Scattering theory Exercises #6, 29.10.2007 (return by 09.11.2007)

- 1. Recall that an operator $T \in L(B_1, B_2)$, where B_1 and B_2 are Banach spaces, is called Fredholm if ker(T) and coker $(T) := B_2/\text{im}(T)$ are finite dimensional. Show that any Fredholm operator has closed range, and that T_2T_1 is Fredholm whenever $T_1 \in L(B_1, B_2)$ and $T_2 \in L(B_2, B_3)$ are Fredholm.
- 2. Prove the Fredholm part of Theorem 1.8.2 in the lectures: If B_1, B_2 are Banach spaces, $T \in L(B_1, B_2)$ is Fredholm, and $S \in L(B_1, B_2)$ with ||S||sufficiently small, show that T + S is Fredholm with

$$\operatorname{ind} (T+S) = \operatorname{ind} T,$$
$$\operatorname{dim} \ker(T+S) \le \operatorname{dim} \ker(T).$$

3. Prove that as distributions on **R**, one has the identity

$$\frac{1}{x-i0} - \frac{1}{x+i0} = 2\pi i\delta_0$$

If A is a self-adjoint operator on H and $\varphi \in C_c(\mathbf{R})$, show that this implies the following variant of Stone's formula:

$$\varphi(A) = \lim_{\varepsilon \to 0+} \frac{1}{2\pi i} \int_{\mathbf{R}} [R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon)] \varphi(\lambda) \, d\lambda.$$

4. Let $V = V_1 + V_2$ where $V_1 \in L^{\infty}(\mathbf{R}^3)$ and $V_2 \in L^2(\mathbf{R}^3)$ are real. Show that $H : u \mapsto (-\Delta + V)u$ with domain $\mathscr{D}(H) = H^2(\mathbf{R}^3) \subset L^2(\mathbf{R}^3)$ is self-adjoint. (You may assume that $-\Delta$ is self-adjoint on $H^2(\mathbf{R}^3)$, proof is the same as in Ex. 3, Problem 3. Use the Fourier transform to show that $\forall \varepsilon > 0 \exists t > 0 : \|(-\Delta + it)^{-1}f\|_{L^{\infty}} \le \varepsilon \|f\|_{L^2}$, and use Kato's theorem.)