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Abstract

We consider inverse boundary value problems in Rn, n ≥ 3, for operators
which may be written as first order perturbations of the Laplacian. The
purpose is to obtain global uniqueness theorems for such problems when the
coefficients are nonsmooth. We use complex geometrical optics solutions
of Sylvester-Uhlmann type to achieve this. A main tool is an extension
of the Nakamura-Uhlmann intertwining method to operators which have
continuous coefficients.

For the inverse conductivity problem for a C1+ε conductivity, we con-
struct complex geometrical optics solutions whose properties depend ex-
plicitly on ε. This implies the uniqueness result of Päivärinta-Panchenko-
Uhlmann for C3/2 conductivities. For the magnetic Schrödinger equation,
the result is that the Dirichlet-to-Neumann map uniquely determines the
magnetic field corresponding to a Dini continuous magnetic potential in C1,1

domains. For the steady state heat equation with a convection term, we ob-
tain global uniqueness of Lipschitz continuous convection terms in Lipschitz
domains.
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Chapter 1

Introduction

1.1 Inverse conductivity problem

The inverse conductivity problem has attracted a great deal of interest in the
last 25 years, and both its theoretical and applied aspects have been under
intense study. The problem forms the basis for an imaging method called
electrical impedance tomography. Physically, the idea is to find the electrical
conductivity of a body by making current and voltage measurements at
the boundary. Possible applications include medical imaging, geophysical
prospection, and nondestructive testing of mechanical parts. For references
see the survey Borcea [6].

Mathematically, let Ω ⊆ Rn be a bounded open set with Lipschitz
boundary, and let σ ∈ L∞(Ω) be a positive function which represents the
electrical conductivity of the body Ω. If there are no sources or sinks of
current, the voltage potential u inside the body solves the Dirichlet problem
for the conductivity equation,{

div(σ∇u) = 0 in Ω,
u = f on ∂Ω

(1.1)

if the voltage at the boundary is f . This problem has a unique solution
u ∈ H1(Ω) for any f ∈ H1/2(∂Ω).

On the boundary, one can measure the outgoing current flux for a
given boundary voltage. Thus the boundary measurements are given by
the Dirichlet-to-Neumann map

Λσ : f 7→ σ
∂u

∂ν

∣∣∣
∂Ω
.

The map Λσ may be defined in a weak sense using the equation (1.1), so
that it becomes a bounded linear map H1/2(∂Ω) → H−1/2(∂Ω).

The inverse conductivity problem is to recover the electrical conductivity
σ from the boundary measurements Λσ. To ensure the possibility of unique

2



CHAPTER 1. INTRODUCTION 3

recovery, one should have a global uniqueness result stating that whenever
σ1, σ2 are two conductivities with Λσ1 = Λσ2 , then necessarily σ1 = σ2.

Global uniqueness results have been obtained for different classes of con-
ductivities using the complex geometrical optics solutions of Sylvester and
Uhlmann [43]. These are solutions of the conductivity equation which have
the form eρ·x(σ−1/2+ω), where ρ ∈ Cn is a complex parameter with ρ·ρ = 0.
Here ω is an error term which should be small when ρ is large, so when
|ρ| → ∞ the solution looks like a harmonic exponential multiplied by σ−1/2.
Inserting these solutions in a suitable integral identity and letting |ρ| → ∞
gives the global uniqueness result. This applies in the case n ≥ 3 which is
the only case considered here.

The contribution of this work to the inverse conductivity problem is
Theorem 1.2 below, which is a slight improvement of a result in Päivärinta-
Panchenko-Uhlmann [34]. The theorem shows that complex geometrical
optics solutions to the conductivity equation exist and that their behaviour
is explicitly controlled by the regularity of the conductivity. The proof is
based on estimates for the inhomogeneous problem for a related operator,
which are important enough to be stated as Theorem 1.1.

We need some notation before stating the theorems. If k ∈ N then
Ck(Rn) is the space of k times continuously differentiable functions on Rn,
and if s = k + γ with 0 < γ < 1 then Cs(Rn) consists of those functions
in Ck whose kth partial derivatives are Hölder continuous with exponent γ.
The space Csc means the functions in Cs which have compact support. We
denote by L2

δ(R
n) where δ ∈ R the weighted L2 space with norm

‖f‖L2
δ

=
( ∫

(1 + |x|2)δ|f(x)|2 dx
)1/2

.

Then Hk
δ , k ∈ N, is the space of functions in L2

δ whose derivatives up to
order k are in L2

δ . The norm is ‖f‖Hk
δ

=
∑

|α|≤k‖∂αf‖L2
δ
. If s ≥ 0 then Hs

δ

is defined by real interpolation (Bergh-Löfström [5]) using the spaces Hk
δ .

We will also use the operators ∆ρ = ∆ + 2ρ · ∇ and ∇ρ = ∇+ ρ, where
ρ ∈ Cn satisfies ρ ·ρ = 0. These operators arise naturally in the construction
of complex geometrical optics solutions. One may define the inverse of ∆ρ

on the Fourier side as ∆−1
ρ f = F−1{ 1

−|ξ|2+2iρ·ξ f̂(ξ)}. The following norm
estimates are fundamental.

Proposition 1.1. [43], [8] Let −1 < δ < 0. The operator ∆−1
ρ is a bounded

map from L2
δ+1 to H1

δ and satisfies

‖∆−1
ρ ‖L2

δ+1→L2
δ
≤ C0

|ρ|
,

‖∆−1
ρ ‖L2

δ+1→H1
δ
≤ C0

where C0 = C0(n, δ).
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We now state our results concerning the inverse conductivity problem.
The first one is a general norm estimate, the second ensures the existence of
complex geometrical optics solutions, and the third is a uniqueness result.

Theorem 1.1. Suppose a ∈ C1
c (R

n) and let −1 < δ < 0. If ρ ∈ Cn with
ρ · ρ = 0 and |ρ| is large enough, then for any f ∈ L2

δ+1(R
n) the equation

(∆ρ +∇a · ∇ρ)u = f

has a unique solution u ∈ ∆−1
ρ L2

δ+1(R
n). The solution satisfies

‖u‖L2
δ
≤ C

|ρ|
‖f‖L2

δ+1
,

‖u‖H1
δ
≤ C‖f‖L2

δ+1

where C is independent of ρ and f .

Theorem 1.2. Let σ ∈ C1+ε(Rn) with 0 ≤ ε ≤ 1, so that σ > 0 in Rn

and σ = 1 outside a large ball. Let ρ ∈ Cn with ρ · ρ = 0 and let |ρ| be
sufficiently large. Then the equation

div(σ∇u) = 0

has a solution u = u(x, ρ) of the form

u = eρ·x(σ−1/2 + ω),

where ω = ω(x, ρ) ∈ H1
δ (R

n) and

lim
|ρ|→∞

‖ω(·, ρ)‖Hε
δ

= 0.

Using this result we can give a shorter proof of the following uniqueness
result from [34].

Theorem 1.3. Let Ω ⊆ Rn be a bounded domain with Lipschitz boundary,
and assume n ≥ 3. Then if σj ∈ C3/2(Ω) are such that 0 < c ≤ σj ≤ C in
Ω (j = 1, 2), then Λσ1 = Λσ2 implies σ1 = σ2 in Ω.

We remark that Theorems 1.1 and 1.3 and most of Theorem 1.2 are
contained in [34], and Theorem 1.3 has been improved so that it holds for
W 3/2,2n+ε conductivities in Brown-Torres [10]. The results are included here
because of the method of proof. The lack of regularity of the coefficient is
handled by approximation similarly as in [34], but the proof of the norm es-
timates is more straightforward and combines two basic ideas: the reduction
of a smooth elliptic equation into a Schrödinger equation, and a perturbation
argument. The main subject of this thesis is the extension of this procedure
to more general inverse problems which are considered below.
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1.2 Norm estimates for general operators

Complex geometrical optics solutions have shown their usefulness in ques-
tions related to the inverse conductivity problem. In this section we want
to consider constructing these solutions for more general equations. More
precisely, we will consider equations of the form

(∆ +W · ∇+ q)u = 0 in Ω (1.2)

where W is a nonsmooth vector field and q is a bounded measurable function
in a domain Ω. We assume that W and q are complex valued in this section.

A complex geometrical optics solution to (1.2) is a solution u = u(x, ρ)
of the form

u = eρ·x(ω0 + ω) (1.3)

where ρ ∈ Cn is a complex parameter with ρ · ρ = 0, ω0 depends on the
equation, and ω is an error term which is small in suitable norms when ρ is
large. Inserting (1.3) into (1.2) gives the equation

(∆ρ +W · ∇ρ + q)ω = f in Ω (1.4)

where f = −(∆ρ + W · ∇ρ + q)ω0. Thus, with a suitable choice of ω0, we
see that constructing complex geometrical optics solutions only needs norm
estimates like the ones in Theorem 1.1 for the equation (1.4).

The required norm estimates are provided in a quite general setting by
the following theorem.

Theorem 1.4. Let Ω ⊆ Rn be a bounded open set, let W ∈ C(Ω;Cn) and
let q ∈ L∞(Ω;C). If ρ ∈ Cn with ρ · ρ = 0 and |ρ| is large enough, then for
any f ∈ L2(Ω) the equation

(∆ρ +W · ∇ρ + q)u = f in Ω (1.5)

has a solution u ∈ H1(Ω) which satisfies

‖u‖L2(Ω) ≤
C

|ρ|
‖f‖L2(Ω),

‖u‖H1(Ω) ≤ C‖f‖L2(Ω)

where C is independent of ρ and f .

This result was proved for C∞ vector fields W in the fundamental pa-
per of Nakamura and Uhlmann [31], where they introduced an intertwining
method which used pseudodifferential operators depending on a complex
parameter to remove the first order term in (1.5). This method was ex-
tended to C2/3+ε vector fields in Tolmasky [46] using symbol smoothing and
paradifferential calculus. We obtain the result above for just continuous
vector fields by combining the ideas in the proof of Theorem 1.1 with the
Nakamura-Uhlmann pseudodifferential intertwining method.
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1.3 Applications to inverse problems

Our aim is to use the norm estimates given above to prove uniqueness results
for inverse problems. The inverse problems which we will consider are the
Schrödinger equation in a magnetic field and the steady state heat equation
with a convection term. The first problem is selfadjoint while the other is
not, but their analysis may be carried out using similar arguments. Thus we
first consider an auxiliary inverse problem and collect the required arguments
there. The results are then used to study the other problems.

An auxiliary inverse problem

Let Ω ⊆ Rn be a bounded open set. If W ∈ L∞(Ω;Cn) and q ∈ L∞(Ω;C)
consider the operator

LW,q =
n∑
j=1

(1
i

∂

∂xj
+Wj

)2
+ q.

Assume for the moment that 0 is not a Dirichlet eigenvalue of LW,q and that
∂Ω is Lipschitz. Then the Dirichlet problem{

LW,qu = 0 in Ω,
u = f on ∂Ω.

(1.6)

has a unique solution u ∈ H1(Ω) for any f ∈ H1/2(∂Ω). We may then define
a Dirichlet-to-Neumann map formally by

ΛW,q : f 7→ ∂u

∂ν

∣∣∣
∂Ω

+ i(W · ν)f. (1.7)

This map has a natural weak formulation which gives that ΛW,q is a bounded
map from H1/2(∂Ω) to H−1/2(∂Ω).

If Ω does not have Lipschitz boundary we may do as in Astala-Päivärinta
[4] and define the trace space of H1(Ω) abstractly as H1(Ω)/H1

0 (Ω). If
u ∈ H1(Ω) solves LW,qu = 0 in Ω then we may use the equation and
define (∂u∂ν + i(W · ν)u)|∂Ω in a natural way as an element of the dual
(H1(Ω)/H1

0 (Ω))′. This defines the Dirichlet-to-Neumann map also when
no regularity is assumed of ∂Ω, but it is still required that 0 is not a Dirich-
let eigenvalue of LW,q. To remove this extraneous assumption we introduce
the Cauchy data set

CW,q = {(u|∂Ω, (
∂u

∂ν
+ i(W · ν)u)|∂Ω) ; u ∈ H1(Ω) and LW,qu = 0 in Ω}.

With natural interpretations CW,q ⊆ H1(Ω)/H1
0 (Ω) × (H1(Ω)/H1

0 (Ω))′. If
Ω has Lipschitz boundary and 0 is not a Dirichlet eigenvalue of LW,q, then
CW,q is just the graph of ΛW,q on H1/2(∂Ω).
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Now givenW and q, the set CW,q represents our boundary measurements,
and the inverse problem is to determine W and q from CW,q. Similarly as in
Sun [41] there is an obstruction to uniqueness given by gauge equivalence:
if p ∈W 1,∞(Ω) satisfies p|∂Ω = 0, then CW+∇p,q = CW,q. Thus one can only
hope to recover the curl of W , which is defined distributionally in Ω by

curlW =
∑

1≤j<k≤n

(∂Wk

∂xj
− ∂Wj

∂xk

)
dxj ∧ dxk.

The curl may indeed be recovered under certain assumptions on W , q and
∂Ω, as has been shown for n ≥ 3 in [41], [28], [46], [35]. The following
uniqueness theorem improves earlier results in several directions, the most
important being that one has uniqueness in the class Cd of Dini continuous
vector fields (see Section 4.2) instead of C1 as in Tolmasky [46].

Theorem 1.5. Let Ω ⊆ Rn be a bounded open set where n ≥ 3, and assume
that W1,W2 ∈ Cd(Ω;Cn) and q1, q2 ∈ L∞(Ω;C). If CW1,q1 = CW2,q2 and
W1|∂Ω = W2|∂Ω, then curlW1 = curlW2 and q1 = q2 in Ω.

The proof uses an idea from Panchenko [35]: by gauge equivalence we
can reduce questions concerning general vector fields to questions for diver-
gence free fields. More precisely, if W ∈ Cd(Ω;Cn) we use a Helmholtz
decomposition W = E +∇p where divE = 0 in the sense of distributions.
The Dini continuity of W ensures that E is continuous.

Now LE,q = −∆ − 2iE · ∇ + G is a nondivergence form operator with
continuous coefficients in the first order part, so we may use the norm es-
timates of Theorem 1.4 to construct complex geometrical optics solutions
to LE,qu = 0. Gauge equivalence gives similar solutions to LW,qu = 0, and
these solutions yield the uniqueness result by the arguments in [41].

Schrödinger equation in a magnetic field

The Schrödinger operator with magnetic and electric potentials is given by

HW,q =
n∑
j=1

(1
i

∂

∂xj
+Wj

)2
+ q, (1.8)

where W ∈ L∞(Ω;Rn) and q ∈ L∞(Ω;R) are the magnetic and electric
potentials, respectively, and Ω ⊆ Rn is a bounded Lipschitz domain. Note
that this is exactly the operator LW,q considered above, but W and q are
now assumed to be real. With this assumption HW,q is selfadjoint.

Assuming that 0 is not a Dirichlet eigenvalue of HW,q, for any f ∈
H1/2(∂Ω) there is a unique solution u ∈ H1(Ω) to the Dirichlet problem{

HW,qu = 0 in Ω,
u = f on ∂Ω.
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The boundary measurements are given by the Dirichlet-to-Neumann map
ΛW,q defined formally by (1.7), and a weak formulation gives that ΛW,q is a
bounded map from H1/2(∂Ω) → H−1/2(∂Ω).

The inverse problem considered in [41], [28], [46], [35] is to determine
W and q from the knowledge of ΛW,q. One has here the same obstruction
to uniqueness as in the auxiliary problem, so that if p ∈ W 1,∞(Ω) with
p|∂Ω = 0, then ΛW+∇p,q = ΛW,q. The map

W 7→W +∇p

transforms the magnetic potential into a gauge equivalent potential but
preserves the induced magnetic field, which is given by the rotation curlW .
The magnetic field is the physically observable quantity, so it is natural from
this point of view to expect to recover curlW and q from ΛW,q.

We improve known results for this problem to less regular coefficients
and less regular domains. The first theorem is a boundary determination
result which states that ΛW,q uniquely determines the tangential components
of W on ∂Ω. This is the best one can hope for since gauge transformations
may alter the normal component.

Theorem 1.6. Let Ω ⊆ Rn be a bounded open set with C1,1 boundary,
and let W ∈ C(Ω;Rn) and q ∈ L∞(Ω;R). Suppose that 0 is not a Dirichlet
eigenvalue of HW,q. Then ΛW,q uniquely determines the tangential compo-
nents of W on ∂Ω.

The assumption on Ω means that Ω is locally the region above the graph
of a C1,1 function. Our result is in fact more precise: if W ∈ L∞(Ω;Rn) is
continuous at z ∈ ∂Ω in a certain sense, then the local Dirichlet-to-Neumann
map near z uniquely determines the tangential components of W (z). There
is also a formula which gives the tangential components. The method we use
is due to Brown [9] in the case of the conductivity equation, and it employs
oscillating solutions which concentrate near a boundary point.

The following global uniqueness theorem for Dini continuous vector fields
now follows from Theorem 1.5.

Theorem 1.7. Let Ω ⊆ Rn be a bounded open set with C1,1 boundary,
n ≥ 3, let W1,W2 ∈ Cd(Ω;Rn), and let q1, q2 ∈ L∞(Ω;R). Suppose that
0 is not a Dirichlet eigenvalue of HW1,q1 or HW2,q2 . Then ΛW1,q1 = ΛW2,q2

implies curlW1 = curlW2 and q1 = q2 in Ω.

The boundary result, Theorem 1.6, was proved for C∞(Ω) coefficients
and C∞ domains in Nakamura-Sun-Uhlmann [28]. There is an error in
the corresponding theorem in this article, but this is not difficult to fix.
The global uniqueness result, Theorem 1.7, was known for C1 vector fields
vanishing near the boundary and is found in Tolmasky [46].
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Finally, we mention that this inverse problem has applications to the
inverse scattering problem for HW,q at a fixed energy. It is known that
for compactly supported potentials the two problems are equivalent. For
the inverse scattering problem for noncompactly supported potentials, see
Novikov-Khenkin [33] and Eskin-Ralston [17].

Steady state heat equation with a convection term

Consider the problem of heat conduction in a body Ω ⊆ Rn, which is a
bounded open set with Lipschitz boundary. Assume that the heat diffusion
coefficient in Ω is constant and equal to one, and that there is a Lipschitz
continuous velocity field −W in Ω with represents convection of heat and is
not affected by the warming of the body. Let f be a stationary temperature
distribution at the boundary ∂Ω, and suppose ∂Ω is kept at temperature f .
Then the temperature distribution u(·, t) in Ω at time t satisfies the heat
equation {

ut = ∆u+W · ∇u in Ω,
u = f on ∂Ω.

(1.9)

After the system has stabilized, the steady state temperature u solves the
Dirichlet problem {

(∆ +W · ∇)u = 0 in Ω,
u = f on ∂Ω.

(1.10)

The problem (1.10) has a unique solution u ∈ H1(Ω) for any f ∈ H1/2(∂Ω).
The quantity which is measured at the boundary is the steady state

heat flow on ∂Ω. Thus the measurements are described by the Dirichlet-to-
Neumann map

ΛW : f 7→ ∂u

∂ν

∣∣∣
∂Ω
.

A weak formulation gives that ΛW is bounded from H1/2(∂Ω) to H−1/2(∂Ω).
The inverse problem is to determine the convection term W from the bound-
ary measurements ΛW .

This inverse problem in the case n ≥ 3 was studied in Cheng-Nakamura-
Somersalo [13], where it was shown that ΛW uniquely determines a C∞

vector field W in a domain with C∞ boundary. They used ideas from [41]
and [28] where the related problem of the Schrödinger equation in a magnetic
field was considered. The main point was again the construction of complex
geometrical optics solutions to (1.10).

We improve the results of [13] to the case where W is Lipschitz con-
tinuous and Ω has Lipschitz boundary. The first step is a boundary deter-
mination result, and for this we use the method of singular solutions due
to Alessandrini [3]. The idea is to construct solutions with a high order
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singularity near a boundary point, and such solutions are provided by the
following theorem. To make the notation simpler we will use the summation
convention whenever convenient.

Theorem 1.8. Let L be an operator in B4R = B(0, 4R) ⊆ Rn, n ≥ 3, with

Lu = −∂xj (ajk∂xk
u+ bju) + cj∂xju+ du

where ajk, bj ∈ Cα(B4R), cj , d ∈ L∞(B4R), (ajk) ≥ λI, ajk = akj , and
one of the conditions d− ∂xjbj ≥ 0, d− ∂xjcj ≥ 0, holds. Assume also that
ajk(0) = δjk. Then for every spherical harmonic Sm of degreem = 0, 1, 2, . . .,
there exists u ∈ C1,β

loc (BR r {0}) such that

Lu = 0 in BR r {0},

and furthermore

u(x) = |x|2−n−mSm
( x

|x|

)
+ w(x),

where w satisfies

|w(x)|+ |x||∇w(x)| ≤ C|x|2−n−m+β in BR r {0},

r1+β sup
r<|x|,|y|<2r

|∇w(x)−∇w(y)|
|x− y|β

≤ Cr2−n−m+β for 0 < r < R/2.

Here β is any number with 0 < β < α.

This extends the results of [3] to operators with lower order terms and
less regular coefficients. The boundary determination result is obtained by
using suitable solutions of this type in an integral identity.

Theorem 1.9. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary,
and n ≥ 3. If W1,W2 ∈ Cα(Ω;Rn) for some α > 0, then ΛW1 = ΛW2 implies
W1 = W2 on ∂Ω.

The global uniqueness theorem follows from the boundary result com-
bined with Theorem 1.5. Here we have to assume that the vector fields are
Lipschitz continuous.

Theorem 1.10. Let Ω ⊆ Rn be a bounded open set with Lipschitz bound-
ary, and suppose n ≥ 3. If W1 and W2 are two Lipschitz continuous vector
fields in Ω, then ΛW1 = ΛW2 implies W1 = W2 in Ω.

1.4 Bibliographical notes

In this section we discuss in greater detail some earlier results on the prob-
lems considered in this thesis. We will mostly cover uniqueness results in
dimensions n ≥ 3.
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Inverse conductivity problem

We start by discussing different aspects of this problem. A fundamen-
tal question is that of uniqueness, where one wishes to know whether Λσ
uniquely determines σ in a given class of conductivities. For practical pur-
poses it is important to have algorithms for reconstructing σ from Λσ. Next
one could ask for stability: even though the problem is ill-posed so that
σ does not depend continuously on Λσ, there are estimates which show,
given some a priori information on σ, that two conductivities are close if the
corresponding Dirichlet-to-Neumann maps are.

The pioneer contribution to the inverse conductivity problem was the ar-
ticle of Calderón [12] where a uniqueness result was obtained for a lineariza-
tion of the problem at constant conductivities. This paper also contained an
approximate reconstruction procedure for conductivities close to constant.
Kohn and Vogelius [23], [24] proved that Λσ determines the Taylor series of
σ at the boundary, which gives global uniqueness for real analytic σ.

The major breakthrough in the uniqueness question is due to Sylvester
and Uhlmann [43], who showed global uniqueness for C∞ conductivities
when n ≥ 3. The first step was to convert the conductivity equation into a
zero order perturbation of ∆ by an intertwining formula, and then construct
complex geometrical optics solutions, which as described above are solutions
depending on a complex parameter ρ and look like harmonic exponentials
when ρ is large. The uniqueness result follows by inserting these solutions
in an integral identity and letting |ρ| → ∞. The method breaks down for
n = 2, which may be explained by the fact that the problem is formally
overdetermined for n ≥ 3 and formally determined for n = 2.

The global uniqueness result of Sylvester-Uhlmann has been improved
to less regular conductivities. Nachman-Sylvester-Uhlmann [27] proved the
result for σ ∈W 2,∞, Brown [8] for σ ∈ C3/2+ε using singular zero order per-
turbations of ∆, Päivärinta-Panchenko-Uhlmann [34] for σ ∈ C3/2 by convo-
lution approximation, and Brown-Torres [10] for σ ∈W 3/2,2n+ε. Uniqueness
for C1+ε conormal conductivities was shown in Greenleaf-Lassas-Uhlmann
[19]. A reconstruction algorithm for n ≥ 3 was given by Nachman [25], and
stability estimates were proved by Alessandrini [2]. All these developments
use complex geometrical optics solutions.

For n = 2, the global uniqueness result was proved by Nachman [26]
for W 2,p (p > 1), conductivities, and improved to W 1,p (p > 2) conductivi-
ties by Brown-Uhlmann [11]. Recently, the question was solved completely
by Astala-Päivärinta [4], who showed using quasiconformal maps that the
Dirichlet-to-Neumann map uniquely determines a L∞ conductivity, thus
proving the original conjecture of Calderón in two dimensions. The sharp
results for n = 2 rely on complex analytic methods, and attempts to extend
the methods to higher dimensions have not been successful so far.
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Besides global uniqueness, also the question of uniqueness at the bound-
ary has been studied. A typical result shows that Λσ determines the values
of σ and its derivatives at the boundary. This question is usually easier than
that of global uniqueness, the methods work in any dimension and allow for
more general conductivities, and in fact most global uniqueness results for
n ≥ 3 use a boundary determination result at some stage. Also, a boundary
determination result immediately implies global uniqueness in the class of
piecewise analytic conductivities, as shown in [24].

The first boundary uniqueness results were the ones of Kohn and Vogelius
[23], who considered a C∞ conductivity and domain. Sylvester and Uhlmann
[44] gave a different proof of this result, based on the fact that Λσ is a
pseudodifferential operator, and the Taylor series of σ may be read off from
the symbol of Λσ. Their method is very flexible and has been adapted to
a various number of other situations. They also proved boundary stability
results, and showed how these may be used to obtain boundary uniqueness
for nonsmooth conductivities in C∞ domains.

For nonsmooth domains, Alessandrini [3] used solutions with singulari-
ties of arbitrary order at a given point to obtain boundary uniqueness of σ
and its derivatives in a Lipschitz domain. Nachman [26] and Brown [9] also
have results for Lipschitz domains, now using solutions with highly oscilla-
tory boundary data. More recent results are Nakamura-Tanuma [29], [30]
and Kang-Yun [22], which extend the method of Brown to work for higher
derivatives of σ and also for the anisotropic problem, where σ is a matrix.

Schrödinger equation in a magnetic field

The inverse problem of determining the magnetic field curlW and electric
potential q from ΛW,q was first considered by Sun [41] in the case n ≥ 3. As
noted above, one may not recover the full vector field W because of gauge
equivalence. He showed that ΛW,q uniquely determines curlW and q when
W ∈W 2,∞, q ∈ L∞, and curlW is small in the L∞ norm.

The proof in [41] is based on the Sylvester-Uhlmann result [43] for the
conductivity equation, with a few notable exceptions. First of all, in this
case there is no simple identity to intertwine the equation into a zero order
perturbation of ∆. Therefore, the construction of complex geometrical optics
solutions is more difficult, and the smallness assumption for curlW was
required to achieve this.

Once the complex geometrical optics have been constructed, they are
inserted in an integral identity, and one lets |ρ| → ∞. For the conductivity
equation this is enough for uniqueness, but for the magnetic Schrödinger
equation one gets an identity which involves the coefficients in a nonlinear
way. Sun gave a nontrivial argument which showed that this identity implies
uniqueness.
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The Schrödinger operator with a magnetic potential is in fact a general
selfadjoint first order perturbation of ∆. That such operators can indeed
be intertwined to zero order perturbations of ∆ was shown by Nakamura
and Uhlmann [31] (see also [32]). The method involves pseudodifferential
operators depending on the parameter ρ. Using the Nakamura-Uhlmann
result combined with the argument in [41], it was shown in Nakamura-Sun-
Uhlmann [28] that ΛW,q uniquely determines curlW and q if W ∈ C∞,
q ∈ L∞, and W = 0 near the boundary. The main point is the absence of
smallness assumptions.

Tolmasky [46], using symbol smoothing and paradifferential type esti-
mates for pseudodifferential operators depending on ρ, extended the result
of [28] to C1 vector fields. Recently, Panchenko [35] gave results for less
regular W but had to assume a smallness condition. The result for lower
regularity was made possible by an effective use of the gauge equivalence of
the equation. All these results rely on Sylvester-Uhlmann type arguments,
and only work for n ≥ 3.

For n = 2, the problem has been considered in Sun [42]. The related
problem for the Pauli Hamiltonian is studied in Kang-Uhlmann [21].

Boundary uniqueness results for this problem were given in [28]. The
method there was to show that when everything is C∞, ΛW,q is a pseudod-
ifferential operator, and its symbol determines the Taylor series of W and q
at the boundary. There is a small mistake in Theorem D in this paper: as
described in Section 1.3, one can only determine the tangential components
of W , and the proof when corrected gives this result.

Steady state heat equation with a convection term

This problem differs from the earlier ones in that the operator considered is
not selfadjoint. The only reference for n ≥ 3 that we are aware of is Cheng-
Nakamura-Somersalo [13]. In this article, it is proved that ΛW uniquely
determines W if the vector field and domain are C∞. It should be noted
that there is no gauge equivalence in this problem, and the full vector field
W may indeed be recovered.

In the uniqueness proof in [13], one first passes from ΛW to an operator
of the form ΛW,q, proves a uniqueness result for ΛW,q as in [41] and [28],
and uses this to get uniqueness for W . The method is based on complex
geometrical optics solutions, constructed as in [28]. A boundary uniqueness
result is also given, using the fact that ΛW is a pseudodifferential operator.

For n = 2 the uniqueness question has been studied in Cheng-Yamamoto
[14], [15]. In this case the problem is handled by similar methods as in [11]
and falls within the framework of pseudoanalytic functions, and one has
uniqueness for Lp coefficients, p > 2. Reconstruction algorithms are given
in Tamasan [45] and Tong-Cheng-Yamamoto [47].



Chapter 2

Inverse conductivity problem

In this chapter we prove Theorems 1.1 to 1.3. The setup is the following.
Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary, and assume
σ ∈ C1(Ω) is a conductivity with σ ≥ c > 0 in Ω. Extend σ to a function in
C1(Rn) so that σ = 1 outside a large ball. Then the conductivity equation
div(σ∇u) = 0 in Rn may be written equivalently as

(∆ +∇a · ∇)u = 0 (2.1)

where a = log σ ∈ C1
c (R

n). Thus, if the conductivity has one derivative, the
conductivity equation may be written in terms of a first order perturbation
of the Laplace operator.

We look for complex geometrical optics solutions to (2.1). These are
solutions of the form

u = eρ·x(e−
1
2
a + ω) (2.2)

where ρ ∈ Cn satisfies ρ · ρ = 0, and ω → 0 in a suitable norm as |ρ| →
∞. Note that e−

1
2
a = σ−1/2, so these solutions are the same as the ones

introduced in Section 1.1. Substituting (2.2) to (2.1) gives that ω must
satisfy

(∆ρ +∇a · ∇ρ)ω = f (2.3)

where ∆ρ = e−ρ·x∆(eρ·x · ) = ∆ + 2ρ · ∇ and ∇ρ = e−ρ·x∇(eρ·x · ) = ∇ + ρ

are operators depending on the parameter ρ, and f = −(∆ρ+∇a ·∇ρ)e−
1
2
a.

Since f may be singular if a has only one derivative, in practice one has to
use a smooth approximation of a in the construction.

We have reduced the problem of finding complex geometrical optics so-
lutions to having estimates for the inhomogeneous problem (2.3). These
estimates are proved in the next section. The construction of complex geo-
metrical optics solutions is given in Section 2.2, and the final section shows
how to give a short proof of a lemma in [34], from which global uniqueness
follows as in [34].

14
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2.1 Estimates for the inhomogeneous problem

Motivated by the discussion above, we want to show existence, uniqueness,
and norm estimates for solutions of

(∆ρ +∇a · ∇ρ)ω = f in Rn, (2.4)

where a ∈ C1
c (R

n) and f is in the weighted space L2
δ+1(R

n) with−1 < δ < 0.
Recall that ∆−1

ρ is well defined on L2
δ+1(R

n) and satisfies the estimates of
Proposition 1.1. We look for a solution to (2.4) which has the form ω = ∆−1

ρ v

where v ∈ L2
δ+1(R

n), so that (2.4) reads Tρ(a)v = f where

Tρ(a) = I +∇a · ∇ρ∆−1
ρ .

Proposition 1.1 implies that Tρ(a) is bounded on L2
δ+1(R

n), and we need
to show that it is invertible. There are two methods for inverting Tρ(a) in
certain cases.

1. If a ∈ C2
c (R

n) then one may use the intertwining identity

(∆ρ +∇a · ∇ρ)e−
1
2
a = e−

1
2
a(∆ρ − q)

where q = ∆e
1
2 a

e
1
2 a

. This is just the usual method of converting the
conductivity equation to a Schrödinger equation, which involves a zero
order perturbation of ∆ρ. The point is that I − q∆−1

ρ is invertible on
L2
δ+1 for large ρ by Proposition 1.1, so one obtains that also Tρ(a) is

invertible, regardless of the size of a.

2. If a ∈ W 1,∞
c has small Lipschitz norm (i.e. ‖∇a‖L∞ is small) then

Tρ(a) is just a small perturbation of the identity on L2
δ+1, hence in-

vertible.

Now if a ∈ C1
c and ‖∇a‖L∞ is large, we may combine the two methods

and write a = a] + a[ where a] is a smooth approximation and ‖∇a[‖L∞ is
small. A similar argument was used in [34], [35]. Then

Tρ(a) = Ĩ +∇a] · ∇ρ∆−1
ρ

where Ĩ = I + ∇a[ · ∇ρ is close to the identity. One may now apply the
intertwining idea to this operator, using the fact that a] is smooth. If a]

is chosen in a suitable way so that the approximation improves as ρ grows,
this method will show that Tρ(a) is invertible on L2

δ+1. Theorem 1.1 follows
immediately from this argument.

We first set up the approximation procedure. Let φ ∈ C∞c (Rn) with
0 ≤ φ ≤ 1, φ radial,

∫
φ(x) dx = 1, φ = 1 for |x| ≤ 1/2, and φ = 0 for

|x| ≥ 1. For f ∈ L1
loc(R

n) define f ] = φ̂(D/r)f = rnφ(r·) ∗ f . We have the
following basic estimates.
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Lemma 2.1. (a) If f ∈ Ckc (Rn) then

‖∂αf ]‖L∞ ≤ ‖f‖Wk,∞ for |α| ≤ k,

‖∂αf ]‖L∞ = o(r|α|−k) for |α| > k,

‖∂α(f − f ])‖L∞ = o(1) for |α| = k,

as r →∞.

(b) If f ∈ Ck+εc (Rn) where 0 ≤ ε ≤ 1, then

‖∂αf ]‖L2 = o(r|α|−k−ε) for |α| > k,

‖∂α(f − f ])‖L2 = o(r−ε) for |α| = k

as r →∞.

Proof. (a) It is enough to give the proof for k = 0. The first estimate is
immediate. If α 6= 0 then

∂αf ](x) = r|α|
∫
rn∂αφ(r(x− y))f(y) dy = r|α|

∫
∂αφ(y)f(x− r−1y) dy

= r|α|
∫
∂αφ(y)(f(x− r−1y)− f(x)) dy

since
∫
∂αφ(y) dy = 0. We obtain the second estimate by using uniform

continuity. Also,

(f − f ])(x) =
∫
φ(y)(f(x)− f(x− r−1y)) dy

and uniform continuity gives the last estimate.
(b) Assume again that k = 0. Let α 6= 0 and write

r−|α|+ε‖∂αf ]‖L2 = r−|α|+ε‖ξαφ̂(ξ/r)f̂‖L2 = ‖g(ξ/r)|ξ|εf̂‖L2

where g(z) = |z|−εzαφ̂(z) is continuous and bounded. Lemma 2.2 implies
‖|ξ|εf̂‖L2 ≤ C‖f‖Cε . Since g(0) = 0, we may apply dominated convergence
to obtain that r−|α|+ε‖∂αf ]‖L2 → 0 as r →∞.

Further, we have

rε‖f − f ]‖L2 = rε‖(1− φ̂(ξ/r))f̂‖L2 = ‖g(ξ/r)|ξ|εf̂‖L2

where g(z) = |z|−ε(1− φ̂(z)) is continuous and bounded with g(0) = 0. Use
Lemma 2.2 and dominated convergence to end the proof.

Lemma 2.2. If f ∈ Ck+εc (Rn) and 0 ≤ ε ≤ 1, then ‖f‖Hk+ε ≤ C‖f‖Ck+ε ,
where C depends on n, k and the support of f .
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Proof. Let χ ∈ C∞c (Rn) satisfy χ = 1 on the support of f , and define
T : f 7→ χf . Then clearly ‖Tf‖Hl ≤ C(χ, n, l)‖f‖W l,∞ for l ∈ N. If
0 < c < 1 then ‖f‖W l,∞ ≤ ‖f‖Cl+cε , and interpolating these estimates for
l = k and l = k + 1 results in

‖Tf‖Hk+ε−cε ≤ C(χ, n, k)‖f‖Ck+ε .

Taking the limit as c→ 0 gives the claim.

Next we prove the invertibility of Tρ(a) if a ∈ C1
c (R

n) and |ρ| is suffi-
ciently large.

Proposition 2.1. Suppose a ∈ C1
c (R

n) where a = 0 for |x| ≥ R, and let
−1 < δ < 0. Then there exist constants C1 = C1(δ, n, a,R) and C2 =
C2(δ, n, a,R) so that whenever ρ ∈ Cn with ρ · ρ = 0 and

|ρ| ≥ C1, (2.5)

then the operator
Tρ = I +∇a · ∇ρ∆−1

ρ (2.6)

is invertible on L2
δ+1(R

n), and the inverse satisfies

‖T−1
ρ ‖L2

δ+1→L2
δ+1

≤ C2. (2.7)

Proof. Let a] = rnφ(r·) ∗a, where r = r(ρ), and let a[ = a−a]. Notice that

(∆ρ +∇a] · ∇ρ)e−
1
2
a]

= e−
1
2
a]

(∆ρ − q]) (2.8)

where q] = ∆e
1
2 a]

e
1
2 a] = 1

2∆a] + 1
4 |∇a

]|2. This implies that

Tρ = I +∇a] · ∇ρ∆−1
ρ +∇a[ · ∇ρ∆−1

ρ (2.9)

= e−
1
2
a]

(∆ρ − q])e
1
2
a]

∆−1
ρ +∇a[ · ∇ρ∆−1

ρ . (2.10)

We write Tρ = A− B where A = e−
1
2
a]

∆ρe
1
2
a]

∆−1
ρ and B = q]∆−1

ρ −∇a[ ·
∇ρ∆−1

ρ . Now Tρ, A and B are bounded operators on L2
δ+1 and A is invertible

with inverse

A−1 = ∆ρe
− 1

2
a]

∆−1
ρ e

1
2
a]

= (∆ρ(e−
1
2
a]

))∆−1
ρ e

1
2
a]

+ 2∇(e−
1
2
a]

) · ∇∆−1
ρ e

1
2
a]

+ e−
1
2
a]

∆ρ∆−1
ρ e

1
2
a]

= I + (−1
2
∆a] +

1
4
|∇a]|2)e−

1
2
a]

∆−1
ρ e

1
2
a] − (ρ · ∇a])e−

1
2
a]

∆−1
ρ e

1
2
a]

− e−
1
2
a]∇a] · ∇∆−1

ρ e
1
2
a]
.
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Write 〈x〉 = (1 + |x|2)1/2. The norm of A−1 on L2
δ+1 satisfies

‖A−1‖ ≤ 1 + ‖e−
1
2
a]‖L∞‖e

1
2
a]‖L∞(‖〈x〉(−1

2
∆a] +

1
4
|∇a]|2)‖L∞

C0

|ρ|

+ |ρ|‖〈x〉∇a]‖L∞
C0

|ρ|
+ ‖〈x〉∇a]‖L∞C0)

≤ C2(1 + e‖a‖L∞ (
‖〈x〉∆a]‖L∞ + ‖〈x〉|∇a]|2‖L∞

|ρ|
+ ‖〈x〉∇a]‖L∞))

≤ C2(1 +
‖∆a]‖L∞ + ‖|∇a]|2‖L∞

|ρ|
+ ‖∇a]‖L∞)) (2.11)

where C2 = C2(δ, n,R, a) and C0 is as in Proposition 1.1. We have used that
a] = 0 when |x| ≥ R + 1. Here ‖∇a]‖L∞ ≤ ‖∇a‖L∞ and ‖∆a]‖L∞ = o(r)
by Lemma 2.1. The choice r = |ρ|α for any α with 0 < α ≤ 1 then ensures
that ‖A−1‖ ≤ C2(δ, n, a,R) when |ρ| ≥ C1(δ, n, φ, α,R, a).

To invert Tρ we write Tρ = A(I −A−1B) and note that

‖q]∆−1
ρ ‖ ≤ ‖〈x〉q]‖L∞

C0

|ρ|
≤ (1 +R2)1/2(‖∆a]‖L∞ + ‖∇a]‖2

L∞)
C0

|ρ|
=
o(r)
|ρ|

and

‖∇a[ · ∇ρ∆−1
ρ ‖ ≤ (1 +R2)1/2‖∇(a− a])‖L∞2C0 = o(1)

by Proposition 1.1 and Lemma 2.1. Again, the choice r = |ρ|α for 0 < α ≤ 1
ensures that ‖B‖ ≤ 1

2C2
for |ρ| ≥ C1. Then I − A−1B is invertible with

‖(I − A−1B)−1‖ ≤ 2, so also Tρ is invertible with ‖T−1
ρ ‖ ≤ C2, for a new

C2.

It is now easy to prove Theorem 1.1. We give a slightly more precise
result.

Proposition 2.2. Suppose a ∈ C1
c (R

n) with a = 0 for |x| ≥ R, and let
−1 < δ < 0. Then there exist constants C1 = C1(δ, n, a,R) and C2 =
C2(δ, n, a,R) so that whenever ρ ∈ Cn with ρ · ρ = 0 and

|ρ| ≥ C1, (2.12)

then for any f ∈ L2
δ+1(R

n) the equation

(∆ρ +∇a · ∇ρ)u = f (2.13)

has a unique solution u ∈ ∆−1
ρ L2

δ+1(R
n). The solution u has the form

u = ∆−1
ρ v where v ∈ L2

δ+1(R
n) satisfies

‖v‖L2
δ+1

≤ C2‖f‖L2
δ+1
. (2.14)

Proof. We obtain a solution by setting u = ∆−1
ρ T−1

ρ f , and then v = T−1
ρ f

satisfies the desired estimate by Proposition 2.1. If u1, u2 are two solutions
in ∆−1

ρ L2
δ+1 then u1 − u2 = ∆−1

ρ w for some w ∈ L2
δ+1. Then w satisfies

Tρw = 0, and the invertibility of Tρ shows that w = 0, or u1 = u2.
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2.2 Complex geometrical optics solutions

We will now construct complex geometrical optics solutions to the conduc-
tivity equation div(σ∇u) = 0, or the equivalent equation (2.1). Since this
will be done for conductivities having only one derivative, the first result
shows the existence of solutions of the form (2.2) but where a is replaced by
a smooth approximation.

Proposition 2.3. Let a ∈ C1+ε
c (Rn) where 0 ≤ ε ≤ 1, and let −1 < δ < 0.

Let a] = φ̂(D/r)a ∈ C∞c (Rn) be an approximation to a, where r = r(ρ).
Finally, suppose ρ ∈ Cn satisfies ρ · ρ = 0 and assume that |ρ| is sufficiently
large. Then the equation

(∆ +∇a · ∇)u = 0 (2.15)

has a unique solution
u = eρ·x(ω0 + ω1) (2.16)

where ω0 = e−
1
2
a]

and ω1 ∈ ∆−1
ρ L2

δ+1. Further, if r(ρ) = |ρ| then ω1 satisfies

lim
|ρ|→∞

‖ω1‖Hε
δ

= 0. (2.17)

Proof. We use Proposition 2.2 and let ω1 ∈ ∆−1
ρ L2

δ+1 solve

(∆ρ +∇a · ∇ρ)ω1 = f0 (2.18)

where

f0 = −(∆ρ +∇a · ∇ρ)ω0

= −(∆ρ +∇a] · ∇ρ)e−
1
2
a] −∇a[ · ∇ρe

− 1
2
a]

= q]e−
1
2
a] −∇a[ · (−1

2
∇a] + ρ)e−

1
2
a]
.

We have written q] = 1
2∆a] + 1

4 |∇a
]|2 and a[ = a − a]. Since a and a] are

supported in some ball B(0, R), one has

‖f0‖L2
δ+1

≤ C(R, δ)e
1
2
‖a]‖L∞ (‖∆a]‖L2+‖∇a]‖2

L∞+‖∇a[‖L2(‖∇a]‖L∞+|ρ|)).

From Lemma 2.1 we obtain

‖f0‖L2
δ+1

= o(r1−ε) + |ρ|o(r−ε).

The choice r = |ρ| gives the smallest growth in |ρ| for this expression. We
obtain from (2.18), Proposition 2.2 and Proposition 1.1 (by interpolation)
that

‖ω1‖Hε
δ
≤ C

|ρ|1−ε
‖f0‖L2

δ+1
= o(1)

as |ρ| → ∞. This shows (2.17). The function u given by (2.16) is a solution
to (2.15) by the choice of ω1, and uniqueness follows immediately from the
uniqueness part of Proposition 2.2.
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The solutions (2.16) are in fact complex geometrical optics solutions of
the form (2.2). To see this we need the following simple lemma.

Lemma 2.3. If a ∈ C1+ε
c (Rn) where 0 ≤ ε ≤ 1 and if a] = φ̂(D/r)a is as

above, then
‖e−

1
2
a − e−

1
2
a]‖H1 = o(r−ε) (2.19)

as r →∞.

Proof. Write F (t) = e−
1
2
t and g = F (a) − F (a]). Using the fact that

‖a]‖L∞ ≤ ‖a‖L∞ , the mean value theorem gives

‖g‖L2 ≤ sup
|t|≤‖a‖L∞

|F ′(t)| · ‖a− a]‖L2 ≤ Ce
1
2
‖a‖L∞‖a− a]‖L2 .

For the derivatives one has

gxk
= F ′(a)axk

− F ′(a])a]xk

= F ′(a)(axk
− a]xk

) + a]xk
(F ′(a)− F ′(a]))

so again by the mean value theorem

‖gxk
‖L2 ≤ sup

|t|≤‖a‖L∞
|F ′(t)| · ‖∂k(a− a])‖L2 + ‖∇a‖L∞ ·

sup
|t|≤‖a‖L∞

|F ′′(t)| · ‖a− a]‖L2 ≤ Ce
1
2
‖a‖L∞ (1 + ‖∇a‖L∞)‖a− a]‖H1 .

By Lemma 2.1 we have ‖a− a]‖H1 = o(r−ε), which proves the lemma.

We may now prove our main theorem about complex geometrical optics
solutions to the conductivity equation.

Proof. (of Theorem 1.2) Noting that σ−
1
2 = e−

1
2
a where a = log σ, the

solution u in Proposition 2.3 may be written as

u = eρ·x(σ−
1
2 + ω),

where ω = e−
1
2
a] − e−

1
2
a + ω1 belongs to H1

δ and satisfies

lim
|ρ|→∞

‖ω‖Hε
δ

= 0

by Proposition 2.3 and Lemma 2.3.
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2.3 Uniqueness in the inverse conductivity prob-

lem

The global uniqueness result, Theorem 1.3, is proved by inserting the com-
plex geometrical optics solutions of Theorem 1.2 in an appropriate integral
identity involving the Dirichlet-to-Neumann maps and the unknown con-
ductivities. In [34], a new such integral identity was used to obtain the
uniqueness result. We will not repeat here the arguments of [34], but will
only give a short proof of the following key lemma, Lemma 3.4 in [34], using
Theorem 1.2.

Lemma 2.4. Let σ ∈ C3/2(Rn) be strictly positive and equal to 1 outside
a large ball. If ω1 is as in Proposition 2.3 and ξ ∈ Rn, then

lim
|ρ|→∞

∫
Rn

eix·ξ∇σ1/2 · ∇ω1 dx = 0.

Proof. Since ∇σ1/2 = 0 outside a large ball and σ ∈ C3/2 we have∣∣∣ ∫
Rn

eix·ξ∇σ1/2 · ∇ω1 dx
∣∣∣ ≤ ‖eix·ξ∇σ1/2‖

H
1/2
−δ

‖∇ω1‖(H
1/2
−δ )′

≤ C‖ω1‖H1/2
δ

by an easy duality argument. The claim follows from (2.17).

Theorem 1.3 is now proved as in [34].



Chapter 3

Norm estimates for general
operators

This section is devoted to the proof of Theorem 1.4. The main tool is the
Nakamura-Uhlmann intertwining method, which transforms a first order
perturbation of the Laplacian to a lower order perturbation. This will be
achieved using pseudodifferential operators depending on a parameter, so
we will first discuss these. The proof of the theorem is outlined in Section
3.2, and the two remaining sections contain the details for the construction
of the intertwining operators and the solutions.

3.1 Pseudodifferential operators depending on a

parameter

The operators ∆ρ and ∇ρ in Chapter 2 are examples of differential operators
depending on a parameter. Taking Fourier transforms we have

∆ρf(x) = (2π)−n
∫
eix·ξpρ(ξ)f̂(ξ) dξ

where pρ(ξ) = −|ξ|2 + 2iρ · ξ is the symbol of ∆ρ. This is a second order
polynomial in ξ and ρ. We will define a class of pseudodifferential symbols
modelled after degree m polynomials of the variables ξ and ρ, so that ξ and
ρ are equally important in the growth estimates but no smoothness in ρ is
assumed (hence ρ is the parameter).

Pseudodifferential operators depending on a parameter were considered
in Shubin [37], where they were used to study the spectral theory of elliptic
operators. In inverse problems such operators were introduced by Naka-
mura and Uhlmann in [31] as a tool to construct complex geometrical optics
solutions to first order perturbations of the Laplacian.

22
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We proceed to give the basic definitions related to pseudodifferential op-
erators depending on a parameter. For details we refer to [37] (the parameter
space in [37] is a subset of C instead of Cn, but the proofs are identical).

Definition. (a) Let Z = {ρ ∈ Cn ; ρ · ρ = 0, |ρ| ≥ 1} be the space of
complex parameters that we will use.

(b) Let m ∈ R and 0 ≤ r, δ ≤ 1. The class Smr,δ = Smr,δ(R
n, Z) of pseudodif-

ferential symbols depending on a parameter, of orderm and type (r, δ),
is defined as follows: a = a(x, ξ, ρ) is in Smr,δ if a(·, ·, ρ) ∈ C∞(Rn×Rn)
for any ρ ∈ Z, and if for any compact setK ⊆ Rn and for all α, β ∈ Nn

there exists CK,α,β > 0 so that

sup
x∈K

|∂αx ∂
β
ξ a(x, ξ, ρ)| ≤ CK,α,β(1 + |ξ|+ |ρ|)m−r|β|+δ|α|.

We will slightly abuse notation and write aρ both for the function
a(·, ·, ρ) : R2n → C where ρ is fixed and for a : R2n × Z → C.

(c) Let S−∞ =
⋂
m∈R S

m
r,δ (this is independent of r, δ).

(d) If aρ ∈ Smr,δ define an operator Aρ = Op(aρ) for f ∈ C∞c (Rn) by

Aρf(x) = (2π)−n
∫
Rn

eix·ξaρ(x, ξ)f̂(ξ) dξ.

We write OpSmr,δ for the set of operators corresponding to Smr,δ.

(e) The class of smoothing operators depending on a parameter is the set
Ψ−∞ = Ψ−∞(Rn, Z) of all operators with an integral kernel Kρ(x, y)
in C∞(R2n) where ρ ∈ Z, so that for any N ∈ N, any compact set
K ⊆ R2n and any multi-indices α, β, there is CN,K,α,β > 0 so that

sup
(x,y)∈K

|∂αx ∂βyKρ(x, y)| ≤ CN,K,α,β |ρ|−N

for ρ ∈ Z.

(f) Define the full class Ψm
r,δ = Ψm

r,δ(R
n, Z) of pseudodifferential operators

depending on a parameter as the set OpSmr,δ + Ψ−∞.

(g) Let Aρ ∈ Ψm
r,δ have integral kernel Kρ(x, y). We say that Aρ is (uni-

formly) properly supported if there is a closed set L ⊆ Rn × Rn so
that supp(Kρ) ⊆ L for any ρ, and the projections of L to the first
and second components are proper (the preimages of compact sets are
compact).
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(h) An operator Bρ ∈ OpSmr,δ is called elliptic if the symbol satisfies the
following: for any compact set K ⊆ Rn there is ε = ε(K) > 0 so that

|bρ(x, ξ)| ≥ ε(1 + |ξ|+ |ρ|)m

whenever x ∈ K and |ξ|+ |ρ| ≥ ε−1.

Some elementary properties are collected in the following remarks.

Remarks. (i) The symbols we have introduced are indeed pseudodiffer-
ential symbols depending on a parameter: if aρ ∈ Smr,δ and ρ is fixed,
then aρ is a symbol in the usual (local) Hörmander class Smr,δ(R

n).
The additional requirement is that when ρ varies, the growth of the
symbol must also be controlled by ρ.

(ii) Smr,δ is a vector space which decreases if m increases, r increases, or δ
decreases. If aρ ∈ Smr,δ and bρ ∈ Sm

′
r,δ then aρbρ ∈ Sm+m′

r,δ . If aρ ∈ S0
r,δ

and F ∈ C∞(C) then F (aρ) ∈ S0
r,δ.

(iii) For ρ fixed, Aρ ∈ OpSmr,δ is the usual pseudodifferential operator cor-
responding to the symbol aρ. Hence Aρ is a map C∞c (Rn) → C∞(Rn).

(iv) As with classical pseudodifferential operators, most computations can
only be done modulo smoothing terms. In this situation the smoothing
terms are given by the set Ψ−∞. If ρ is fixed, then Rρ ∈ Ψ−∞ is a
smoothing operator in the classical sense and Rρ : E ′(Rn) → C∞(Rn).

(v) There is a one-to-one correspondence between operators in OpSmr,δ and
symbols in Smr,δ, hence in this class we have ”exact symbols”. In the
class Ψm

r,δ we have given up this requirement. Two operators in Ψm
r,δ

which differ by a smoothing operator should be considered equal, and
in this class we only work modulo smoothing.

(vi) If Aρ ∈ OpSmr,δ then Aρ has an integral kernel Kρ(x, y) which is a
distribution in R2n, so that formally Aρf(x) =

∫
Kρ(x, y)f(y) dy for

f ∈ C∞c . Here Kρ is C∞ outside the diagonal of Rn×Rn, and for any
N , α, β and compact K there is CN,K,α,β so that |∂αx ∂

β
ξKρ(x, y)| ≤

CN,K,α,β |ρ|−N |x − y|−N for x ∈ K and |x − y| ≥ 1. If Aρ ∈ OpS−∞

then Kρ ∈ C∞(R2n).

(vii) If Aρ ∈ OpSmr,δ and ϕ1, ϕ2 ∈ C∞c with ϕ2 = 1 near supp(ϕ1), then
ϕ1Aρ(1− ϕ2) ∈ OpS−∞. If Aρ ∈ Ψm

r,δ then ϕ1Aρ(1− ϕ2) ∈ Ψ−∞.

(viii) If Aρ ∈ Ψm
r,δ is properly supported, then for any compactK ⊆ Rn there

is a compact set K1 ⊆ Rn so that supp(f) ⊆ K implies supp(Aρf) ⊆
K1. The same holds for the adjoint operator At, and consequently
properly supported operators map C∞c to C∞c and C∞ to C∞.
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(ix) One may compose pseudodifferential operators depending on a param-
eter, provided that all but one are properly supported. The composi-
tion is initially a map C∞c → C∞.

As mentioned above the basic examples of pseudodifferential operators
depending on a parameter are the differential operators, in particular we
have ∆ρ ∈ OpS2

1,0 and ∇ρ ∈ OpS1
1,0.

Proposition 3.1. Let r > δ.

(a) Let a(j)
ρ ∈ S

mj

r,δ for j ≥ 0 where mj ↘ −∞ as j → ∞. Then there
exists aρ with

aρ ∼
∞∑
j=0

a(j)
ρ ,

which means that aρ ∈ Sm0
r,δ and aρ −

∑k−1
j=0 a

(j)
ρ ∈ Smk

r,δ for any k ≥ 1.
Such a symbol aρ is unique modulo S−∞.

(b) If Aρ ∈ Ψm
r,δ and Bρ ∈ Ψm′

r,δ and at least one operator is properly
supported, then AρBρ ∈ Ψm+m′

r,δ . One has AρBρ = Cρ + Ψ−∞, where

Cρ ∈ OpSm+m′

r,δ and its symbol satisfies

cρ ∼
∑
α

∂αξ aρD
α
x bρ

α!
.

(c) If Aρ ∈ OpSmr,δ then ∂xjAρ ∈ OpSm+1
r,δ and ∂xjAρ = Aρ∂xj +Op

(∂aρ

∂xj

)
.

(d) If Bρ ∈ OpSmr,δ is elliptic, then there exists Cρ ∈ OpS−mr,δ , elliptic and
properly supported, so that

BρCρ = I +Rρ

where Rρ is in Ψ−∞.

(e) Suppose Aρ ∈ Ψm
r,δ where m ≤ 0. Then for any ϕ1, ϕ2 ∈ C∞c (Rn) one

has ϕ1Aρϕ2 : L2(Rn) → L2(Rn) with

‖ϕ1Aρϕ2f‖L2 ≤ C|ρ|m‖f‖L2

where C does not depend on ρ or f .

(f) Let Aρ ∈ OpS−∞ and ϕ ∈ C∞c (Rn). If α ∈ R then ϕAρ : L2
α(Rn) →

L2(Rn), and for any N > 0 there is CN with

‖ϕAρf‖L2 ≤ CN |ρ|−N‖f‖L2
α

where CN does not depend on ρ or f .

Proof. Parts (a) to (e) are contained in [37], and (f) follows easily by writing
the operator in terms of its integral kernel.
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3.2 The main theorem

We repeat the statement of the main theorem.

Theorem 1.4. Let Ω ⊆ Rn be a bounded open set, let W ∈ C(Ω;Cn) and
let q ∈ L∞(Ω;C). If ρ ∈ Cn with ρ · ρ = 0 and |ρ| is large enough, then for
any f ∈ L2(Ω) the equation

(∆ρ +W · ∇ρ + q)u = f in Ω

has a solution u ∈ H1(Ω) which satisfies

‖u‖L2(Ω) ≤
C

|ρ|
‖f‖L2(Ω),

‖u‖H1(Ω) ≤ C‖f‖L2(Ω)

where C is independent of ρ and f .

Proof. First extend W to a vector field in Cc(Rn;Cn) and q and f by zero
to Rn, and consider the equation in Rn. The proof is given in three steps.

Step 1 : Decomposition of W

The lack of smoothness in W is handled by approximation. We make the
ρ-dependent decomposition

W = W ]
ρ +W [

ρ

where W ]
ρ = W ∗φr with φr(x) = rnφ(rx) the usual mollifier, and where we

make the specific choice
r = r(ρ) = |ρ|δ

for some fixed δ with 0 < δ < 1/2. Then W ]
ρ is a C∞ vector field and

Lemma 2.1 gives the estimates

‖∂αW ]
ρ‖L∞ ≤ Cα|ρ|δ|α|, (3.1)

‖W [
ρ‖L∞ = o(1) as |ρ| → ∞. (3.2)

Then the operator becomes

∆ρ +W ]
ρ · ∇ρ +W [

ρ · ∇ρ + q.

By the norm estimates, the third term W [
ρ · ∇ρ may be considered to be a

small perturbation of ∆ρ (in the sense that W [
ρ · ∇ρ∆−1

ρ has small norm on
L2(Ω) for ρ large), and the same holds for the term q. The real problem is
the smooth first order term W ]

ρ ·∇ρ. We handle this by converting the term
into a lower order term by pseudodifferential intertwining.
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Step 2 : Intertwining for the smooth part

Let δ be as in Step 1. We will construct elliptic operators Aρ, Bρ ∈ OpS0
1−δ,δ

and an operator Qρ ∈ OpS2δ
1−δ,δ so that

(∆ρ +W ]
ρ · ∇ρ)Aρ = Bρ∆ρ +Qρ.

This is the Nakamura-Uhlmann intertwining method, adapted to the present
situation. Note that since δ < 1/2 one has 2δ < 1 and so Qρ has order less
than one. The construction of the intertwining operators Aρ and Bρ is given
in Proposition 3.2 below.

Step 3 : Construction of the solutions

The details of how to use the result in Step 2 to construct the solutions are
given in Section 3.4.

3.3 Construction of intertwining operators

We begin with some remarks on the operator ∆ρ. If ρ ∈ Z we will write
ρ = η+ ik where η, k ∈ Rn. Then ρ ·ρ = 0 means that |η| = |k| and η ·k = 0,
and we write s = |η| = |k| = |ρ|√

2
.

Let pρ(ξ) = −|ξ|2 +2iρ ·ξ be the symbol of ∆ρ. With the above notation
pρ(ξ) = −|ξ|2 − 2k · ξ + 2iη · ξ, so the characteristic set of ∆ρ is the (n− 2)-
dimensional sphere

p−1
ρ (0) = {ξ ∈ Rn ; η · ξ = 0, |ξ + k| = |k|}.

There are zeros of pρ for arbitrarily large ξ and ρ, so ∆ρ is not elliptic as an
operator depending on a parameter.

In the construction of the intertwining operators we will need to deal
separately with the cases where one is near or away from the characteristic
set, so we introduce a neighborhood of p−1

ρ (0) by

Uρ(ε) = {ξ ∈ Rn ; (1− ε)|k| < |ξ+k| < (1+ ε)|k|, |〈ξ+k, η/|η|〉| < ε|ξ+k|}.
(3.3)

With ε > 0 given take ψ1, ψ2 ∈ C∞c (R) with supp(ψ1) ⊆ {1−ε < |t| < 1+ε},
supp(ψ2) ⊆ (−ε, ε), and ψ1 = 1 near ±1, ψ2 = 1 near 0. Define

ψρ(ξ) = ψ1(s−1|ξ + k|)ψ2(〈
ξ + k

|ξ + k|
,
η

s
〉). (3.4)

Then ψρ(ξ) ∈ C∞c (Rn) and supp(ψρ) ⊆ Uρ(ε) with ψρ = 1 near p−1
ρ (0).

Also one has ψρ ∈ S0
1,0.
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Proposition 3.2. There exist elliptic operators Aρ, Bρ ∈ OpS0
1−δ,δ and an

operator Qρ ∈ OpS2δ
1−δ,δ so that

(∆ρ +W ]
ρ · ∇ρ)Aρ = Bρ∆ρ +Qρ. (3.5)

One may choose the symbols of Aρ, Bρ, and Qρ to be

aρ = e−
1
2
wρ , (3.6)

bρ = aρ +
1− ψρ(ξ)
pρ(ξ)

[(iξ + ρ) ·W ]
ρ ]aρ, (3.7)

qρ = ∆xaρ +W ]
ρ · ∇xaρ (3.8)

where ψρ is as in (3.4), with ε chosen small enough, and wρ ∈ S0
1−δ,δ is given

by

wρ =
1

2πs

∫
R2

1
y1 + iy2

ψρ(ξ)[(iξ + ρ) ·W ]
ρ(x− y1(

η

s
)− y2(

ξ + k

s
))] dy1 dy2.

(3.9)

Proof. Suppose aρ is any symbol of order 0 and Aρ = Op(aρ). If we commute
Aρ to the left of ∆ρ in the left hand side of (3.5), we obtain

(∆ρ +W ]
ρ · ∇ρ)Aρ = Aρ∆ρ (3.10)

+ Op(2(iξ + ρ) · ∇xaρ + [(iξ + ρ) ·W ]
ρ ]aρ) + Op(∆xaρ +W ]

ρ · ∇xaρ).

The first and third terms are of the same form as in the right hand side
of (3.5), but the second term is of order 1 and we would like its symbol to
vanish. Setting aρ = e−

1
2
wρ , this gives the equation

(iξ + ρ) · ∇xwρ = (iξ + ρ) ·W ]
ρ . (3.11)

Here iξ + ρ = η + i(ξ + k). On p−1
ρ (0), η ⊥ ξ + k and |η| = |ξ + k|, so

(iξ + ρ) · ∇x looks like s(∂x1 + i∂x2) near the characteristic variety. In fact,
when η and ξ + k are not collinear we may change variables in (3.11) and
reduce to a ∂ equation. Using the fundamental solution of ∂ and changing
back to the original coordinates, we obtain a solution of (3.11) of the form

wρ(x, ξ) =
1

2πs

∫
R2

1
y1 + iy2

[(iξ + ρ) ·W ]
ρ(x− y1(

η

s
)− y2(

ξ + k

s
))] dy1 dy2.

(3.12)
The problem is that wρ defined by (3.12) may not behave like a pseudodif-
ferential symbol away from the characteristic variety p−1

ρ (0). Thus we will
only work in a sufficiently small neighborhood Uρ(ε) of p−1

ρ (0) and introduce
the cutoff ψρ(ξ) as in (3.4). Precisely, we will define wρ by (3.9). Lemma 3.1
below will show that one may choose ε small enough so that wρ will then
be a symbol in S0

1−δ,δ.
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We may now define aρ = e−
1
2
wρ , so that aρ ∈ S0

1−δ,δ and aρ is elliptic.
By direct differentiation we verify that aρ satisfies

2(iξ + ρ) · ∇xaρ + ψρ(ξ)[(iξ + ρ) ·W ]
ρ(x)]aρ = 0.

We also define bρ by (3.7) and qρ by (3.8). One sees that 1−ψρ

pρ
is in S−2

1,0 so

we have bρ = aρ + S−1
1−δ,δ, which implies that bρ is in S0

1−δ,δ and is elliptic.
Clearly qρ ∈ S2δ

1−δ,δ. Taking (3.10) into account we obtain

(∆ρ +W ]
ρ(x) · ∇ρ)Aρ = Bρ∆ρ +Qρ

and the proposition is proved modulo Lemma 3.1.

Lemma 3.1. One may choose ε > 0 small enough so that wρ ∈ S0
1−δ,δ,

where wρ is defined by (3.9), i.e.

wρ =
1
2π

∫
R2

1
y1 + iy2

ψρ(ξ)[
iξ + ρ

s
·W ]

ρ(x− y1(
η

s
)− y2(

ξ + k

s
))] dy1 dy2.

(3.13)

Proof. Take R > 0 so that W ]
ρ has support contained in the ball B(0, R),

for any ρ ∈ Z. Then the integration in (3.13) is over the compact set

K(x, ξ, ρ) = {(y1, y2) ∈ R2 ; x− y1(
η

s
)− y2(

ξ + k

s
) ∈ B(0, R)}.

Note that the cutoff ψρ(ξ) in (3.13) forces ξ ∈ Uρ(ε) by (3.4). We make the
following claim.

Lemma 3.2. If ε is small enough then there is R′ > 0, independent of
x, ξ and ρ, so that whenever ξ ∈ Uρ(ε) then K(x, ξ, ρ) ⊆ B(z,R′), where
z = z(x, ξ, ρ) is continuous in x.

Assuming this we complete the proof. Clearly wρ given by (3.13) is a
smooth function of x and ξ. If ξ ∈ Uρ(ε) then |ξ| ≤ |ξ + k|+ |k| < (2 + ε)s,
so we have

s−1 ≤ Cε(1 + |ξ|+ |ρ|)−1. (3.14)

On the other hand we have s ≤ 1 + |ξ|+ |ρ|, so we only need to obtain esti-
mates in s to obtain the S0

1−δ,δ estimates for wρ. Now taking x-derivatives of

wρ just corresponds to taking x-derivatives of W ]
ρ in (3.13). In the presence

of ξ-derivatives one has to differentiate ψρ(ξ), iξ+ρs , andW ]
ρ(x−y1

η
s−y2

ξ+k
s ),

where the first two are symbols in S0
1,0 when ξ ∈ Uρ(ε), so the worst be-

haviour in ξ and ρ occurs when all the ξ-derivatives fall on the W ]
ρ part. In

∂αx ∂
β
ξ wρ this worst term is

1
2π

∫
R2

1
y1 + iy2

ψρ(ξ)[
iξ + ρ

s
·
(
−y2

s

)|β|
∂α+β
x W ]

ρ(x−y1(
η

s
)−y2(

ξ + k

s
))] dy1 dy2.
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Taking absolute values gives

|∂αx ∂
β
ξ wρ(x, ξ)| ≤ Cs−|β|‖∂α+β

x W ]
ρ‖L∞

∫
K(x,ξ,ρ)

|y||β|−1 dy1 dy2.

Suppose x ∈ K with K compact. Using Lemma 3.2, K(x, ξ, ρ) ⊆ B where B
is a large ball depending on K, and the integral is ≤

∫
B|y|

|β|−1 dy1 dy2 = CK .
The estimates (3.1) imply ‖∂α+β

x W ]
ρ‖L∞ ≤ Csδ|α+β|. All in all we obtain

|∂αx ∂
β
ξ wρ(x, ξ)| ≤ Cs−(1−δ)|β|+δ|α|

when x ∈ K, and (3.14) shows that wρ satisfies the correct estimates.

Proof. (of Lemma 3.2) For any ξ ∈ Rn, ρ ∈ Z so that η and ξ + k are

not collinear, define v1(ξ, ρ) = η̂ = η
s , v2(ξ, ρ) =

proj
η⊥ (ξ+k)

|proj
η⊥ (ξ+k)| , and take

v3(ξ, ρ), . . . , vn(ξ, ρ) to be any vectors so that {v1, . . . , vn} forms an orthonor-
mal basis of Rn. Let

C0(ξ, ρ) = ( v1 . . . vn )

so that C0 is an orthogonal matrix for any ξ and ρ, and let

C(ξ, ρ) = ( v1 ξ+k
s v3 . . . vn ).

Then C = C0 +E where E = ( 0 ξ+k
s −

proj
η⊥ (ξ+k)

|proj
η⊥ (ξ+k)| 0 . . . 0 ). On the

other hand, one has

(y1, y2) ∈ K(x, ξ, ρ) ⇔ C(y1, y2, 0)t ∈ x+B(0, R)

⇔ (y1, y2, 0)t ∈ C−1x+ C−1B(0, R). (3.15)

We want that C−1 has bounded norm when ξ ∈ Uρ(ε), which will follow
if E is small. This is achieved by (3.3) and some elementary estimates.
Write p = projη⊥(ξ + k). Then

ξ + k

s
− p

|p|
=

1
s
(ξ + k − p) +

|p| − s

s

p

|p|
. (3.16)

Here
|ξ + k − p| = |〈ξ + k, η̂〉η̂| = |〈ξ + k, η̂〉| < ε|ξ + k| (3.17)

by (3.3). Using the triangle inequality in (3.17) gives (1− ε)|ξ + k| < |p| <
(1 + ε)|ξ + k|, and using (3.3) again gives

(1− ε)2s < |p| < (1 + ε)2s. (3.18)

Also, (3.17) and (3.3) give

|ξ + k − p| < ε(1 + ε)s. (3.19)
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Now combining (3.16), (3.18) and (3.19) yields∣∣∣ξ + k

s
− p

|p|

∣∣∣ < ε(1 + ε) + (1 + ε)2 − 1 = ε(3 + 2ε). (3.20)

Finally, consider Mn(R) with the norm ‖A‖ = sup|x|=1 |Ax|. Then

‖C−1
0 E‖ ≤ ‖C−1

0 ‖‖E‖ ≤
∣∣∣ξ + k

s
− p

|p|

∣∣∣ ≤ 1
2

if ε < 1
10 , by (3.20). Then C = C0(I + C−1

0 E) is invertible and ‖C−1‖ ≤ 2.
Considering (3.15) let mt

1,m
t
2 be the first two row vectors of C−1, so that

(y1, y2) ∈ K(x, ξ, ρ) implies that yj = mt
jx + mt

jw for some w ∈ B(0, R).
Here |mt

jw| ≤ |C−1w| ≤ 2R, and setting zj(x, ξ, ρ) = mj(ξ, ρ)tx we obtain
y ∈ B(z, 2

√
2R) whenever y ∈ K(x, ξ, ρ). This concludes the proof.

3.4 Construction of solutions

We now solve
(∆ρ +W · ∇ρ + q)u = f

near Ω. Using the decomposition for W and the intertwining operators of
Proposition 3.2, we look for u of the form u = Aρv where v satisfies

(Bρ∆ρ +Qρ +W [
ρ · ∇ρAρ + qAρ)v = f

near Ω. Since Bρ was elliptic, we can find Cρ ∈ Op S0
1−δ,δ, elliptic and

properly supported, so that

BρCρ = I +Rρ

where Rρ ∈ Ψ−∞. We now try a solution v of the form

v = ϕ2∆−1
ρ ϕ3Cρϕ4w

for some w ∈ L2(Rn). Here ϕj ∈ C∞c (Rn) (j = 1, 2, 3, 4) are cutoff functions
so that ϕ1 = 1 near Ω and ϕj+1 = 1 near supp(ϕj). Inserting this to the
equation gives

(Bρ∆ρ +Qρ +W [
ρ · ∇ρAρ + qAρ)v =

(Iϕ4 +Rρϕ4 −Bρ(1− ϕ3)Cρϕ4 −Bρ∆ρ(1− ϕ2)∆−1
ρ ϕ3Cρϕ4

+Qρϕ2∆−1
ρ ϕ3Cρϕ4 +

∑
j

W [
ρ,jAρ∂xjϕ2∆−1

ρ ϕ3Cρϕ4

+
∑
j

W [
ρ,jOp(

∂aρ
∂xj

)ϕ2∆−1
ρ ϕ3Cρϕ4 +

∑
j

W [
ρ,jρjAρϕ2∆−1

ρ ϕ3Cρϕ4

+ qAρϕ2∆−1
ρ ϕ3Cρϕ4)w.
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We call the last expression Dρw, and so we want to solve Dρw = f near Ω,
or ϕ1Dρw = f in Rn.

To get something invertible on L2(Rn) we look at a related operator

Tρ = I +
8∑

k=1

Ek

where

E1 = ϕ1Rρϕ4, E2 = −ϕ1Bρ(1− ϕ3)Cρϕ4,

E3 = −ϕ1Bρ∆ρ(1− ϕ2)∆−1
ρ ϕ3Cρϕ4, E4 = ϕ1Qρϕ2∆−1

ρ ϕ3Cρϕ4,

E5 =
∑
j

ϕ1W
[
ρ,jAρ∂xjϕ2∆−1

ρ ϕ3Cρϕ4,

E6 =
∑
j

ϕ1W
[
ρ,jOp(

∂aρ
∂xj

)ϕ2∆−1
ρ ϕ3Cρϕ4,

E7 =
∑
j

ϕ1W
[
ρ,jρjAρϕ2∆−1

ρ ϕ3Cρϕ4,

E8 = ϕ1qAρϕ2∆−1
ρ ϕ3Cρϕ4.

We wish to show that each Ej is an operator L2(Rn) → L2(Rn) with ‖Ej‖ =
‖Ej‖L2→L2 small when |ρ| is large.

First, E1 and E2 contain a Ψ−∞ operator with cutoffs on either side,
so ‖E1‖ and ‖E2‖ are small for large |ρ| by Proposition 3.1 (e). Also,
E3 contains the operator ϕ1Bρ∆ρ(1 − ϕ2) ∈ Op S−∞ which has norm ≤
CN,α|ρ|−N from L2

α to L2 by Proposition 3.1 (f), for any α and N . Using
the fact that ∆−1

ρ ϕ3 has norm ≤ Cα|ρ|−1 from L2 to L2
α with −1 < α < 0,

we obtain that ‖E3‖ is small for |ρ| large.
For E4 we insert an additional cutoff using ϕj = ϕjϕj+1 so

‖E4‖ ≤ ‖ϕ1Qρϕ2‖ ‖ϕ3∆−1
ρ ϕ3‖ ‖Cρϕ4‖.

We need to estimate ‖ϕ1Qρϕ2‖. Using the explicit formula (3.9) for wρ,
the proof of Lemma 3.1 gives that |ρ|−δ∂xjwρ, |ρ|−2δ∂2

xj
wρ ∈ S0

1−δ,δ. Conse-
quently

|ρ|−δ∂xjaρ, |ρ|−2δ∂2
xj
aρ, |ρ|−2δqρ ∈ S0

1−δ,δ. (3.21)

Then Proposition 3.1 (e) gives ‖ϕ1Qρϕ2‖ ≤ C|ρ|2δ. Since ‖ϕ3∆−1
ρ ϕ3‖ ≤

C|ρ|−1 and δ < 1/2, we see that ‖E4‖ is small for large |ρ|.
For E5 note that ‖∂xjϕ2∆−1

ρ ϕ3‖ ≤ C independently of ρ, and ‖W [
ρ,j‖L∞

is small as |ρ| → ∞. For E6 we have ‖ϕ2Op(∂aρ

∂xj
)ϕ3‖ ‖ϕ2∆−1

ρ ϕ3‖ ≤ C|ρ|δ−1

by (3.21). Finally, E7 has small norm for large ρ since ‖ρjϕ2∆−1
ρ ϕ3‖ ≤ C

and ‖W [
ρ,j‖L∞ → 0 as |ρ| → ∞, and ‖E8‖ ≤ C|ρ|−1.
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All this gives that Tρ is an invertible operator on L2(Rn) for |ρ| large,
and we may assume ‖T−1

ρ ‖ ≤ 2. Set

w = T−1
ρ f.

Since Tρ = Dρ+I(1−ϕ4)− (1−ϕ1)(Dρ−Iϕ4) we have Tρw = Dρw in Ω, so
that Dρw = f in Ω. Chasing back the steps we see that v = ϕ2∆−1

ρ ϕ3Cρϕ4w

satisfies
(Bρ∆ρ +Qρ +W [

ρ · ∇ρAρ + qAρ)v = f in Ω,

so u = Aρv satisfies (∆ρ+W ·∇ρ+q)u = f in Ω. The solution has therefore
the form

u = Aρϕ2∆−1
ρ ϕ3Cρϕ4T

−1
ρ f.

One obtains ‖u‖L2(Ω) ≤ C
|ρ|‖f‖L2(Ω) immediately. We have

∂xju = Aρ∂xjϕ2∆−1
ρ ϕ3Cρϕ4T

−1
ρ f + Op(

∂aρ
∂xj

)ϕ2∆−1
ρ ϕ3Cρϕ4T

−1
ρ f,

and since ‖∂xjϕ2∆−1
ρ ϕ3‖ ≤ C, ‖ϕ1Op

(∂aρ

∂xj

)
ϕ2∆−1

ρ ϕ3‖ ≤ C|ρ|δ−1, we have

‖∂xju‖L2(Ω) ≤ C‖f‖L2(Ω). This ends the proof.



Chapter 4

An auxiliary inverse problem

In this chapter we discuss the auxiliary inverse problem considered in Section
1.3. The main objective is to prove the uniqueness result, Theorem 1.5,
following the argument in Sun [41]. In the first section we set up the inverse
problem and discuss some of its basic properties. The next section contains
a proof of the Helmholtz decomposition for Dini continuous vector fields,
which will be used to decompose a vector field into divergence free and curl
free parts.

In Section 4.3 we construct complex geometrical optics solutions for this
problem, and use these to obtain an identity for two vector fields assuming
that their Cauchy data sets coincide. Finally in Section 4.4 we give the rest
of the details of the proof of Theorem 1.5.

4.1 Preliminaries

Let Ω ⊆ Rn be a bounded open set, and assume W ∈ L∞(Ω;Cn) and
q ∈ L∞(Ω;C). Consider the operator

LW,q =
n∑
j=1

(1
i

∂

∂xj
+Wj

)2
+ q.

If W and q are real then this is the selfadjoint Schrödinger operator in (1.8).
Complex coefficients are needed later when we study the inverse problem
for the steady state heat equation. In nondivergence form one has

LW,q = −∆− 2iW · ∇+ (W ·W − i(∇ ·W ) + q). (4.1)

The bilinear form associated with LW,q is

(LW,qu, v) =
∫

Ω
(∇u · ∇v̄ + iW · (u∇v̄ − v̄∇u) + (W ·W + q)uv̄) dx (4.2)

34
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which makes sense if u, v ∈ H1(Ω). One sees easily that (LW,qu, v) =
(u, LW̄ ,q̄v). We define the set of solutions

MW,q = {u ∈ H1(Ω) ; LW,qu = 0 in Ω}.

This set is always nontrivial by the Fredholm alternative.
We next want to define the Cauchy data set. First one has the abstract

trace space H1(Ω)/H1
0 (Ω) where the trace map T : H1(Ω) → H1(Ω)/H1

0 (Ω)
is just the quotient map. If u ∈MW,q is a solution one may define NW,qu =
∂u
∂ν

∣∣
∂Ω

+ i(W · ν)u|∂Ω weakly as an element of the dual (H1(Ω)/H1
0 (Ω))′ by

(NW,qu, v) = (LW,qu, v).

It follows that NW,q is a bounded linear map MW,q → (H1(Ω)/H1
0 (Ω))′. The

Cauchy data set is the set

CW,q = {(Tu,NW,qu) ; u ∈MW,q}.

If Ω is a Lipschitz domain and 0 is not a Dirichlet eigenvalue of LW,q, then
the Cauchy data set is the graph of the Dirichlet-to-Neumann map ΛW,q,
defined by a natural weak formulation of (1.7) as in Section 5.1.

As noted in Chapter 1 there is gauge equivalence in this problem.

Lemma 4.1. If Ω, W , and q are as above and p ∈W 1,∞(Ω), then

LW+∇p,q = e−ipLW,qe
ip, (4.3)

MW+∇p,q = e−ipMW,q. (4.4)

If additionally p|∂Ω = 0 then

CW+∇p,q = CW,q. (4.5)

Proof. If p ∈ W 1,∞(Ω) then u 7→ e−ipu is a bounded map H1(Ω) → H1(Ω)
and H1

0 (Ω) → H1
0 (Ω). A direct computation shows (4.3), and (4.4) follows

immediately. If p|∂Ω = 0 then e−ipu = u as elements of H1(Ω)/H1
0 (Ω). We

have (NW+∇p,q(e−ipu), v) = (NW+∇p,q(e−ipu), e−ipv) = (NW,qu, v) and

CW+∇p,q = {(Tv,NW+∇p,qv) ; v ∈MW+∇p,q}
= {(T (e−ipu), NW+∇p,q(e−ipu) ; u ∈MW,q} = CW,q. �

Next we discuss a reduction which allows us to replace the domain by a
larger one if the coefficients coincide outside the smaller domain.

Lemma 4.2. Let Ω,Ω′ ⊆ Rn be bounded open sets with Ω ⊆ Ω′. If
W1,W2 ∈ L∞(Ω′;Cn) and q1, q2 ∈ L∞(Ω′;C), let CWj ,qj and C ′Wj ,qj

be the
Cauchy data sets for LWj |Ω,qj |Ω in Ω and LWj ,qj in Ω′, respectively. If

W1 = W2 and q1 = q2 in Ω′ r Ω, (4.6)

then CW1,q1 = CW2,q2 implies C ′W1,q1
= C ′W2,q2

.
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Proof. Let LW1,q1u
′ = 0 in Ω′ and let u = u′|Ω. Then u ∈ H1(Ω) satisfies

LW1,q1u = 0 in Ω, so from CW1,q1 ⊆ CW2,q2 we know that there is v0 ∈ H1(Ω)
with LW2,q2v0 = 0 in Ω and Tv0 = Tu, NW2,q2v0 = NW1,q1u in Ω. This
implies that v0 = u+ ϕ where ϕ ∈ H1

0 (Ω), and we define

v′ = u′ + ϕ

so that v′ ∈ H1(Ω′) and v′ = v0 in Ω, v′ = u′ in Ω′rΩ. Now for w′ ∈ H1(Ω′)
we have

(LW2,q2v
′, w′)Ω′ = (LW2,q2v0, w

′)Ω + (LW2,q2u
′, w′)Ω′rΩ

= (LW1,q1u,w
′)Ω + (LW1,q1u

′, w′)Ω′rΩ = (LW1,q1u
′, w′)Ω′

where we have used NW2,q2v0 = NW1,q1u in Ω and (4.6), and the subscript
indicates the integration set. This shows that LW2,q2v

′ = 0 in Ω′ and
NW2,q2v

′ = NW1,q1u
′. Since also Tv′ = Tu′ in Ω′ we obtain C ′W1,q1

⊆ C ′W2,q2
.

The other direction is analogous and we get C ′W1,q1
= C ′W2,q2

.

As the last fact which will be done without any further regularity as-
sumptions on W , we derive an integral identity which will be used in the
uniqueness proof.

Lemma 4.3. Let Ω ⊆ Rn be a bounded open set, and suppose W1,W2 ∈
L∞(Ω;Cn) and q1, q2 ∈ L∞(Ω;C). If CW1,q1 = CW2,q2 then one has∫

Ω
(i(W1 −W2) · (u∇v̄ − v̄∇u) + (W1 ·W1 −W2 ·W2 + q1 − q2)uv̄) dx = 0

for any u ∈MW1,q1 and v ∈MW̄2,q̄2 .

Proof. If u and v are as stated then CW1,q1 = CW2,q2 implies that there is
v0 ∈MW2,q2 with Tv0 = Tu, NW2,q2v0 = NW1,q1u. Then

(NW1,q1u, v) = (NW2,q2v0, v) = (v0, NW̄2,q̄2v) = (u,NW̄2,q̄2v) = (NW2,q2u, v)

and the identity follows from the definition of NW,q.

4.2 Helmholtz decomposition

In this section we discuss the Helmholtz decomposition of a vector field W

as W = E + ∇p, where E is a divergence free vector field and ∇p is curl
free. The motivation comes from the construction of complex geometrical
optics solutions for LW,q. The tool for doing this, Theorem 1.4, requires a
nondivergence form operator ∆ +W1 · ∇ + q1 where W1 is continuous and
q1 is L∞. From (4.1) we see that LW,q is of this form if W ∈ C(Ω;Cn) and
∇ ·W ∈ L∞(Ω;C).
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For more general W with ∇ ·W /∈ L∞ we may do as in [35] and use
the gauge equivalence of LW,q. Lemma 4.1 shows that if W = E +∇p with
p ∈ W 1,∞, then solutions to LW,qu = 0 are easily obtained from solutions
to LE,qu = 0. Here we want that E is in C(Ω;Cn) and is divergence free,
so that LE,q is of the desired form.

If W ∈ Lp(Ω;Cn) with 1 < p < ∞ and Ω has smooth boundary, then
one has Helmholtz decompositions W = E + ∇p where E ∈ Lp(Ω;Cn) is
divergence free and p ∈ W 1,p(Ω) (Schwarz [36]). This fails for p = ∞. In
our situation we need a condition for W which ensures that E ∈ C(Ω;Cn),
and the right condition turns out to be Dini continuity. It is interesting
that this is also the right condition for the L∞ decomposition to exist: we
give an example of a uniformly continuous vector field W which is not Dini
continuous, for which there is no decomposition W = E+∇p where E would
be in L∞loc and divergence free.

We begin with some elementary remarks. Let Ω be a bounded open
subset of Rn. Then every function in C(Ω) is uniformly continuous in Ω, and
conversely any uniformly continuous function in Ω has a unique extension
into a function in C(Ω).

We call a function ω : [0,∞) → [0,∞) a modulus of continuity if ω
is continuous, nondecreasing, and ω(0) = 0. A function f : Ω → C is
continuous with modulus ω if |f(x) − f(y)| ≤ ω(|x − y|) for x, y ∈ Ω. The
same condition is valid for x, y ∈ Ω if f is replaced with the unique extension
in C(Ω). For any f ∈ C(Ω), the function ω(t) = sup{|f(x) − f(y)| ; x, y ∈
Ω, |x − y| ≤ t} is a modulus of continuity for f and is the smallest such
modulus. Since Ω is bounded also ω is bounded.

We will consider moduli of continuity ω which satisfy the Dini condition∫ ε

0
ω(t)

dt

t
<∞ for some ε > 0, (4.7)

and the minor technical condition

ω(t1)
t1

≥ ω(t2)
t2

when t1 < t2. (4.8)

If f ∈ C(Ω) is continuous with some modulus ω satisfying (4.7) and (4.8), we
say that f is Dini continuous and write f ∈ Cd(Ω). Examples of admissible
moduli are ω(t) = tα with 0 < α < 1 (so Hölder continuous functions are
included) and ω(t) = |log t|−1−α for α > 0.

We will need an extension result, which is the only place where the
condition (4.8) is used.

Lemma 4.4. Let Ω ⊆ Rn be a bounded open set and let f ∈ Cd(Ω). Then
there is an extension F of f so that F ∈ Cdc (Rn).

Proof. The Whitney extension procedure, [39], gives the desired result.
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The Helmholtz decomposition will be a consequence of the following
estimates for the generalized Newtonian potential of a vector field F . We
write Γ(x) = −cn|x|2−n for the fundamental solution of ∆ in Rn, n ≥ 3.
This lemma is similar to [18, Chapter 4] and [7].

Lemma 4.5. Let Ω ⊆ Rn be a bounded open set, where n ≥ 3, and let
F ∈ Cd(Ω;Cn). Fix some ball Ω0 with Ω ⊆ Ω0, and extend F to a vector
field in Cd(Ω0;Cn). When x ∈ Ω define

w(x) =
∫

Ω0

∂kΓ(x− y)Fk(y) dy. (4.9)

Then w ∈ C1(Ω) and ∂xjw = wj , where

wj(x) =
∫

Ω0

∂j∂kΓ(x−y)[Fk(y)−Fk(x)] dy−Fk(x)
∫
∂Ω0

∂kΓ(x−y)νj dS(y).

(4.10)

Proof. First note that (4.9) and (4.10) are well defined for x ∈ Ω. For (4.10)
this follows from

|wj(x)| ≤ C
( ∫

Ω0

ω(|x− y|)
|x− y|n

dy + ‖F‖L∞
∫
∂Ω0

|x− y|1−n dS(y)
)

≤ C
( ∫ R

0
ω(t)

dt

t
+ r1−n

∫
∂Ω0

dS
)
<∞

where R = diam(Ω0) and r = dist(Ω, ∂Ω0).
Let η ∈ C∞(Rn) with 0 ≤ η ≤ 1, η = 0 for |x| ≤ 1/2, and η = 1 for

|x| ≥ 1. Define ηε(x) = η(x/ε), so that |∂αηε| ≤ Cαε
−|α|. Now ε and |x− y|

are comparable on supp(∂αηε(x− · )) for |α| ≥ 1, and

|∂αηε(x− y)| ≤ Cα|x− y|−|α|. (4.11)

For x ∈ Ω define

wε(x) =
∫

Ω0

∂kΓ(x− y)ηε(x− y)Fk(y) dy.

Then wε → w uniformly in Ω since

wε(x)− w(x) =
∫

Ω0

∂kΓ(x− y)(ηε(x− y)− 1)Fk(y) dy,

and the integral is bounded by C‖F‖L∞
∫
|z|≤ε|z|

1−n dz.
The function wε is C∞. If x ∈ Ω we obtain by differentiating and

integrating by parts that

∂xjw
ε(x)− wj(x) =

∫
Ω0

∂xj (∂kΓ(x− y)(ηε(x− y)− 1))[Fk(y)− Fk(x)] dy

− Fk(x)
∫
∂Ω0

∂kΓ(x− y)(ηε(x− y)− 1)νj dS(y).
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Since |x − y| ≥ r for y ∈ ∂Ω0 the boundary integral vanishes for small ε.
Using the Leibniz rule in the first integrand gives terms which are bounded
by C|x−y|−nω(|x−y|) by (4.11), and the support of each term is contained
in |x − y| ≤ ε. This shows that ∂xjw

ε → wj uniformly in Ω, which implies
that w ∈ C1(Ω) and ∂xjw = wj .

Proposition 4.1. Let Ω ⊆ Rn be a bounded open set and W ∈ Cd(Ω;Cn).
Then there is a decomposition

W = E +∇p

where E ∈ C(Ω;Cn) is divergence free and p ∈ C1(Ω).

Proof. Extend W to Cdc (R
n;Cn) and fix a ball Ω0 with supp(W ) ⊆ Ω0. Let

p ∈ C1(Ω) be the generalized Newtonian potential given by (4.9). Then
p = Γ ∗ divW and ∆p = divW since W is compactly supported, and
E = W −∇p has the desired properties.

Remark. If Ω has C2 boundary then a modification of Lemma 4.5, where
Γ(x − y) is replaced by the Green function G(x, y) for ∆ in Ω, gives a
unique decomposition in Proposition 4.1 if one requires p|∂Ω = 0. This uses
estimates for the Green function as in [20].

We conclude the section with a counterexample from [18, Problem 4.9],
which shows that Dini continuity is required for Proposition 4.1.

Let P (x) = x2
1 − x2

2 be a homogeneous harmonic polynomial of degree 2
in Rn. Note that ∂2

x1
P 6= 0. Let η ∈ C∞c (Rn), 0 ≤ η ≤ 1, with η = 1 near

|x| ≤ 1 and supp(η) ⊆ {|x| < 2}, let tk = 2k, and let (ck) be a sequence
of positive real numbers with ck → 0 as k → ∞, and

∑∞
k=0 ck divergent.

Define

f(x) =
∞∑
k=0

ck∆(ηP )(tkx).

Now supp(∆(ηP )(tkx)) ⊆ {2−k < |x| < 2−k+1}, so f is C∞ in Rn r {0}.
Since f(0) = 0 and |f(x)| ≤ ck‖∆(ηP )‖L∞ for 2−k ≤ |x| ≤ 2−k+1, we see
that f is continuous at 0 and uniformly continuous in Rn.

One has

f(x) =
∞∑
k=0

ckt
−2
k ∆((ηP )(tkx))

with convergence in the sense of distributions, and we obtain

Γ ∗ f(x) =
∞∑
k=0

ckt
−2
k η(tkx)P (tkx) = P (x)

∞∑
k=0

ckη(tkx).
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This is C∞ in Rn r {0}. Writing Γ ∗ f = Pg, we have for x 6= 0

∂2
x1

(Γ ∗ f)(x) = 2g(x) + 4x1∂x1g(x) + (x2
1 − x2

2)∂
2
x1
g(x).

By a similar argument as above we see that the last two terms are continuous
functions in Rn with value 0 at x = 0. But g(x) ≥

∑m
k=0 ck for 0 < |x| ≤

2−m, so ∂2
x1

(Γ ∗ f) is not bounded near 0.
Let now Ω = B(0, 2) and W = (f, 0, . . . , 0) ∈ C(Ω;Rn). Then p0 =

∂x1(Γ ∗ f) solves ∆p0 = divW in Ω, but ∂x1p0 is not bounded near 0. Now
if W = E + ∇p is a decomposition of W where E is divergence free, then
∆p = divW in Ω, so that p = p0 + v where v is a harmonic function. This
shows that ∂x1p can not be bounded near 0, and the same is true for E.

4.3 Complex geometrical optics solutions

The next step is to construct complex geometrical optics solutions to the
equation LW,qu = 0, where W is a Dini continuous vector field. For this we
first need a simple result concerning a first order equation. Let ζ = γ1 + iγ2

be a vector with γj ∈ Rn, |γj | = 1, and γ1 ⊥ γ2. Then Nζ = ζ · ∇ is the ∂
operator in different coordinates, so that there is an inverse operator defined
by

N−1
ζ f =

1
2π

∫
R2

1
y1 + iy2

f(x− y1γ1 − y2γ2) dy1 dy2.

The proof of the following lemma is immediate (see also [41]).

Lemma 4.6. Let f ∈ W k,∞(Rn), k ≥ 0, with supp(f) ⊆ B(0, R). Then
φ = N−1

ζ f ∈W k,∞(Rn) solves Nζφ = f in Rn, and satisfies

‖φ‖Wk,∞ ≤ C‖f‖Wk,∞ (4.12)

where C = C(R). If f ∈ Cc(Rn) then φ ∈ C(Rn).

If ρ ∈ Cn satisfies ρ · ρ = 0 we will write ρ = sζ, where ζ is of the above
form and s = |ρ|√

2
. With this notation we have the following proposition.

Proposition 4.2. Assume Ω ⊆ Rn is a bounded open set, W ∈ Cd(Ω;Cn),
and q ∈ L∞(Ω;C). Let W̃ be any Cdc (R

n;Cn) extension of W . Then
for ρ ∈ Cn satisfying ρ · ρ = 0 and |ρ| large enough, there exist complex
geometrical optics solutions

u = eρ·x(eφ
]
+ ω) (4.13)

to the equation LW,qu = 0 in Ω, where φ] ∈ C1(Rn) converges uniformly in
Rn to N−1

ζ (−iζ · W̃ ) as s→∞, and

‖φ]‖W 1,∞(Ω) = o(|ρ|1/2), (4.14)

‖ω‖L2(Ω) = o(1), (4.15)

‖ω‖H1(Ω) = o(|ρ|) (4.16)
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as |ρ| → ∞.

Proof. We first assume W = E is any divergence free C(Ω;Cn) vector field,
and look for a solution v = eρ·x(eφ

]
E + ωE). Note that LE,qv = 0 in Ω is

equivalent with
(∆ + 2iE · ∇+G)v = 0 in Ω

where G = −E · E − q ∈ L∞(Ω;C). Let Ẽ ∈ Cc(Rn;Cn) be any extension
of E, and decompose Ẽ as

Ẽ = Ẽ]ρ + Ẽ[ρ

where Ẽ]ρ = Ẽ ∗φr is a smooth approximation to Ẽ so that r = r(ρ) = |ρ|1/2.
Then by Lemma 2.1 we have the estimates

‖Ẽ]ρ‖W 1,∞ = o(|ρ|1/2),
‖Ẽ]ρ‖W 2,∞ = o(|ρ|), (4.17)

‖Ẽ[ρ‖L∞ = o(1)

as |ρ| → ∞.
Writing ρ = sζ we choose

φ]E = φ]E(x, ζ, s) = N−1
ζ (−iζ · Ẽ]sζ), (4.18)

so that ρ · ∇φ]E = −iρ · Ẽ]ρ. Now ωE must satisfy

(∆ρ + 2iE · ∇ρ +G)ωE = f in Ω

where f = −(∆ρ + 2iE · ∇ρ +G)eφ
]
E . But one has (2ρ · ∇+ 2iẼ]ρ · ρ)eφ

]
E =

2(ρ · ∇φ]E + iρ · Ẽ]ρ)eφ
]
E = 0 by the choice of φ]E , and we have

f = −(∆ + 2iE · ∇+ 2iẼ[ρ · ρ+G)eφ
]
E

= −(∆φ]E +∇φ]E · ∇φ
]
E + 2iE · ∇φ]E + 2iẼ[ρ · ρ+G)eφ

]
E .

Since Ω is bounded we get the estimate

‖f‖L2(Ω) ≤ C(‖φ]E‖W 2,∞(Ω) + ‖φ]E‖
2
W 1,∞(Ω) + ‖φ]E‖W 1,∞(Ω)

+ |ρ|‖Ẽ[ρ‖L∞(Ω) + 1)e‖φ
]
E‖L∞(Ω)

where C depends on Ω and Ẽ, q. From (4.12) and (4.17) we have ‖f‖L2(Ω) =
o(|ρ|). Using Theorem 1.4 gives the desired estimates for ωE .

Now assume W ∈ Cd(Ω;Cn), and W̃ is a given Cdc (R
n;Cn) extension

of W . Let Ω0 be a ball with Ω ⊆ Ω0, and use the Helmholtz decomposition
of Proposition 4.1 in Ω0 to write W̃ = Ẽ + ∇p̃ where Ẽ ∈ C(Ω0;Cn) is
divergence free and p̃ ∈ C1(Ω0). Choose any C1

c (R
n) extension of p̃, and
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define Ẽ = W̃ −∇p̃ outside Ω0. We then have a complex geometrical optics
solution v = eρ·x(eφ

]
E + ωE) of LE,qv = 0 in Ω, with φ]E given by (4.18).

Write u = e−ipv. Lemma 4.1 implies that LW,qu = 0 in Ω, and u is of
the form (4.13) with

φ] = φ]E − ip̃ = N−1
ζ (−iζ · (Ẽ]sζ +∇p̃)) (4.19)

and ω = e−ipωE . Obviously φ] ∈ C1(Rn), and (4.12), (4.17) show that
φ] → N−1

ζ (−iζ · W̃ ) uniformly in Rn as s → ∞. We have (4.14) by (4.17),
and (4.15), (4.16) follow from the corresponding estimates for ωE .

Remark. For further use we note that the result is also valid with the choice
φ] = N−1

ζ (−iζ ·(Ẽ]sζ+∇p̃))+ t(ζ ·x) → N−1
ζ (−iζ ·W̃ )+ t(ζ ·x), where t ∈ R.

Heading toward the uniqueness result for the inverse problem, the fol-
lowing proposition shows what is obtained when the complex geometrical
optics solutions are used in the identity of Lemma 4.3.

Proposition 4.3. Let Ω ⊆ Rn be a bounded open set where n ≥ 3, let
W1,W2 ∈ Cd(Ω;Cn), and let q1, q2 ∈ L∞(Ω;C). Then CW1,q1 = CW2,q2

implies ∫
Ω
eik·x+φ1+φ2(ζ · (W1 −W2)) dx = 0

for any k ∈ Rn and ζ = γ1+iγ2 where k, γ1, γ2 ∈ Rn are mutually orthogonal
with |γ1| = |γ2| = 1, and φj(·, ζ) ∈ C(Rn) are defined by

φ1 = N−1
ζ (−iζ · W̃1), (4.20)

φ2 = N−1
ζ (iζ · W̃2) (4.21)

where W̃j are any Cdc (R
n;Cn) extensions of Wj .

Proof. Let W̃j = Ẽj + ∇p̃j be Helmholtz decompositions in a larger ball
Ω0 given by Proposition 4.1, choose a C1

c (R
n) extension of p̃j , and define

Ẽj = W̃j − ∇p̃j . From Proposition 4.2 we know that there are complex
geometrical optics solutions to LW1,q1u = 0 and LW̄2,q̄2v = 0 in Ω, which
have the form

u = eρ1·x(eφ
]
1 + ω1), (4.22)

v̄ = eρ2·x(eφ
]
2 + ω2). (4.23)

We have done some relabeling, so that ρj = sζj ∈ Cn are any large vectors
with ρj ·ρj = 0, φ]1 = N−1

ζ1
(−iζ1 ·(Ẽ]1,sζ1 +∇p̃1)) and φ]2 = N−1

ζ2
(iζ2 ·(Ẽ]2,sζ2 +

∇p̃2)), and ωj satisfy (4.15), (4.16). Now

∇v̄ = ρ2e
ρ2·x(eφ

]
2 + ω2) + eρ2·x(eφ

]
2∇φ]2 +∇ω2),

∇u = ρ1e
ρ1·x(eφ

]
1 + ω1) + eρ1·x(eφ

]
1∇φ]1 +∇ω1)
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and assuming ρ1 + ρ2 = ik with k ∈ Rn,

u∇v̄ − v̄∇u = (ρ2 − ρ1)eik·x+φ
]
1+φ]

2

+ (ρ2 − ρ1)eik·x(eφ
]
1ω2 + eφ

]
2ω1 + ω1ω2)

+ eik·x(eφ
]
1+φ]

2(∇φ]2 −∇φ
]
1) + eφ

]
1∇ω2 − eφ

]
2∇ω1

+ eφ
]
2∇φ]2ω1 − eφ

]
1∇φ]1ω2 + ω1∇ω2 − ω2∇ω1)

Now inserting the solutions u and v in the identity of Lemma 4.3 gives

A+B + C +D = 0 (4.24)

where

A = i

∫
Ω
eik·x+φ

]
1+φ]

2((ρ2 − ρ1) · (W1 −W2)) dx,

B = i

∫
Ω
eik·x((ρ2 − ρ1) · (W1 −W2))(eφ

]
1ω2 + eφ

]
2ω1 + ω1ω2) dx,

C = i

∫
Ω
eik·x(W1 −W2) · (eφ

]
1+φ]

2(∇φ]2 −∇φ
]
1) + eφ

]
1∇ω2 − eφ

]
2∇ω1

+ eφ
]
2∇φ]2ω1 − eφ

]
1∇φ]1ω2 + ω1∇ω2 − ω2∇ω1) dx,

D =
∫

Ω
(W1 ·W1 −W2 ·W2 + q1 − q2)eik·x(eφ

]
1+φ]

2 + eφ
]
1ω2 + eφ

]
2ω1

+ ω1ω2) dx.

Let k, γ1 and γ2 be three mutually orthogonal vectors in Rn with |γ1| =
|γ2| = 1, and let s > |k|/2. We make the specific choice

ρ1 = sγ1 + i(
k

2
+ s

√
1− |k|2

4s2
γ2), (4.25)

ρ2 = −sγ1 + i(
k

2
− s

√
1− |k|2

4s2
γ2). (4.26)

Then ρ1 · ρ1 = ρ2 · ρ2 = 0, ρ1 + ρ2 = ik and ρ1− ρ2 = 2s(γ1 + i
√

1− |k|2
4s2
γ2).

We will multiply the equation (4.24) by 1
s and let s→∞. We first note

that φ]1 is of the form

φ]1(x) =
1
2π

∫
R2

1
y1 + iy2

[−i(γ1 + i(
k

2s
+

√
1− |k|2

4s2
γ2))·

(Ẽ]1,ρ1 +∇p̃1)(x− y1γ1 − y2(
k

2s
+

√
1− |k|2

4s2
γ2))] dy1 dy2
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where Ẽ]1,ρ1 → Ẽ1 uniformly in Rn as s → ∞. Dominated convergence
shows that as s→∞ this converges pointwise in Rn to

φ1(x, ζ) =
1
2π

∫
R2

1
y1 + iy2

[−iζ · (Ẽ1 +∇p̃1)(x− y1γ1 − y2γ2)] dy1 dy2

where ζ = γ1 + iγ2. Now φ1 = N−1
ζ (−iζ · W̃1). Similarly φ]2 → φ2 in Rn as

s→∞, where φ2 = N−1
ζ (iζ ·W̃2). Since ‖φ]j‖L∞(Ω), ‖Wj‖L∞(Ω), ‖qj‖L∞(Ω) ≤

C with C independent of ρ and since ‖∇φ]j‖L∞(Ω) = o(s1/2), the estimates
(4.15), (4.16) and dominated convergence imply that

lim
s→∞

1
s
A = i

∫
Ω
eik·x+φ1+φ2(−2ζ · (W1 −W2)) dx,

lim
s→∞

1
s
B = lim

s→∞

1
s
C = lim

s→∞

1
s
D = 0.

This gives the claim.

The conclusion in Proposition 4.3 is not strong enough to give the unique-
ness result. The following improvement is needed.

Proposition 4.4. In the situation of Proposition 4.3, one has for |t| < 1∫
Ω
eik·x+φ1+φ2+t(ζ·x)(ζ · (W1 −W2)) dx = 0 (4.27)

for the appropriate k, ζ. Consequently∫
Ω
eik·x+φ1+φ2(ζ · (W1 −W2))(ζ · x)m dx = 0 (4.28)

for such k, ζ and any integer m ≥ 0.

Proof. In the proof of the Proposition 4.3, replace φ]1 by φ]1 + t(ζ1 ·x) and φ1

by φ1 + t(ζ ·x). This is possible because of the remark after Proposition 4.2.
The proof then yields (4.27), and (4.28) follows by differentiating (4.27) m
times with respect to t and by evaluating at 0.

Remark. The methods in this section, as well as in the following section,
are mostly due to Sun [41] except for some modifications required because
of the nonsmooth situation. The construction of complex geometrical optics
solutions using a Helmholtz decomposition and convolution approximation
is similar to Panchenko [35]. The existence of complex geometrical optics
solutions for Dini continuous vector fields is a new result, and was made
possible by the norm estimates of Theorem 1.4. Also the proof of (4.28) is
new and avoids an additional argument in [41].
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4.4 A uniqueness result

In this section we will prove Theorem 1.5. The main difficulty is to show
that CW1,q1 = CW2,q2 implies curl(W1 − W2) = 0. This will follow from
Proposition 4.4 and a sequence of lemmas. The first is an elementary result
on integration by parts which is needed in the arguments below.

Lemma 4.7. Let Ω ⊆ Rn be a bounded open set with smooth boundary,
let f ∈ C(Rn) and ζ ∈ Cn, and suppose ζ · ∇f ∈ L1(Ω). Then one has∫

Ω
ζ · ∇f dx =

∫
∂Ω
f(ζ · ν) dS.

Proof. This follows by approximation from the corresponding result for
smooth functions.

The next two lemmas consider characterizations for curlW = 0.

Lemma 4.8. Let Ω = B(0, R) ⊆ Rn be a ball, and let W ∈ C(Ω;Cn).
Then curlW = 0 if

ζ ·
∫

Ω
eik·xW (x) dx = 0

whenever ζ = γ1 + iγ2 and k, γ1, γ2 ∈ Rn where |γj | = 1, and {k, γ1, γ2} is
orthogonal.

Proof. The given condition implies that γ · (χΩW )̂ (ξ) = 0 whenever γ ⊥ ξ.
Assume ξ 6= 0 and let γjk(ξ) = ξjek − ξkej for j 6= k. Then γjk(ξ) ⊥ ξ and
so

ξj(χΩWk )̂ (ξ)− ξk(χΩWj )̂ (ξ) = 0.

Consequently ∂jWk − ∂kWj = 0 in Ω for j 6= k.

Lemma 4.9. Let Ω and W be as in Lemma 4.8, let W̃ be any Cc(Rn;Cn)
extension of W , and define

Ψ = N−1
ζ (ζ · W̃ ).

Then curlW = 0 in Ω if ∫
∂Ω∩T

(ζ · νT )Ψ dS = 0 (4.29)

whenever ζ = γ1 + iγ2 with |γj | = 1 and γ1 ⊥ γ2, and whenever T is a
two-dimensional plane parallel to γ1 and γ2. Here νT = (ν ·γ1)γ1 +(ν ·γ2)γ2

and dS is the surface measure of ∂Ω ∩ T .
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Proof. Fix γ1, γ2 with |γj | = 1 and γ1 ⊥ γ2. Extend these two vectors into
a positive orthonormal basis {γ1, . . . , γn} of Rn. Then any k orthogonal to
γ1 and γ2 has the form k =

∑n
j=3 kjγj , and for such k one has

ζ ·
∫

Ω
eik·xW (x) dx =

∫
Ω
eik·x(ζ · ∇Ψ) dx

=
∫

Ω
ζ · ∇(eik·xΨ) dx =

∫
∂Ω
eik·x(ζ · ν)Ψ dS

using ζ · k = 0 and Lemma 4.7. Writing x = λ1γ1 + . . .+ λnγn and splitting
the integral over λ′ = (λ1, λ2) and λ′′ = (λ3, . . . , λn) gives∫

∂Ω
eik·x(ζ · ν)Ψ dS =

∫
Rn−2

eik
′′·λ′′

∫
∂Ω∩Tλ′′

(ζ · ν)Ψ dS(λ′) dλ′′

where k′′ = (k3, . . . , kn) and Tλ′′ =
∑n

j=3 λjγj + T0 where T0 is the two-
dimensional plane spanned by γ1 and γ2. Here ζ · ν = ζ · νTλ′′ , and using the
inverse Fourier transform gives the claim.

Now we assume CW1,q1 = CW2,q2 and start working toward the condition
of Lemma 4.9. The next lemma is a restatement of Proposition 4.4.

Lemma 4.10. Let Ω = B(0, R) ⊆ Rn be a ball, and let n ≥ 3. Assume
W1,W2 ∈ Cd(Ω;Cn) and q1, q2 ∈ L∞(Ω;C). Suppose that CW1,q1 = CW2,q2 .
Then ∫

∂Ω∩T
(ζ · νT )(ζ · xT )meΨ dS = 0 (4.30)

whenever ζ = γ1 + iγ2 with |γj | = 1 and γ1 ⊥ γ2, and whenever T is a two-
dimensional plane parallel to γ1 and γ2. Here xT = (x · γ1)γ1 + (x · γ2)γ2,
and

Ψ = N−1
ζ (−iζ · (W̃1 − W̃2)) (4.31)

where W̃j are any Cdc (R
n;Cn) extensions of Wj .

Proof. This follows from Proposition 4.4 similarly as Lemma 4.9. Note that
Ψ = φ1 + φ2 where φj are defined by (4.20), (4.21).

The next lemma is the main step in the proof of Theorem 1.5, and shows
how the condition (4.30), which depends nonlinearly on Ψ, may be used to
obtain the condition (4.29). The assumptions that Ω is a ball and W1 and
W2 vanish near ∂Ω are removed later.

Lemma 4.11. Let Ω = B(0, R) ⊆ Rn with n ≥ 3, let W1,W2 ∈ Cdc (Ω;Cn),
and let q1, q2 ∈ L∞(Ω;C). Suppose that CW1,q1 = CW2,q2 . Then curlW1 =
curlW2 in Ω.
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Proof. We let W̃j be the Cdc (R
n;Cn) extension of Wj which is zero outside

Ω, and define Ψ by (4.31). Then we are in the situation of Lemma 4.10.
Fix γ1, γ2 with |γj | = 1 and γ1 ⊥ γ2, and let T = T0 + γ′′ be a two-

dimensional plane parallel to T0 = span(γ1, γ2) with γ′′ ⊥ T0 and ∂Ω∩T 6= ∅.
Note that ∂Ω ∩ T is a circle with center at the origin and some radius r.
Let f(x1, x2) = Ψ(rx1γ1 + rx2γ2 + γ′′), so that f is continuous in R2 and
f restricted to the unit disc D corresponds to Ψ|Ω∩T . In the coordinates
(x1, x2) on ∂D we have xT = rx1γ1 + rx2γ2 and νT = xT /R, so ζ · xT =
R(ζ · νT ) = r(x1 + ix2). Now (4.30) may be written as∫ 2π

0
ei(m+1)θef(eiθ) dθ = 0

for any integer m ≥ 0. This shows that the negative Fourier coefficients of
ef |∂D are all zero.

On the other hand, one has in the sense of distributions

∂f(x1, x2) =
r

2
ζ · ∇Ψ(rx1γ1 + rx2γ2 + γ′′)

= − ir
2
ζ · (W̃1 − W̃2)(rx1γ1 + rx2γ2 + γ′′)

which shows that ∂f = 0 for |x| > 1. Thus f is holomorphic in {|x| > 1} and
bounded and continuous in {|x| ≥ 1}, so the same holds for ef and we obtain
that the positive Fourier coefficients of ef |∂D must be zero. This shows that
ef is constant on ∂D and then f is also constant there. Consequently we
have

0 =
∫ 2π

0
eiθf(eiθ) dθ =

R

r

∫
∂Ω∩T

(ζ · νT )Ψ dS

which is (4.29). It follows from Lemma 4.9 that curl(−i(W1−W2)) = 0 and
curlW1 = curlW2 in Ω.

The proof of Theorem 1.5 follows easily using Lemma 4.11.

Theorem 1.5. Let Ω ⊆ Rn be a bounded open set where n ≥ 3, and assume
that W1,W2 ∈ Cd(Ω;Cn) and q1, q2 ∈ L∞(Ω;C). If CW1,q1 = CW2,q2 and
W1|∂Ω = W2|∂Ω, then curlW1 = curlW2 and q1 = q2 in Ω.

Proof. First extend W1 to a vector field in Cdc (R
n;Cn) using Lemma 4.4.

The fact that W1 = W2 on ∂Ω ensures that W2, defined for x /∈ Ω by
W2(x) = W1(x), will also be in Cdc (R

n;Cn). Let Ω′ = B(0, R) be a ball so
that Ω and the supports of W1 and W2 are contained in Ω′, and extend q1
and q2 to Ω′ so that they are zero outside Ω. Since CW1,q1 = CW2,q2 in Ω,
we obtain from Lemma 4.2 that CW1,q1 = CW2,q2 in Ω′.
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Now Lemma 4.11 gives that curlW1 = curlW2 in Ω′. Since Ω′ has trivial
cohomology we have W2 −W1 = ∇p, where p is in fact given by

p(x) =
∫ 1

0
(W2 −W1)(tx) · x dt.

This defines a function in C1(Rn) with ∇p = 0 near ∂Ω′, so by substracting
a constant we may assume that p ∈ C1(Ω′) and p|∂Ω′ = 0. Thus p determines
a gauge transformation which preserves Cauchy data sets, and we obtain

CW1,q1 = CW2,q2 = CW1+∇p,q2 = CW1,q2 in Ω′

by Lemma 4.1.
Since CW1,q1 = CW1,q2 in Ω′, Lemma 4.3 gives∫

Ω′
(q1 − q2)uv̄ dx = 0 (1.32)

for any u, v ∈ H1(Ω′) satisfying LW1,q1u = 0 and LW̄1,q̄2v = 0 in Ω′. Fix
k ∈ Rn and let γ1, γ2 be any unit vectors with {k, γ1, γ2} orthogonal. Choose
u, v to be the complex geometrical optics solutions in Ω′ given by (4.22),
(4.23), where ρ1 and ρ2 are given by (4.25), (4.26) and φ]1 → Nζ(−iζ ·W1),
φ]2 → N−1

ζ (iζ ·W1) in Rn as s→∞.
Plugging u and v in (1.32) gives∫

Ω′
eik·x+φ

]
1+φ]

2(q1 − q2) dx = −
∫

Ω′
eik·x(q1 − q2)(eφ

]
1ω2 + eφ

]
2ω1 + ω1ω2) dx.

Letting s→∞ this becomes∫
Ω′
eik·x(q1 − q2) dx = 0

using that φ]1 + φ]2 → 0 and ‖ωj‖L2(Ω) → 0. Thus (χΩ′(q1− q2))̂ = 0, which
implies q1 = q2 in Ω′.



Chapter 5

Applications to inverse
problems

We proceed to give uniqueness results for the two inverse problems con-
sidered in the introduction. In fact global uniqueness will follow almost
immediately from Theorem 1.5, as soon as one knows that the Dirichlet to
Neumann map determines the boundary values of the coefficients in some
sense. Therefore, most of this chapter is devoted to boundary determination
results.

For the magnetic Schrödinger equation, we adapt the method of Brown
[9], originally used for the conductivity equation, to obtain that the Dirichlet
to Neumann map uniquely determines the tangential components of the
magnetic potential at the boundary. The argument requires a C1,1 domain.
In the case of the steady state heat equation with a convection term, the
method of singular solutions due to Alessandrini [3] gives a sharper result in
terms of boundary regularity, and we are able to handle Lipschitz domains.

5.1 Schrödinger equation in a magnetic field

Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary, and suppose
W ∈ L∞(Ω;Rn) and q ∈ L∞(Ω;R). Define the Schrödinger operator

HW,q =
n∑
j=1

(1
i

∂

∂xj
+Wj

)2
+ q.

The operator HW,q is selfadjoint. We assume that 0 is not a Dirichlet eigen-
value of HW,q, so that the problem{

HW,qu = 0 in Ω,
u = f on ∂Ω

has a unique solution u ∈ H1(Ω) for any f ∈ H1/2(∂Ω).

49
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We may define a Dirichlet to Neumann map formally by

ΛW,q : f 7→ ∂u

∂ν

∣∣∣
∂Ω

+ i(W · ν)f.

More precisely, ΛW,q is defined by the equivalent weak formulations

(ΛW,qf, g) =
∫

Ω
(∇uf · ∇ēg + iW · (uf∇ēg − ēg∇uf ) + (|W |2 + q)uf ēg) dx

=
∫

Ω
(∇ef · ∇ūg + iW · (ef∇ūg − ūg∇ef ) + (|W |2 + q)ef ūg) dx

where uh ∈ H1(Ω) is the solution to HW,quh = 0 in Ω with uh = h on ∂Ω,
and eh is any H1(Ω) function with eh = h on ∂Ω. Then ΛW,q is a bounded
map H1/2(∂Ω) → H−1/2(∂Ω).

In the notation of Section 4.1, one has HW,q = LW,q, and the Cauchy
data set is CW,q = {(f,ΛW,qf) ; f ∈ H1/2(∂Ω)}. In particular one has
gauge equivalence as in Lemma 4.1, so that ΛW+∇p,q = ΛW,q whenever
p ∈W 1,∞(Ω;R) with p|∂Ω = 0.

We want to discuss the determination of boundary values of W from
ΛW,q. Because of gauge equivalence, we see that only the tangential com-
ponents of W on the boundary may be determined from ΛW,q. This follows
since even if W and ∇p are continuous in Ω, the tangential components of
∇p are zero but the normal component may be nonzero.

We will prove boundary identifiability of tangential components in a C1,1

domain. To be able to speak of boundary values of a L∞ vector field, we
introduce the following definition.

Definition. We say that W ∈ L∞(Ω;Rn) is continuous at z ∈ ∂Ω if there
exists η ∈ Rn so that

ess supx∈Ω∩B(z,r)|W (x)− η| → 0 (5.1)

as r → 0.

Note that if W is continuous at z, then the vector η is unique and given
by limr→0

1
|Ω∩B(z,r)|

∫
Ω∩B(z,r)W (x) dx, and we will define W (z) = η.

The boundary result we intend to prove is the following.

Proposition 5.1. Let Ω ⊆ Rn be a bounded open set with C1,1 boundary,
and let W ∈ L∞(Ω;Rn) and q ∈ L∞(Ω;R). Assume 0 is not a Dirichlet
eigenvalue of HW,q, and suppose z ∈ ∂Ω is a boundary point so that W
is continuous at z. Then for any α ∈ Tz(∂Ω) with |α| = 1, there exists a
sequence (fN ) ⊆ H1/2(∂Ω) so that

lim
N→∞

((ΛW,q − Λ0,0)fN , fN ) = W (z) · α. (5.2)

The sequence is independent of W and q. Furthermore, if U is any neigh-
borhood of z in ∂Ω, one may assume that supp(fN ) ⊆ U for all N .
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Remarks. (a) If W , q, and the domain are C∞, then ΛW,q is a pseudodif-
ferential operator of order one on ∂Ω and its symbol may be explicitly
computed ([28]). The principal symbol of ΛW,q is independent of W
and q. Therefore, we consider the order 0 operator ΛW,q −Λ0,0, whose
principal symbol contains the tangential components of W . Then (5.2)
corresponds to the fact that the principal symbol of a pseudodifferen-
tial operator may be obtained by testing against highly oscillatory
functions.

(b) The result also holds under a slightly weaker condition than (5.1),
which is similar to the condition (H1) in [9].

(c) The result is completely local. If U is any neighborhood of z in ∂Ω,
then one may determine the tangential components of W (z) from the
knowledge of (ΛW,qf, g) for all f, g ∈ H1/2(∂Ω) which are supported
in U .

The proof is based on the following identity, which is a direct consequence
of the definition of ΛW,q.

Lemma 5.1. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary,
let W ∈ L∞(Ω;Rn) and q ∈ L∞(Ω;Rn). Suppose 0 is not a Dirichlet
eigenvalue of HW,q. Then one has

((ΛW,q − Λ0,0)f, f) =
∫

Ω
(iW · (u∇v̄ − v̄∇u) + (|W |2 + q)uv̄) dx

for any f ∈ H1/2(∂Ω), where u, v ∈ H1(Ω) satisfy HW,qu = 0 in Ω and
u|∂Ω = f , and ∆v = 0 in Ω and v|∂Ω = f .

We will use oscillatory solutions u and v which concentrate near a bound-
ary point z. The construction is easier to do when Ω is flat near z, so we
need to discuss a transformation which achieves this. The first step is to fix
a convenient coordinate system at z.

From the definition of a C1,1 domain, we know that there exist r > 0 and
a coordinate system (x′, xn) in Rn, isometric to the usual one, so that z is 0
in these coordinates, and one has Ω∩B(0, r) = {xn > φ(x′)}∩B(0, r) where
φ is a C1,1

c function Rn−1 → R. Furthermore, we may assume ∇φ(0) = 0,
which follows since the inverse function theorem gives a C1,1 local inverse
when the original function is C1,1. Then Tz(∂Ω) = Rn−1 × {0}.

With the coordinate system (x′, xn) where z is the origin, define a bilip-
schitz homeomorphism F of Rn by F (x′, xn) = (x′, φ(x′) + xn). Note
that DF (x′, xn) = (∂Fj

∂xk
) =

(
I 0

∇φ(x′) 1

)
, which shows that detDF = 1 and

DF (0) = I. We let Ω̃ = F−1(Ω) be the domain corresponding to Ω in the
(x′, xn) coordinates. Then Ω̃ is a bilipschitz image of a bounded C1,1 domain
and is flat near the boundary point 0.
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For u ∈ L1
loc(Ω) define ũ ∈ L1

loc(Ω̃) by ũ = u ◦F . One has (HW,qu, v)Ω =
(H̃W,qũ, ṽ)Ω̃, where H̃W,q is the operator in Ω̃ corresponding to HW,q in the
transformation F , and is given by

H̃W,qũ = −∂xj (ajk∂xk
ũ+ bj ũ)− bj∂xj ũ+ cũ

where A(x′) = (ajk) = (DF )−1(DF )−t, b(x′, xn) = (bj) = i(DF )−1W̃ , and
c = |W̃ |2 + q̃. Then ajk is W 1,∞ and b and c are L∞ in Ω̃, and 0 is not a
Dirichlet eigenvalue of H̃W,q since it was not one for HW,q. Also, H0,0 = −∆
becomes H̃0,0 = −∆̃ = −∂xj (ajk∂xk

) in these coordinates.
Let η ∈ C∞c (R) be a function with 0 ≤ η ≤ 1, η = 1 for |x| ≤ 1/2, and

η = 0 for |x| ≥ 1. Let α = (α′, 0) ∈ Rn be a unit vector tangent to ∂Ω at 0.
For N ∈ Z+ we define an approximate solution

vN (x) = η(N1/2x1) · · · η(N1/2xn)eN(iα−en)·x

so that vN is C∞ in Rn and localized near 0 when N is large. We write
vN = ψE where ψ(x) = η(N1/2x1) · · · η(N1/2xn) and E(x) = eN(iα−en)·x.
Note that if L0 = div(A(0)∇) = ∆ is the operator ∆̃ with coefficients frozen
at 0, then L0E = 0. The scalings are chosen so that E dominates the cutoff
ψ for large N , so vN is indeed an approximate solution for the operator L0

and then also for H̃W,q and H̃0,0 when N is large.
Since vN has an explicit form one obtains the following estimates. We

write δ(x) = dist(x, ∂Ω̃) for x ∈ Ω̃, so that δ(x) = xn for x close to 0.

Lemma 5.2. One has in Ω̃

‖vN‖L2 = O(N
−1−n

4 ), ‖∇vN‖L2 = O(N
3−n

4 ),
‖δvN‖L2 = O(N

−5−n
4 ), ‖δ∇vN‖L2 = O(N

−1−n
4 ),

as N →∞.

Proof. We begin by computing∫ ∞

0
η(N1/2xn)2e−2Nxn dxn =

∫ ∞

0
e−2Nxn dxn−∫ ∞

0
(1− η(N1/2xn)2)e−2Nxn dxn =

1
2
N−1 +O(e−

1
2
N1/2

N−1)

and∫ ∞

0
x2
nη(N

1/2xn)2e−2Nxn dxn =
∫ ∞

0
x2
ne
−2Nxn dxn +O(e−

1
2
N1/2

N−3)

= c0N
−3 +O(e−

1
2
N1/2

N−3)
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where c0 is an absolute constant. We obtain∫
Ω̃
|vN |2 dx =

∫
Rn−1

η(N1/2x1)2 · · · η(N1/2xn−1)2
(1

2
N−1 + o(N−1)

)
dx′

=
1
2

( ∫
R
η(t)2 dt

)n−1
N

−1−n
2 + o(N

−1−n
2 ).

This gives the estimate for ‖vN‖L2 , and the case for ‖δvN‖L2 is similar. For
the derivatives we note that ∂xj (ψE) = N1/2ψjE +N(iαj − δjn)ψE where
ψj is of the same form as ψ, so the same computations as for vN and δvN

give ‖∇vN‖L2 = O(N
3−n

4 ) and ‖δ∇vN‖L2 = O(N
−1−n

4 ).

We then want to move from the approximate solutions vN to solutions ũ
and ṽ which solve H̃W,qũ = 0 and H̃0,0ṽ = 0 in Ω̃, whose boundary values on
Ω̃ are vN . These solutions are given by ũ = vN + wN , ṽ = vN + w′N , where
wN , w′N are the H1

0 (Ω̃) solutions to H̃W,qwN = −H̃W,qvN and H̃0,0w
′
N =

−H̃0,0vN .
Several times below we will need Hardy’s inequality. It is typically ap-

plied in the form
∣∣ ∫

Ω̃ fϕ dx
∣∣ ≤ ‖δf‖L2‖δ−1ϕ‖L2 ≤ C‖δf‖L2‖∇ϕ‖L2 when

ϕ ∈ H1
0 (Ω̃).

Lemma 5.3. Let Ω̃ ⊆ Rn be a bilipschitz image of a bounded open set with
Lipschitz boundary. Then for any ϕ ∈ H1

0 (Ω̃) one has∫
Ω̃

|ϕ|2

δ2
dx ≤ C

∫
Ω̃
|∇ϕ|2 dx.

Proof. For sets with Lipschitz boundary see Davies [16]. The result follows
for bilipschitz images of such sets by a change of coordinates.

The next three lemmas are concerned with estimating the remainder
terms wN and w′N . The objective is to show that they are in a suitable sense
smaller than vN , which will then be the dominating part in the solutions.
The gradient L2 estimates are obtained from standard estimates for weak
solutions.

Lemma 5.4. One has ‖∇wN‖L2(Ω̃), ‖∇w
′
N‖L2(Ω̃) = o(N

3−n
4 ) as N →∞.

Proof. Since 0 is not a Dirichlet eigenvalue of HW,q or H0,0 in Ω, the equa-
tions for wN and w′N above have unique solutions inH1

0 (Ω̃), and ‖∇wN‖L2(Ω̃)

and ‖∇w′N‖L2(Ω̃) will be bounded by a constant times the H−1(Ω̃) norm of

the right hand sides. Thus it will be enough to show that ‖H̃W,qvN‖H−1(Ω̃) =

o(N
3−n

4 ) as N →∞, and W = q = 0 will be a special case of this.
We have

H̃W,qvN = −L0(ψE)− div(A−A(0))∇(ψE)− ∂xj (bjvN )− bj∂xjvN + cvN
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where L0 = divA(0)∇ = ∆. Note that L0(ψE) = (L0ψ)E+2∇ψ ·∇E since
L0E = 0. If ϕ ∈ C∞c (Ω̃) then in the distribution pairing we have

〈H̃W,qvN , ϕ〉 =
∫

Ω̃

(
− (L0ψ)Eϕ− 2N(∇ψ · (iα− en))Eϕ

+ (A−A(0))∇(ψE) · ∇ϕ+ vN (b · ∇ϕ)− (b · ∇vN )ϕ+ cvNϕ
)
dx

We split this into a sum of six integrals as 〈H̃W,qvN , ϕ〉 =
∑6

j=1 Ij and
estimate each integral.

First, (L0ψ)E = NψjE where ψj are of the same form as ψ. Conse-
quently Hardy’s inequality and the computation in Lemma 5.2 give |I1| ≤
CN‖δψjE‖L2‖ϕ‖H1 = O(N

−1−n
4 )‖ϕ‖H1 . A similar argument shows that

|I2| ≤ CN3/2O(N
−5−n

4 )‖ϕ‖H1 = O(N
1−n

4 )‖ϕ‖H1 . Lemma 5.2 and Hardy’s
inequality also give |Ij | = O(N

−1−n
4 )‖ϕ‖H1 for j = 4, 5, 6.

It remains to estimate I3. One has ∇(ψE) = N1/2(ψj)E+N(iα−en)ψE
where ψj have the same form as ψ. Again the computation of Lemma 5.2
gives ∣∣∣ ∫

Ω̃
(A−A(0))N1/2ψjE · ∇ϕdx

∣∣∣ ≤ C‖A‖L∞N1/2‖ψjE‖L2‖ϕ‖H1

= O(N
1−n

4 )‖ϕ‖H1 .

Finally,∣∣∣ ∫
Ω̃
(A−A(0))N(iα− en)ψE · ∇ϕdx

∣∣∣ ≤ CN‖(A−A(0))ψE‖L2‖ϕ‖H1 .

This is o(N
3−n

4 )‖ϕ‖H1 by the continuity of A at 0 and by Lemma 5.2. We
obtain ‖H̃W,qvN‖H−1(Ω̃) = o(N

3−n
4 ) as desired.

Next we need L2 estimates. These are easier to prove for w′N since on the
Ω side everything reduces to the following properties of harmonic functions.

Lemma 5.5. Let Ω ⊆ Rn be a bounded open set, and let u be a harmonic
function in Ω.

(a) If u ∈ L2(Ω) then ‖δ∇u‖L2(Ω) ≤ C‖u‖L2(Ω).

(b) If u ∈ H1(Ω) and ∂Ω is C1,1, then ‖u‖L2(Ω) ≤ C‖u|∂Ω‖H−1/2(∂Ω).

Proof. (a) If x ∈ Ω and B = B(x, δ(x)/2) then the mean-value property
implies

|∇u(x)| ≤ C

δ(x)n+1

∫
B
|u(y)− u(x)| dy ≤ C

δ(x)

( 1
|B|

∫
B
|u| dy + |u(x)|

)
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with C = C(n). Thus δ|∇u| ≤ C(M(χΩu) + |u|) where M is the Hardy-
Littlewood maximal function in Rn. By the mapping properties of this
function, see Stein [39], we obtain (a).

(b) The proof is by duality. Let ϕ ∈ L2(Ω) and let v be the H1
0 (Ω) solu-

tion to ∆v = ϕ in Ω. By [18, 9.6], v ∈ H2(Ω) with ‖v‖H2(Ω) ≤ C‖ϕ‖L2(Ω).
Then ∫

Ω
uϕdx =

∫
Ω
u∆v dx =

∫
∂Ω
u
∂v

∂ν
dS −

∫
Ω
∇u · ∇v dx.

Since u is harmonic the last integral is zero, and∣∣∣ ∫
Ω
uϕdx

∣∣∣ ≤ ‖u|∂Ω‖H−1/2(∂Ω)‖
∂v

∂ν
‖H1/2(∂Ω).

Here ‖∂v∂ν ‖H1/2(∂Ω) ≤ C‖v‖H2(Ω) ≤ C‖ϕ‖L2(Ω), which shows (b).

We remark that Lemma 5.5 (b) is the only place where extra regularity
of ∂Ω is needed, in the sense that all other parts of the argument work
for Lipschitz domains with small modifications. The estimate in part (b) is
probably false for Lipschitz domains. The author would like to thank Carlos
Kenig for clarifying this point.

The following estimates will be the last ones needed for the proof of
Proposition 5.1.

Lemma 5.6. If ∂Ω is C1,1 then ‖w′N‖L2(Ω̃), ‖δ∇w
′
N‖L2(Ω̃) = O(N

−1−n
4 ).

Proof. It is enough to prove this for v = vN + w′N , since vN satisfies these
estimates by Lemma 5.2. Furthermore, since F is bilipschitz, we may con-
sider v ◦ F−1 ∈ H1(Ω) instead of v. Now v ◦ F−1 is a harmonic function in
Ω with boundary values vN ◦ F−1 on ∂Ω. We have

‖vN ◦ F−1‖H−1/2(∂Ω) ≤ C‖vN (x′, 0)‖H−1/2(Rn−1)

Let f(x′) = vN (x′, 0) = ψ0(N1/2x′)eiNα
′·x′ . Then

‖f‖L2 = CN
1−n

4 . (5.3)

Choose j, 1 ≤ j ≤ n− 1, with αj 6= 0. We have ∂xjf = N1/2f1 + iNαjf and
∂xjf1 = N1/2f2 + iNαjf1, where f1 and f2 have the same form as f and
satisfy (5.3). Then∣∣∣ ∫

fϕ dx′
∣∣∣ ≤ C(N−1‖f‖L2‖ϕ‖H1 +N−3/2‖f1‖L2‖ϕ‖H1 +N−1‖f2‖L2‖ϕ‖L2).

We obtain from (5.3) that ‖f‖H−1 = O(N
−3−n

4 ), and interpolation gives
‖f‖H−1/2 = O(N

−1−n
4 ). The result now follows from Lemma 5.5.
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Proof. (of Proposition 5.1) We choose the coordinate system (x′, xn) as
above and take fN = cNvN ◦ F−1|∂Ω, where cN > 0 is a constant to be
determined later. Using Lemma 5.1 we have

((ΛW,q − Λ0,0)fN , fN ) = c2N

∫
Ω
(iW · (u∇v̄ − v̄∇u) + (|W |2 + q)uv̄) dx

= c2N

∫
Ω̃
(b · (ũ∇¯̃v − ¯̃v∇ũ) + cũ¯̃v) dx

where ũ solves H̃W,qũ = 0 in Ω̃, ṽ solves H̃0,0ṽ = 0 in Ω̃, and ũ = ṽ = vN on
∂Ω̃. Thus ũ = vN +wN and ṽ = vN +w′N according to our earlier notation,
and we have

c−2
N ((ΛW,q − Λ0,0)fN , fN ) =

∫
Ω̃
b(0) · (vN∇v̄N − v̄N∇vN ) dx

+
∫

Ω̃
(b− b(0)) · (vN∇v̄N − v̄N∇vN ) dx

+
∫

Ω̃
b · (vN∇w̄′N +wN∇v̄N +wN∇w̄′N − v̄N∇w′N − w̄N∇vN − w̄N∇w′N ) dx

+
∫

Ω̃
c(vN v̄N + vN w̄

′
N + wN v̄N + wN w̄

′
N ) dx. (5.4)

We write the right hand side as I1 + I2 + I3 + I4 and estimate each integral.
Note that vN∇v̄N − v̄N∇vN = −2Niα|vN |2 and b(0) = iW (z), so

I1 = 2N(W (z) · α)
∫

Ω̃
|vN |2 dx = k0(W (z) · α)N

1−n
2 + o(N

1−n
2 )

by Lemma 5.2, where k0 = (
∫
η(t)2 dt)n−1. The continuity of W at z implies

ess supx∈Ω̃∩B(0,N−1/2)|b(x)− b(0)| → 0 as N → 0, so that I2 = o(N
1−n

2 ). We
have

|I3| ≤ C(‖vN‖ ‖∇w′N‖+ ‖δ−1wN‖ ‖δ∇vN‖+ ‖δ−1wN‖ ‖δ∇w′N‖
+ ‖vN‖ ‖∇w′N‖+ ‖δ−1wN‖ ‖δ∇vN‖+ ‖δ−1wN‖ ‖δ∇w′N‖)

where all the norms are in L2(Ω̃). We obtain from Lemmas 5.2 to 5.6 that
I3 = o(N

1−n
2 ). Finally,

|I4| ≤ C(‖vN‖2 + ‖vN‖ ‖w′N‖+ ‖δ−1wN‖ ‖δvN‖+ ‖δ−1wN‖ ‖δw′N‖).

Since ‖δw′N‖ ≤ C‖w′N‖, using the lemmas gives I4 = o(N
1−n

2 ).
Setting cN = k

−1/2
0 N

n−1
4 , using the estimates for the integrals, and let-

ting N →∞ in (5.4), we obtain the desired result.

We may now prove the theorems from the introduction.
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Theorem 1.6. Let Ω ⊆ Rn be a bounded open set with C1,1 boundary,
and let W ∈ C(Ω;Rn) and q ∈ L∞(Ω;R). Suppose that 0 is not a Dirichlet
eigenvalue of HW,q. Then ΛW,q uniquely determines the tangential compo-
nents of W on ∂Ω.

Proof. Follows directly from Proposition 5.1.

For the proof of the global uniqueness theorem, we need to have a special
gauge transformation which preserves the tangential components of a vector
field but sets the normal component to zero. In the next lemma, φε(x′) =
ε−(n−1)φ(x′/ε) with φ ∈ C∞c (Rn−1), 0 ≤ φ ≤ 1, φ = 1 for |x| ≤ 1/2, and
φ = 0 for |x| ≥ 1.

Lemma 5.7. Let g ∈ Cdc (Rn−1), and define G(x′, t) = (φε ∗g)(x′) for t > 0,
where ε = ε(t) = t1/2. Let

p(x′, xn) =
∫ xn

0
G(x′, t) dt.

Then p ∈ C1,d(Rn−1 × [0, 1]) and p|Rn−1 = 0, ∂p
∂xn

|Rn−1 = g.

Proof. Let ω be a Dini modulus for g. One has |G(x′, t)| ≤ ‖g‖L∞ , |G(x′, t)−
G(y′, t)| ≤ ω(|x′−y′|) and |G(x′, s)−G(x′, t)| ≤ ω(|s1/2−t1/2|) ≤ ω(|s−t|1/2),
where ω(t1/2) is another Dini modulus. We easily see that p is continuous
in Rn−1 × [0, 1].

We have |∂xjG(x′, t)| ≤ Ct−1/2, so ∂xjp(x
′, xn) =

∫ xn

0 ∂xjG(x′, t) and
clearly ∂xnp(x′, xn) = G(x′, xn). One also has the estimate |∂xjG(x′, t) −
∂xjG(y′, t)| ≤ Ct−1/2ω(|x′ − y′|). We obtain that

|∂xjp(x
′, xn)− ∂xjp(y

′, xn)| ≤ Cω(|x′ − y′|),
|∂xjp(x

′, xn)− ∂xjp(x
′, yn)| ≤ C|xn − yn|1/2,

|∂xnp(x
′, xn)− ∂xnp(y

′, xn)| ≤ ω(|x′ − y′|),
|∂xnp(x

′, xn)− ∂xnp(x
′, yn)| ≤ ω(|xn − yn|1/2).

This shows that p ∈ C1,d(Rn−1 × [0, 1]).

Lemma 5.8. Let Ω ⊆ Rn be a bounded open set with C1,d boundary, and
let W ∈ Cd(Ω;Rn). Then there is p ∈ C1,d(Ω;R) which satisfies p|∂Ω = 0
and (W +∇p) · ν|∂Ω = 0.

Proof. Letting g = W · ν ∈ Cd(∂Ω), we need a function p ∈ C1,d(Ω) with
p|∂Ω = 0 and − ∂p

∂ν |∂Ω = g. We may construct p locally near a boundary
point and use a suitable partition of unity to get the desired function in Ω.
Thus, assume 0 is a boundary point, and Ω is given near 0 by {yn > φ(y′)}
where φ ∈ C1,d

c (Rn−1), φ(0) = 0. By the inverse function theorem we may
assume ∇φ(0) = 0.
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We first construct approximate boundary normal coordinates near 0.
Let B be a small ball in Rn with center 0, and let B+ = B ∩ {xn > 0} and
B− = B ∩ {xn < 0}. Define for x ∈ B+

F (x′, xn) = (x′, φ(x′)) +
∫ xn

0
N(x′, t) dt

where N(x′, t) = (φε ∗ n)(x′) is as in Lemma 5.7, and n(x′) = −ν(x′, φ(x′))
where ν is the outer unit normal of ∂Ω. By Lemma 5.7 we have F ∈
C1,d(B+). If x ∈ B− define

F (x′, xn) = (x′, φ(x′))−
∫ −xn

0
N(x′, t) dt

so that F ∈ C1,d(B−). Now the two definitions for F and DF coincide
on Rn−1, so F ∈ C1,d(B) and DF (x′, 0) =

(
I n′(x′)

∇φ(x′) nn(x′)

)
. In particular

DF (0) = I, so the inverse function theorem shows that F is a C1,d diffeo-
morphism from U 3 0 onto V 3 0.

Shrink B so that B ⊆ U , let g̃ = g ◦ F ∈ Cd(B ∩ Rn−1), and let
p̃(x′, xn) =

∫ xn

0 G̃(x′, t) dt as in Lemma 5.7. Then p̃ ∈ C1,d(B+) and
p̃|Rn−1 = 0, ∂p̃

∂xn
|Rn−1 = g̃. We define p = p̃ ◦ F−1 near 0. This gives a

C1,d function in B(0, r) ∩ Ω for some r, and p is zero on ∂Ω. Finally, for
y ∈ B(0, r) ∩ ∂Ω

∂p

∂ν
(y) = ∇p̃(F−1(y)) ·DF (F−1(y))−1ν(y) = − ∂p̃

∂xn
(F−1(y)) = −g(y).

This ends the proof.

Theorem 1.7. Let Ω ⊆ Rn be a bounded open set with C1,1 boundary,
n ≥ 3, let W1,W2 ∈ Cd(Ω;Rn), and let q1, q2 ∈ L∞(Ω;R). Suppose that
0 is not a Dirichlet eigenvalue of HW1,q1 or HW2,q2 . Then ΛW1,q1 = ΛW2,q2

implies curlW1 = curlW2 and q1 = q2 in Ω.

Proof. Theorem 1.6 implies that the tangential components of W1 and W2

on ∂Ω coincide. Applying the gauge transformation of Lemma 5.8 to W1

and W2 will preserve the tangential components and will make the normal
components equal to zero. The new W1 and W2 will satisfy the hypotheses
of the theorem, and one has ΛW1,q1 = ΛW2,q2 and W1 = W2 on ∂Ω. We are
now in the situation of Theorem 1.5, and the result follows.
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5.2 Steady state heat equation with a convection

term

Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary, and let W ∈
L∞(Ω;Rn). Consider the Dirichlet problem{

(∆ +W · ∇)u = 0 in Ω,
u = f on ∂Ω.

This problem has a unique solution u ∈ H1(Ω) for any f ∈ H1/2(∂Ω) by
[18, 8.2]. We may define a Dirichlet to Neumann map formally by

ΛW : f 7→ ∂u

∂ν

∣∣∣
∂Ω
.

More precisely, we define ΛW with the equivalent weak formulations

〈ΛW f, g〉 =
∫

Ω
(∇uf · ∇eg −W · (∇uf )eg) dx (5.5)

=
∫

Ω
(∇ef · ∇vg −W · (∇ef )vg) dx (5.6)

where uf ∈ H1(Ω) solves (∆+W ·∇)uf = 0 in Ω with uf |∂Ω = f , vg ∈ H1(Ω)
solves the adjoint equation ∆vg −∇ · (Wvg) = 0 in Ω with vg|∂Ω = g, and
ef , eg are any functions in H1(Ω) with ef |∂Ω = f and eg|∂Ω = g. We have
that ΛW is a bounded map from H1/2(∂Ω) to H−1/2(∂Ω).

We will start heading toward a proof of Theorem 1.9, which shows that
ΛW determines the boundary values of a Hölder continuous vector field W .
The proof is based on the following integral identity. If ΛW1 = ΛW2 then∫

Ω
(W1 −W2) · (∇u)v dx = 0 (5.7)

where u, v are any H1(Ω) functions satisfying ∆u+W1 · ∇u = 0 and ∆v −
∇ · (W2v) = 0 in Ω. The identity follows immediately when one uses (5.5)
for W1 and (5.6) for W2 and chooses ef = u, eg = v.

For the determination of boundary values, we use the method of singular
solutions due to Alessandrini [3]. The point is to find solutions u and v so
that the integrand in (5.7) will blow up at a given boundary point z ∈ ∂Ω
unless W1(z) = W2(z). In [3] such solutions were constructed for second
order divergence form elliptic operators with W 1,p coefficients, p > n, which
have no lower order terms. In our case lower order terms are present and the
construction of [3] needs to be modified. Below we will repeat arguments
from [3] and supply the necessary modifications, extending the results from
W 1,p to Hölder continuous coefficients in the process.
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Consider the divergence form operator

Lu = −∂xj (ajk∂xk
u+ bju) + cj∂xju+ du (5.8)

where

the domain is Ω = B4R = B(0, 4R) ⊆ Rn, n ≥ 3, (5.9)

ajk, bj ∈ Cα(Ω) with 0 < α < 1, cj , d ∈ L∞(Ω), (5.10)

ajkξjξk ≥ λ|ξ|2 for ξ ∈ Rn, and (5.11)

ajk = akj . (5.12)

All functions in this section are real valued. We will also need that at least
one of the positivity conditions

d− ∂xjbj ≥ 0, (5.13)

d− ∂xjcj ≥ 0, (5.14)

is valid in Ω. These conditions are understood in the sense of distributions.
If L is as above, then the equation Lu = T in Ω has a unique solution

u ∈ H1
0 (Ω) for any T ∈ H−1(Ω) by [18, 8.2]. The Green function for L in

Ω is the distribution kernel G(x, y) of the solution operator T 7→ u, and it
satisfies LG(x, · ) = δx in Ω in a suitable sense. Unfortunately we could not
find a reference for the following estimates for G(x, y), and therefore we will
very briefly indicate how to prove the estimates.

Lemma 5.9. Let L satisfy (5.8) - (5.12) and one of (5.13), (5.14). For any
x ∈ Ω, G(x, · ) ∈ C1,α

loc (Ω r {x}), and one has

|G(x, y)| ≤ C|x− y|2−n for x, y ∈ B4R, (5.15)

|∂yjG(x, y)| ≤ C|x− y|1−n for x, y ∈ B2R. (5.16)

Proof. The estimate (5.15) is in fact valid for L∞ coefficients and is found
in Stampacchia [38], provided one assumes d − ∂xjbj ≥ c0 > 0 instead of
(5.13). When the methods of [38] are combined with the maximum principle
and global boundedness and continuity results of [18, Chapter 8], which are
stronger than the corresponding results in [38], one obtains (5.15) under the
weaker assumption (5.13). Since the results of [18] are valid also when (5.13)
is replaced by (5.14), small modifications of the argument give (5.15) also
when (5.14) holds.

The estimates (5.16) follow from (5.15) and interior Hölder estimates as
in Lemma 5.10 below, since one has LG(x, · ) = 0 in B4R r {x}.

We will use the notations

Ar1,r2(x0) = {x ∈ Rn ; r1 < |x− x0| < r2}, Ar1,r2 = Ar1,r2(0),

‖u‖′Ck,α(Ω) =
∑
|β|≤k

d|β|‖∂βu‖L∞(Ω) +
∑
|β|=k

dk+α[∂βu]Cα(Ω),
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where d = diam(Ω) and [u]Cα(Ω) = supx,y∈Ω
|u(x)−u(y)|
|x−y|α .

Lemma 5.10. Let L satisfy (5.8) - (5.12) and assume f ∈ L∞(Ω), fj ∈
Cα(Ω). Suppose u ∈ H1(Ω) solves Lu = f + ∂xjfj in Ω. Then u ∈ C1,α

loc (Ω),
and if B(x0, r0) ⊆ Ω then one has

‖u‖′C1,α(A1) ≤ C(‖u‖L∞(A2) + r2‖f‖L∞(A2) + r‖fj‖′Cα(A2)),

where A1 = Ar,2r(x0), A2 = Ar/2,4r(x0), 4r < r0, and C is independent of
r, x0, r0.

Proof. This result is from [18, 8.11], except that we have paid closer atten-
tion to constants.

We may now begin the construction of singular solutions. The following
two lemmas correspond to Lemmas 2.2 and 2.3 in [3].

Lemma 5.11. Let L be as in (5.8) - (5.12), and suppose one of (5.13), (5.14)
holds. Let 2 < s < n, and let f ∈ L∞loc(BRr{0}), fj ∈ Cαloc(BRr{0}) satisfy

|f(x)| ≤ A|x|−s in BR r {0}, (5.17)

‖fj‖′Cα(Ar,2r) ≤ Ar1−s for 0 < r < R/2. (5.18)

Then there exists a solution u ∈ C1,α
loc (BR r {0}) to

Lu = f + ∂xjfj in BR r {0},

which satisfies

|u(x)|+ |x||∇u(x)| ≤ C|x|2−s in BR r {0}, (5.19)

‖u‖′C1,α(Ar,2r) ≤ Cr2−s for 0 < r < R/2. (5.20)

Proof. We begin with some preparations. First extend f and fj to Rnr{0}
so that local boundedness and Hölder continuity are preserved, the supports
are contained in B2R, and (5.17), (5.18) are satisfied in B2R with a new A

only depending on the old value of A. Let G(x, y) be the Green function of L
in B4R. The case where only f is present is handled exactly as in Lemma 2.2
of [3], using now the estimate (5.15) and the approximation argument in the
end of this proof, so we may assume f = 0. Also, we make the temporary
assumption fj ∈ L∞(B4R).

Define
u(x) = −

∫
B2R

∂yjG(x, y)fj(y) dy. (5.21)

Then u solves Lu = ∂xjfj in B4R. From (5.16) and (5.18) we obtain

|u(x)| ≤ C[I1 + I2 + I3]
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where
Ij =

∫
Ej

|x− y|1−n|y|1−s dy,

and E1 = {|y| < |x|/2}, E2 = {|x|/2 < |y| < 2|x|}, and E3 = {|y| > 2|x|}.
If |y| < |x|/2 then |x− y| > |x|/2, so that

I1 ≤ C|x|1−n
∫
|y|<|x|/2

|y|1−s dy ≤ C|x|2−s.

For I2 we have

I2 ≤ C|x|1−s
∫
|z|<4|x|

|z|1−n dy ≤ C|x|2−s.

Finally, when |y| > 2|x| then |x− y| > |y|/2 and

I3 ≤ C

∫
|y|>2|x|

|y|2−n−s dy ≤ C|x|2−s.

Thus u satisfies |u(x)| ≤ C|x|2−s, and (5.19), (5.20) follow from Lemma
5.10.

Next we remove the assumption fj ∈ L∞(B4R). We define

fj,N =


N when fj > N,

fj , when |fj | ≤ N,

−N, when fj < −N.

Then fj,N ∈ Cαloc(B4R r {0}) with ‖fj,N‖′Cα(Ω′) ≤ ‖fj‖′Cα(Ω′) when Ω′ ⊆
B4R r {0}, and fj,N ∈ L∞(B4R). Let uN be the corresponding solution
of LuN = ∂xjfj,N in B4R r {0} obtained from (5.21). Then uN satisfies
(5.19), (5.20) with C independent of N , so (uN ) is a bounded sequence
in C1,α

loc (BR r {0}) and there is a subsequence which converges weakly in
C1,α

loc (BR r {0}) and strongly in C1
loc(BR r {0}). The limit u satisfies (5.19),

(5.20) and Lu = ∂xjfj in BR r {0}.

Lemma 5.12. Let s > n be a nonintegral real number, and suppose f ∈
L∞loc(BRr{0}), fj ∈ Cαloc(BRr{0}) satisfy (5.17), (5.18). Then there exists
a solution u ∈ C1,α

loc (BR r {0}) to

∆u = f + ∂xjfj in BR r {0}, (5.22)

which satisfies (5.19), (5.20).

Proof. We make similar preparations as in the proof of Lemma 5.11, assum-
ing f = 0 by [3], Lemma 2.3, and fj ∈ L∞(B4R) by the approximation. We
need some properties of Gegenbauer polynomials Cαk from [1] and [40].
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(a) (1− 2xz + z2)−α =
∑∞

k=0C
α
k (x)zk for α > 0, |x| ≤ 1, |z| < 1,

(b) |Cαk (x)| ≤
(
k+2α−1

k

)
for |x| ≤ 1,

(c) (Cαk )′(x) = 2αCα+1
k−1 (x) for k ≥ 1.

By (a) we have Γ(x − y) = −cn|x − y|2−n =
∑∞

k=0Hk(x, y) for x 6= 0 and
|y| < |x|, where

Hk(x, y) = −cn
|y|k

|x|k+n−2
C

(n−2)/2
k

( y
|y|

· x
|x|

)
.

From [40, Theorem 2.14] we have that for fixed x 6= 0, Hk(x, · ) is a homoge-
neous harmonic polynomial of degree k. This also shows, upon changing the
roles of x and y and after a computation, that ∆xHk(x, y) = 0 for x 6= 0. By
(b) and (c) we obtain |C(n−2)/2

k (x)| ≤ Ckn−3 and |(C(n−2)/2
k )′(x)| ≤ Ckn−1

where C only depends on n, and this implies that

|∂yjHk(x, y)| ≤ Ckn−1 |y|k−1

|x|k+n−2
. (5.23)

Let now ν = [s] − n and define Γν(x, y) = Γ(x − y) −
∑ν

k=0Hk(x, y).
Then the function

u(x) = −
∫
B2R

∂yjΓν(x, y)fj(y) dy

solves ∆u = ∂xjfj in B4R r {0}. We estimate

|u(x)| ≤ C[I2 + I3 + I4 + I5]

where I2 and I3 are as in Lemma 5.11 and are ≤ C|x|2−s, and

I4 =
ν∑
k=0

kn−1

∫
|y|>|x|/2

|y|k−1

|x|k+n−2
|y|1−s dy,

I5 =
∞∑

k=ν+1

kn−1

∫
|y|<|x|/2

|y|k−1

|x|k+n−2
|y|1−s dy.

By the choice of ν we obtain

I4 ≤ C

ν∑
k=0

kn−1|x|2−k−n|x|k+n−s ≤ C|x|2−s,

I5 ≤ C
∞∑

k=ν+1

kn−1|x|2−k−n
( |x|

2

)k+n−s
≤ C|x|2−s.

Thus |u(x)| ≤ C|x|2−s, and again (5.19), (5.20) follow from Lemma 5.10.
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We may now give the result, corresponding to Theorem 1.1 of [3], which
ensures the existence of solutions with a singularity of arbitrarily high order
at a given point. The result extends [3] to operators with lower order terms
and also a larger class of coefficients: recall that W 1,p ⊆ C1−n/p when p > n,
but there are Hölder continuous functions which are nowhere differentiable.
The assumption ajk(0) = δjk is just a normalization which may be removed
by introducing a constant matrix in the solution as in [3].

Theorem 1.8. Let L be as in (5.8) - (5.12), and suppose one of (5.13), (5.14)
holds. Assume also that ajk(0) = δjk. Then for every spherical harmonic
Sm of degree m = 0, 1, 2, . . ., there exists u ∈ C1,β

loc (BR r {0}) such that

Lu = 0 in BR r {0},

and furthermore

u(x) = |x|2−n−mSm
( x

|x|

)
+ w(x),

where w satisfies

|w(x)|+ |x||∇w(x)| ≤ C|x|2−n−m+β in BR r {0}, (5.24)

‖w‖′C1,β(Ar,2r) ≤ Cr2−n−m+β for 0 < r < R/2. (5.25)

Here β is any number with 0 < β < α.

Proof. If α is rational, we decrease α so that it is larger than β and irrational.
Choose K = [m/α] and let H(x) = |x|2−n−mSm

(
x
|x|

)
, so that ∆H = 0 in

BR r {0}. We have

LH = (∆ + L)H = ∂xj ((ajk(0)− ajk)∂xk
H − bjH) + cj∂xjH + dH

so LH = ∂xjfj + f , where |f(x)| ≤ C|x|1−n−m, |fj(x)| ≤ C|x|1−n−m+α and

[fj ]Cα(Ar,2r) ≤ ‖ajk(0)− ajk‖L∞(Ar,2r)[∂xk
H]Cα(Ar,2r)

+ [ajk]Cα(Ar,2r)‖∂xk
H‖L∞(Ar,2r) + ‖bj‖Cα(Ar,2r)‖H‖Cα(Ar,2r) ≤ Cr1−n−m.

Thus f , fj satisfy the conditions of Lemma 5.12 with s = n+m−α. Let w0

be the corresponding solution of ∆w0 = LH which satisfies ‖w0‖′C1,α(Ar,2r) ≤
Cr2−n−m+α. Inductively, we define wj for 1 ≤ j ≤ K − 1 as the solution
of ∆wj = (∆ + L)wj−1 given by Lemma 5.12. The solutions wj satisfy
‖wj‖′C1,α(Ar,2r) ≤ Cr2−n−m+(j+1)α, and then (∆+L)wK−1 = f+∂xjfj where
f , fj satisfy the conditions of Lemma 5.11 with s = n+m− (K + 1)α < n.
Finally, let WK be the solution to LWK = −(∆ + L)wK−1 obtained from
Lemma 5.11.
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Set

w =
K−1∑
j=0

wj +WK .

Then w satisfies (5.24), (5.25) and

Lw =
K−1∑
j=0

(∆ + L)wj −
K−1∑
j=0

∆wj + LWK = −LH.

This shows that u = H + w is indeed a solution of the desired form.

We now prove Theorem 1.9. The author gratefully acknowledges the help
of Giovanni Alessandrini in the choice of the singular solutions. We remark
that the restriction to n ≥ 3 in Theorems 1.8 and 1.9 is for convenience only,
and similar results hold also for n = 2.

Theorem 1.9. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary,
and n ≥ 3. If W1,W2 ∈ Cα(Ω;Rn) for some α > 0, then ΛW1 = ΛW2 implies
W1 = W2 on ∂Ω.

Proof. We argue by contradiction and assume that W1(z0) 6= W2(z0) for
some z0 ∈ ∂Ω. We may choose coordinates so that z0 = 0 and for some r0
we have Ω ∩ B(0, r0) = {xn > φ(x′)} ∩ B(0, r0) where φ : Rn−1 → R is a
Lipschitz function. Let η = W1(0) −W2(0); since ∂Ω is Lipschitz we may
rotate the coordinates slightly so that ηn 6= 0 in the new coordinates.

We need some more geometric preliminaries. For 0 < ε < 1 and z ∈ Rn

define the cones

Cε(z) = {x ;
( x− z

|x− z|

)
n
> 1− ε}, C−ε (z) = {x ;

( x− z

|x− z|

)
n
< −(1− ε)}.

By the Lipschitz condition there is ε0 with 0 < ε0 < 1 so that Cε0(0) ∩
B(0, r0) ⊆ Ω and C−ε0(0) ∩ B(0, r0) ⊆ Rn r Ω. Let σ > 0 be a small
parameter and define z = zσ = (0,−σ), so that one may find c = c(ε0) < 1
with B(z, cσ) ⊆ Rn r Ω for σ small. We also have ε = ε(ε0) < 1 so that

Cε(z) ∩ {|x− z| > 2σ} ⊆ Cε0(0).

In fact one may choose ε so that this holds for σ = 1, and the same ε works
for all σ by scaling. We also require that for x ∈ Cε(z) one has∣∣∣η′ · ( x− z

|x− z|

)′∣∣∣ ≤ 1
2

∣∣∣ηn( x− z

|x− z|

)
n

∣∣∣.
To obtain this we decrease ε so that ε ≤ 1 −

(
M
M+1

)1/2 where M = 4|η′|2
η2

n
.

This final ε will thus depend only on ε0 and η. As a last remark, we note
that

|Cε(z) ∩ ∂B(z, r)| = γ|∂B(z, r)|
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where | · | is (n− 1)-dimensional surface measure and γ = γ(ε) > 0 is fixed.
Now extend W1 and W2 to Hölder continuous vector fields in Rn, and

choose R so that Ω ⊆ B(0, R/2). We use Theorem 1.8 to find solutions
u = u0 + u1 to ∆u + W1 · ∇u = 0 in B(z,R) r {z} and v = v0 + v1 to
∆v −∇ · (W2v) = 0 in B(z,R) r {z}, so that

u0(x) = |x− z|2−n, |u1(x)|+ |x− z||∇u1(x)| ≤ C|x− z|2−n+β ,

v0(x) = |x− z|−n(η · (x− z)), |v1(x)|+ |x− z||∇v1(x)| ≤ C|x− z|1−n+β

where β > 0. Write W = W1 −W2 and use (5.7) with these u and v to
obtain

−
∫
B(z,r)∩Ω

η · (∇u0)v0 dx =
∫
B(z,r)∩Ω

η · ((∇u0)v1 + (∇u1)v) dx

+
∫
B(z,r)∩Ω

(W (x)−W (0)) · (∇u)v dx+
∫

ΩrB(z,r)
W · (∇u)v dx. (5.26)

Here r = r(σ) = σ1/2. We write (5.26) as I = I1 + I2 + I3 and want to show
that I blows up as σ → 0 at a faster rate than I1 + I2 + I3.

We have

I = (n− 2)
∫
B(z,r)∩Ω

|x− z|−2n[η · (x− z)]2 dx.

The integrand is nonnegative so reducing the integration set makes the in-
tegral smaller. We define the set

Eσ = Cε(z) ∩ {2σ < |x− z| < r}

and note that by the considerations above Eσ is contained in B(z, r) ∩ Ω
when r is small. For x ∈ Eσ we have∣∣∣η · x− z

|x− z|

∣∣∣ ≥ ∣∣∣ηn( x− z

|x− z|

)
n

∣∣∣− ∣∣∣η′ · ( x− z

|x− z|

)′∣∣∣ ≥ 1
2
|ηn|(1− ε)

and∫
B(z,r)∩Ω

|x− z|−2n[η · (x− z)]2 dx ≥
∫
Eσ

|x− z|2−2n
[
η · x− z

|x− z|

]2
dx

≥ η2
n(1− ε)2

4

∫ r

2σ
s2−2nγ|∂B(z, s)| ds = C(n, ε0, η)((2σ)2−n − r2−n).

Using the choice r = σ1/2 this gives I ≥ Cσ2−n when σ is small.
For the right hand side of (5.26), first we have

|I1| ≤ C

∫
cσ<|x−z|<r

|x− z|2−2n+β dx ≤ Cσ2−n+β
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for σ small. For I2 note |x| ≤ (1 + 1
c )|x − z| ≤ Cr on Ω ∩ B(z, r), so that

|W (x)−W (0)| = o(1) as σ → 0 by the continuity of W at 0. Then

|I2| ≤ o(1)
∫
cσ<|x−z|<r

|x− z|2−2n dx = σ2−no(1)

as σ → 0. Finally

|I3| ≤ C

∫
r<|x−z|<R

|x− z|2−2n dx ≤ Cσ
2−n

2 .

Now multiplying (5.26) by σn−2 and letting σ → 0 gives a contradiction.

Again global uniqueness is obtained from the boundary result and The-
orem 1.5.

Theorem 1.10. Let Ω ⊆ Rn be a bounded open set with Lipschitz bound-
ary, and suppose n ≥ 3. If W1 and W2 are two Lipschitz continuous vector
fields in Ω, then ΛW1 = ΛW2 implies W1 = W2 in Ω.

Proof. By Theorem 1.9, W1 and W2 have Lipschitz continuous extensions
to a larger ball so that they coincide outside Ω, and an analogue of Lemma
4.2 shows that ΛW1 = ΛW2 in this ball. Therefore, we may assume that Ω
is a ball and W1 = W2 = 0 on ∂Ω.

If W ∈ W 1,∞(Ω;Rn) define q(W ) = |W |2
4 + ∇·W

2 . It follows from (4.1)
that

LW/2i,q(W ) = −∆−W · ∇
and

〈ΛW/2i,q(W )f, g〉 =
∫

Ω
(∇uf · ∇eg −W · (∇uf )eg) dx+

1
2

∫
∂Ω

(W · ν)fg dS

where uf ∈ H1(Ω) solves (∆ + W · ∇)uf = 0 in Ω, uf = f on ∂Ω, and
eg ∈ H1(Ω) satisfies eg = g on ∂Ω. This shows that

ΛW/2i,q(W )f = ΛW f +
1
2
(W · ν)|∂Ωf.

From ΛW1 = ΛW2 and W1|∂Ω = W2|∂Ω we have ΛW1/2i,q(W1) = ΛW2/2i,q(W2).
Then Theorem 1.5 implies curlW1 = curlW2 in Ω, and since Ω is a ball we
have W2 = W1 +∇p where p ∈ W 2,∞(Ω;Rn). Here ∇p = 0 near ∂Ω, so by
substracting a constant we may assume that p = 0 on ∂Ω.

From Theorem 1.5 we also have that the potentials |Wj |2
4 + ∇·Wj

2 must
be the same. Using W2 = W1 +∇p, this implies that

∆p+W1 · ∇p+
1
2
|∇p|2 = 0 in Ω.

Since also p|∂Ω = 0, the maximum principle for quasilinear elliptic equations
([18, 10.1]) implies that p = 0. Hence W1 = W2 in Ω.
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