\mathscr{D}(A^*) = \{ v \in L^2(I) ; \exists w \in L^2(I) \text{ s.t. } (u'', v) = (u, w) \text{ for } u \in C^2_0(I) \}.$$

By looking at $u \in C_0^{\infty}(I)$ one sees that $v \in \mathscr{D}(A^*)$ if and only if $v \in L^2(I)$ and the distributional derivative v'' is in $L^2(I)$. Therefore one has $\mathscr{D}(A^*) = \{v \in L^2(I); v'' \in L^2(I)\} = H^2(I)^{-1}$, and also $A^*v = v''$ for $v \in \mathscr{D}(A^*)$.

$$\langle v', \varphi \rangle = \langle v', \Phi' + c\psi \rangle = -\langle v'', \Phi \rangle - c \langle v, \psi' \rangle$$

which implies $|\langle v', \varphi \rangle| \le C \|\varphi\|_{L^2(I)}$ since $|c| \le C \|\phi\|_{L^2(I)}$ and $\|\Phi\|_{L^2(I)} \le C \|\varphi\|_{L^2(I)}$.

¹The last equality may be seen as follows. Let $v, v'' \in L^2(I)$. We want to show $|\langle v', \varphi \rangle| \leq C \|\varphi\|_{L^2(I)}$ for $\varphi \in C_0^{\infty}(I)$, which will imply $v' \in L^2(I)$. If $\varphi \in C_0^{\infty}(I)$ is given, we decompose $\varphi = \varphi_0 + c\psi$ where $c = \int_{-1}^1 \varphi \, dt$ and $\psi \in C_0^{\infty}(I)$ is a fixed function with $\int_{-1}^1 \psi \, dt = 1$. Then $\int_{-1}^1 \varphi_0 \, dt = 0$, and we have $\varphi_0 = \Phi'$ where $\Phi \in C_0^{\infty}(I)$ is defined by $\Phi(t) = \int_{-1}^t \varphi_0(s) \, ds$. Then

To obtain a self-adjoint extension of A, we impose boundary conditions on the domain. A straightforward choice is Dirichlet boundary conditions. Define $A_D : u \mapsto u''$ with domain

$$\mathscr{D}(A_D) = \{ u \in H^2(I) ; u(\pm 1) = 0 \} = H^2(I) \cap H^1_0(I).$$

Note that $H^2(I) \subset C^1(\overline{I})$ by Sobolev embedding, so the pointwise values exist. Then A_D is a densely defined operator, which is symmetric because (1) is valid for $u, v \in \mathscr{D}(A_D)$. Also

$$v \in \mathscr{D}(A_D^*) \Leftrightarrow \exists w \in L^2 \text{ s.t. } (u'', v) = (u, w) \text{ for } u \in H^2 \cap H_0^1$$
$$\Leftrightarrow v \in L^2, v'' \in L^2, (u, v'') = (u'', v) \text{ for } u \in H^2 \cap H_0^1$$
$$\Leftrightarrow v \in H^2, (u, v'') = (u'', v) \text{ for } u \in H^2 \cap H_0^1.$$

The condition (u, v'') = (u'', v) means that $(u\bar{v}')(1) - (u\bar{v}')(-1) = (u'\bar{v})(1) - (u'\bar{v})(-1)$ for $u \in H^2 \cap H^1_0$. Since $u(\pm 1) = 0$ and $u'(\pm 1)$ can be arbitrary, this implies $v(\pm 1) = 0$. It follows that $\mathscr{D}(A^*_D) = \mathscr{D}(A_D)$ and A_D is self-adjoint.