Scattering theory Exercises #5, 12.10.2007 (return by 19.10.2007)

Let A be a self-adjoint operator in a Hilbert space H. In Exercises 4, the discrete spectrum $\sigma_{d}(A)$ was defined as the set of isolated eigenvalues with finite multiplicity. The *essential spectrum* is $\sigma_{ess}(A) = \sigma(A) \setminus \sigma_{d}(A)$. The purpose of these exercises is to prove Weyl's criterion: $\lambda \in \sigma_{ess}(A)$ iff there is a sequence $(u_j) \subset \mathscr{D}(A)$, $||u_j|| = 1$, such that $u_j \to 0$ weakly and $||(A - \lambda)u_j|| \to 0$. (Such a sequence is called a *Weyl sequence*.)

- 1. Assuming Weyl's criterion, show that $\sigma_{\text{ess}}(A) = \sigma_{\text{ess}}(A + K)$ for any selfadjoint compact operator K on H. (The stability of $\sigma_{\text{ess}}(A)$ is a major reason why the essential spectrum is interesting.)
- 2. If $\lambda \in \sigma_{\text{ess}}(A)$ and dim ker $(A \lambda) = \infty$, show that there is an orthonormal Weyl sequence.
- 3. If $\lambda \in \sigma_{\text{ess}}(A)$ and dim ker $(A-\lambda) < \infty$, show that $A_{\lambda} = A \lambda|_{\mathscr{D}(A) \cap \text{ker}(A-\lambda)^{\perp}}$ is injective with dense range but A_{λ}^{-1} is not bounded (use the previous Exercises), and find a Weyl sequence.
- 4. If there is a Weyl sequence for λ , show that dim ker $(A \lambda) = \infty$ or A_{λ}^{-1} is unbounded, and prove that $\lambda \in \sigma_{\text{ess}}(A)$.