Scattering theory Exercises #8, 16.11.2007 (return by 23.11.2007)

1. Let B_1, B_2 be Banach spaces. Show that for any $T \in L(B_1, B_2)$ there is a unique operator $T^* \in L(B_2^*, B_1^*)$ defined by

$$\langle Tx, \eta \rangle = \langle x, T^*\eta \rangle, \quad x \in B_1, \eta \in B_2^*.$$

Show that the map $L(B_1, B_2) \to L(B_2^*, B_1^*), T \mapsto T^*$, is a linear isometry, which is surjective if B_2 is reflexive.

2. Let W be a closed linear subspace of a Banach space B, and define its annihilator W° by

$$W^{\circ} = \{\xi \in B^*; \langle x, \xi \rangle = 0 \text{ for all } x \in W\}.$$

Show that W° is a closed linear subspace of B^* . Also, show that W^* can be isometrically identified with B^*/W° , and that W° can be identified with $(B/W)^*$.

- 3. Let $T \in L(B_1, B_2)$ have closed range. Show that T^* has closed range and that $\ker(T)^\circ = \operatorname{im}(T^*)$, $\operatorname{im}(T)^\circ = \ker(T^*)$.
- 4. Let B and B^* be the Banach spaces in the lectures. Define for $\delta \in \mathbf{R}$

$$L_{\delta}^{2} = \{ f \in L_{\text{loc}}^{2}(\mathbf{R}^{n}) ; \| f \|_{L_{\delta}^{2}} := \| (1 + |x|^{2})^{\delta/2} f \|_{L^{2}} < \infty \}.$$

Show the inclusions

$$\bigcap_{\delta > 1/2} L_{\delta}^2 \subset B, \qquad B^* \subset \bigcap_{\delta < -1/2} L_{\delta}^2$$