Scattering theory Exercises #2, 21.9.2007 (return by 28.9.2007)

- 1. Fill in the details of the proof of Friedrichs extension theorem (any symmetric semibounded operator has a self-adjoint extension).
- 2. Let $H = L^2(I)$ with I = (-1, 1), and define A with domain $\mathscr{D}(A) = C_0^{\infty}(I)$ by Au = -u''. Show that A is symmetric and semibounded, and determine the Friedrichs extension of A. (Hint: use the Poincaré inequality $||u||_{L^2(I)} \leq C||u'||_{L^2(I)}$ for $u \in C_0^{\infty}(I)$).
- 3. Let $H = L^2(\mathbf{R})$, and define A with domain $\mathscr{D}(A) = C_0^{\infty}(\mathbf{R})$ by $(Au)(x) = i(x^2u'(x) + xu(x))$. Show that A is symmetric and determine the defect indices $n_{\pm}(A)$. Does A have a self-adjoint extension?
- 4. Let A be a self-adjoint operator on $\mathscr{D}(A) \subset H$, let E be the projection valued measure for A given in the spectral theorem, and let g be a complex Borel function on the real line. Show that

$$\mathscr{D}(g(A)) = \{ x \in H ; \int_{-\infty}^{\infty} |g(\lambda)|^2 d(x, E_{\lambda}x) \}$$

is a dense linear subspace of H. Prove that the formula

$$(x,g(A)x) = \int_{-\infty}^{\infty} g(\lambda) d(x,E_{\lambda}x), \quad x \in \mathscr{D}(g(A)),$$

defines a linear operator with domain $\mathscr{D}(g(A))$. If g is real, show that g(A) is self-adjoint. (Hint: if g is bounded, then g(A) is a bounded operator on H and $||g(A)x||^2 = \int |g(\lambda)|^2 d(x, E_{\lambda}x)$. The functions $\chi_n = \chi_{\{|g| \leq n\}}$ may be useful.)