Scattering theory

Exercises #7, 09.11.2007 (return by 16.11.2007)

In the following exercises, if you get stuck, it may be useful to consult Hörmander, Analysis of Linear Partial Differential Operators, vol. 1.

- 1. Let V be a k-dimensional linear subspace of \mathbf{R}^n , and let $d\sigma_V$ be the Euclidean surface measure on V. Show that the Fourier transform of $d\sigma_V$ is $(2\pi)^k d\sigma_{V^{\perp}}$.
- 2. Compute the Fourier transform of the surface measure of the unit sphere in \mathbb{R}^3 .
- 3. Let $u = d\sigma$ be the surface measure of the unit sphere in \mathbb{R}^n . Show that

$$\hat{u}(\xi) = (2\pi)^{n/2} |\xi|^{-\frac{n-2}{2}} J_{\frac{n-2}{2}}(|\xi|),$$

where $J_s(r)$ are Bessel functions of the first kind.

4. Let M be a C^2 hypersurface in \mathbb{R}^n , and $M_{\varepsilon} = M + B(0, \varepsilon)$. If $f \in C_0(M)$ and \tilde{f} is any function in $C_0(\mathbb{R}^n)$ satisfying $\tilde{f}|_M = f$, show that

$$\lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{M_{\varepsilon}} \tilde{f}(x) \, dx = \int_{M} f \, dS$$

where dS is surface measure on M, defined as $dS(x') = \sqrt{1 + |\nabla h(x')|^2} dx'$ in a coordinate patch where M is given as the graph $\{(x', h(x'))\}$.