Scattering theory Exercises #3, 28.9.2007 (return by 5.10.2007)

1. Let A be self-adjoint, and assume that for some M > 0 one has

 $||(A - \lambda)u|| \ge M||u||, \quad u \in \mathscr{D}(A).$

Show that $\lambda \in \rho(A)$. Further, show that $\{z \in \mathbb{C} ; |z - \lambda| < M\} \subset \rho(A)$. (Hint: remember that A has no residual spectrum.)

- 2. We say that λ is an approximate eigenvalue of A if there is a sequence $(u_j) \subset \mathscr{D}(A), ||u_j|| = 1$, such that $||(A \lambda)u_j|| \to 0$ as $j \to \infty$. If A is self-adjoint, show that $\sigma(A)$ is precisely the set of approximate eigenvalues.
- 3. Let $H = L^2(\mathbf{R})$ and define A by Au = -u'' with $\mathscr{D}(A) = H^2(\mathbf{R})$. Show that A is self-adjoint and $\sigma(A) = [0, \infty)$. (Hint: use $(Au, u) \ge 0$ and Problems 1 and 2.)
- 4. Let $H = L^2(I)$, I = (0, 1), and define for $z \in \mathbb{C}$ the operator $A_z : u \mapsto iu'$ with domain $\mathscr{D}(A_z) = \{u \in H^1(I); u(1) = zu(0)\}$. Determine the values of z for which A_z is self-adjoint. What is $\sigma(A_z)$ in this case?