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Abstract

We give a procedure for reconstructing a magnetic field and elec-
tric potential from boundary measurements given by the Dirichlet to
Neumann map for the magnetic Schrödinger operator in Rn, n ≥ 3.
The magnetic potential is assumed to be continuous with L∞ diver-
gence and zero boundary values. The method is based on semiclassical
pseudodifferential calculus and the construction of complex geometri-
cal optics solutions in weighted Sobolev spaces.

1 Introduction

Let Ω ⊆ Rn, n ≥ 3, be a bounded domain with C1,1 boundary. We consider
the magnetic Schrödinger operator

HW,q =
n∑

j=1

(Dj +Wj)2 + q

where Dj = 1
i

∂
∂xj

, W ∈ L∞(Ω;Cn) is the magnetic potential, and q ∈
L∞(Ω;C) is the electric potential (the coefficients can be complex valued).
Assuming 0 is not a Dirichlet eigenvalue of HW,q in Ω, the problem{

HW,qu = 0 in Ω,
u = f on ∂Ω

has a unique solution u = uf ∈ H1(Ω) for any f ∈ H1/2(∂Ω).
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The boundary measurements are given by the Dirichlet to Neumann map
(DN map), defined formally by

ΛW,q : f 7→
∂uf

∂ν

∣∣∣
∂Ω

+ i(W · ν)f.

Here ν is the outer unit normal to ∂Ω. More precisely, if f, g ∈ H1/2(∂Ω)
we define ΛW,q using the equivalent weak formulations

〈ΛW,qf, g〉 =
∫

Ω
(∇uf · ∇eg + iW · (uf∇eg − eg∇uf ) + (W 2 + q)ufeg) dx

=
∫

Ω
(∇ef · ∇vg + iW · (ef∇vg − vg∇ef ) + (W 2 + q)efvg) dx

where vh ∈ H1(Ω) solves the adjoint problemH−W,qvh = 0 in Ω with vh|∂Ω =
h, and eh is any H1(Ω) function with eh|∂Ω = h. Then ΛW,q is a bounded
map H1/2(∂Ω) → H−1/2(∂Ω).

The gauge transformation W 7→W +∇p, where p ∈W 1,∞(Ω;C), trans-
forms the magnetic potential to a gauge equivalent potential but preserves
the magnetic field curlW . If additionally p|∂Ω = 0 then ΛW+∇p,q = ΛW,q,
which means that boundary measurements are preserved in gauge transfor-
mations which respect the boundary.

We are interested in recovering curlW and q from ΛW,q. This is a typ-
ical inverse problem where one wishes to know the interior properties of a
medium by making measurements at the boundary. It is related to the ex-
tensively studied inverse conductivity problem proposed by Calderón [2]. In
fact, most known results in dimensions n ≥ 3 (starting in Sylvester-Uhlmann
[23], for later work see [26], [27]) reduce that problem to recovering q from
Λ0,q.

The problem is closely related to inverse scattering at fixed energy, which
was studied for the magnetic case in Eskin-Ralston [4]. See also Sun [22]
for an application of the method in [4]. One motivation for the present
study has been to understand the approach of [4] and to clarify the role of
pseudodifferential operators in inverse problems for first order perturbations
of the Laplacian.

Previous results for this inverse problem concern unique determination
of the coefficients, and they state that ΛW1,q1 = ΛW2,q2 implies curlW1 =
curlW2 and q1 = q2 in Ω, under varying assumptions on Wj , qj , and Ω. Sun
[21] proved this in the case where the curlWj are small. Panchenko [17]
proves a similar result in a less regular setting. The smallness assumption
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was removed by Nakamura-Sun-Uhlmann [13] who considered C∞ coeffi-
cients. Based on the method in [13], the smoothness assumption was re-
duced to C1 by Tolmasky [25], and to Dini continuous in [18]. These results
are not constructive.

In this paper we give a constructive algorithm for recovering curlW and
q from ΛW,q. Such an algorithm is well known in the case W = 0 and is
due to Nachman [11] and also Novikov [16]. This result combines ideas from
scattering theory with so called complex geometrical optics (CGO) solutions
of the Schrödinger equation, which were introduced in the fundamental pa-
per [23]. The main point is that the CGO solutions are defined globally
and are unique in a certain sense. The problem in extending the results
of Nachman to nonzero W has been that the main method of producing
CGO solutions in that case, the pseudodifferential conjugation technique of
Nakamura-Uhlmann [14], only works in bounded domains and there does
not seem to be a proper notion of uniqueness for solutions.

We will give a global version of the Nakamura-Uhlmann technique which
will produce global CGO solutions with uniqueness in the proper weighted
Sobolev spaces. To do this we apply semiclassical pseudodifferential cal-
culus. This is largely equivalent with the parameter-dependent calculus
used earlier in such results, but it simplifies the proofs. A main new ele-
ment in our approach is a variant of the pseudodifferential cutoff technique
used by Takeuchi [24] and Kenig-Ponce-Vega [7] in the context of nonlin-
ear Schrödinger equations. We remark that semiclassical notation was also
recently used by Kenig-Sjöstrand-Uhlmann [8] who studied the problem of
recovering coefficients from partial boundary measurements.

We record some notation. Let ∆ =
∑
D2

j , ∆ζ = ∆ + 2ζ · D, and
Dζ = D + ζ, where D = (D1, . . . , Dn) and ζ ∈ Cn, ζ2 := ζ · ζ = 0. The
ζ-dependent operators ∆ζ and Dζ arise naturally in the construction of
CGO solutions. For δ ∈ R we also use weighted L2 spaces L2

δ with norm
‖f‖L2

δ
= ‖〈x〉δf‖L2 where 〈x〉 = (1 + |x|2)1/2, and weighted Sobolev spaces

Hs
δ with norm ‖f‖Hs

δ
= ‖〈x〉δf‖Hs . If X is a function space we write Xc for

the set of compactly supported functions in X, and XΩ for all functions in
X supported in Ω.

The construction of CGO solutions follows from the norm estimates in
the following theorem.

Theorem 1.1. Let W ∈ Cc(Rn;Cn), q ∈ L∞c (Rn;C), and −1 < δ < 0. If
ζ ∈ Cn with ζ2 = 0 and |ζ| is large enough, then for any f ∈ L2

δ+1(R
n) the
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equation
(∆ζ + 2W ·Dζ + q)u = f (1)

has a unique solution u ∈ H1
δ (Rn). Furthermore, u ∈ H2

δ (Rn), and u

satisfies for 0 ≤ s ≤ 2

‖u‖Hs
δ
≤ C|ζ|s−1‖f‖L2

δ+1
,

where C is independent of ζ and f .

Theorem 1.1 generalizes results in [23] to operators with first order terms.
Using the global CGO solutions to HW,qu = 0 obtained from this theorem,
we may extend the results of Nachman to obtain a constructive algorithm
for recovering curlW and q from ΛW,q. The main result is as follows.

Theorem 1.2. Let Ω ⊆ Rn, n ≥ 3, be a bounded simply connected C1,1

domain. Suppose W ∈ CΩ(Rn;Cn) with D ·W ∈ L∞(Rn;C), and suppose
q ∈ L∞Ω (Rn;C). Also suppose that 0 is not a Dirichlet eigenvalue of HW,q

in Ω. Then ΛW,q determines curlW uniquely and constructively. Further, if
W is C1+ε and ∂Ω is C2+ε for some ε > 0, then one may construct q from
ΛW,q.

The reconstruction procedure for curlW is outlined in the following four
steps.

1. From the knowledge of ΛW,q, one may determine the boundary values
uζ |∂Ω of a CGO solution uζ as the unique solution of a boundary
integral equation on ∂Ω.

2. From ΛW,q and uζ |∂Ω one computes a scattering transform tW,q(ξ, ζ).

3. The expression RW,q(ξ, µ) = lims→∞ s−1tW,q(ξ, sµ) is essentially the
Fourier transform of curlW .

4. curlW may be computed from RW,q using the inverse Fourier trans-
form.

The structure of the paper is as follows. Section 2 contains some facts
on semiclassical pseudodifferential calculus, and Section 3 contains estimates
for ∂ equations which will be needed later. In Section 4 we prove Theorem
1.1, where the main step is to conjugate the first order term into a lower
order one using pseudodifferential operators. Section 5 discusses equivalent
problems which characterize the CGO solutions. In Sections 6 and 7 we
reconstruct the magnetic field and electric potential, respectively.
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2 Semiclassical pseudodifferential calculus

Our method will involve pseudodifferential operators depending on a small
parameter h. We will collect the required properties of these operators here.
See [3] for more details.

Definition. If 0 ≤ σ < 1/2 and m ∈ R, we let Sm
σ (Rn) be the space of

all functions a(x, ξ;h) where x, ξ ∈ Rn and h ∈ (0, h0], h0 ≤ 1, such that
a( · ;h) ∈ C∞(R2n) and

|∂α
x ∂

β
ξ a(x, ξ;h)| ≤ Cαβh

−σ|α+β|〈ξ〉m

for all α, β. If a ∈ Sm
σ we define an operator A = Oph(a) = a(x, hD) by

Af(x) = (2π)−n

∫
Rn

eix·ξa(x, hξ;h)f̂(ξ) dξ.

The class of such operators is denoted by OpSm
σ .

Note that we use the standard quantization instead of Weyl quantization
in the definition of the operators.

Proposition 2.1. [3] Let a ∈ Sm
σ with m ∈ R and 0 ≤ σ < 1/2.

(a) Oph(a) is a continuous map S → S and S ′ → S ′.

(b) If m = 0 then Oph(a) is bounded L2 → L2, and there is a constant C
with

‖Oph(a)‖L2→L2 ≤ C

for 0 < h ≤ h0.

(c) ∂xjOph(a) = Oph(a)∂xj + Oph

(
∂a
∂xj

)
.

(d) The adjoint Oph(a)∗ = Oph(a∗), where a∗ ∈ Sm
σ satisfies for any N

a∗ =
∑
|α|<N

h|α|∂α
ξ D

α
xa

α!
+ hN(1−2σ)Sm

σ .

(e) If a ∈ Sm
σ and b ∈ Sm′

σ then Oph(a)Oph(b) = Oph(c) where c ∈ Sm+m′
σ

satisfies for any N

c =
∑
|α|<N

h|α|∂α
ξ aD

α
x b

α!
+ hN(1−2σ)Sm+m′

σ .
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Also, [Oph(a),Oph(b)] = Oph(d) where d ∈ Sm+m′
σ and

d =
h

i
Hab+ h2(1−2σ)Sm+m′

σ

where Ha = ∇ξa · ∇x −∇xa · ∇ξ is the Hamilton vector field of a.

We will also need the boundedness of OpS0
σ operators on weighted

Sobolev spaces. Here it is natural to use semiclassical spaces Hs
δ,h, defined

by ‖f‖Hs
δ,h

= ‖〈hD〉s〈x〉δf‖L2 . If s ≥ 0 is an integer an equivalent norm is

given by
∑

|α|≤s h
|α|‖Dαf‖L2

δ
.

Proposition 2.2. Let a ∈ S0
σ with 0 ≤ σ < 1/2 and s0, δ0 ≥ 0. Then

Oph(a) is bounded Hs
δ,h(Rn) → Hs

δ,h(Rn) for any s, δ ∈ R, and there is a
constant C with ‖Oph(a)‖Hs

δ,h→Hs
δ,h

≤ C whenever |s| ≤ s0, |δ| ≤ δ0, and
0 < h ≤ h0.

Proof. All constants below are independent of h. We begin by showing that

‖〈x〉δ〈hD〉sAf‖L2 ≤ C‖〈x〉δ〈hD〉sf‖L2 . (2)

It is enough to take s = 0 since otherwise we may consider 〈hD〉sA〈hD〉−s,
which is in OpS0

σ by Proposition 2.1. If m is a nonnegative integer we define
Tf(x) = 〈x〉−2mA(〈x〉2mf). For f ∈ S one has

Tf(x) = (2π)−n

∫
eix·ξa(x, hξ)〈x〉−2m(I −∆ξ)mf̂(ξ) dξ

= (2π)−n

∫
(I −∆ξ)m(〈x〉−2meix·ξa(x, hξ))f̂(ξ) dξ.

It follows by differentiation that T is in OpS0
σ, and Proposition 2.1 gives

(2) for δ = −2m. The estimate for δ ≤ 0 follows from the Stein-Weiss
interpolation theorem, and for δ ≥ 0 by duality using the fact that Oph(a)∗

is a pseudodifferential operator.
It remains to relate (2) to the norm ‖〈hD〉s〈x〉δf‖L2 . If k ≥ 0 is an

integer then ‖〈hD〉2k〈x〉δf‖L2 ≤ C
∑

|α|≤2k‖〈x〉δ(hD)αf‖L2 , using h ≤ 1.
We claim that

‖〈x〉δ(hD)αf‖L2 ≤ C‖〈x〉δ〈hD〉2kf‖L2 , |α| ≤ 2k. (3)

In fact, ‖〈x〉2m(hD)αf‖L2 = C‖〈Dξ〉2mr(ξ)〈hξ〉2kf̂‖L2 if m ≥ 0 is an integer,
where r(ξ) has bounded derivatives of all orders. Differentiation gives that

6



this is bounded by C
∑

|β|≤2m‖D
β
ξ 〈hξ〉

2kf̂‖L2 . Going back to the x-side
gives (3) for δ = 2m, and the estimate follows for δ ∈ R by interpolation
and duality. Using (3) implies that

‖〈hD〉2k〈x〉δf‖L2 ≤ C‖〈x〉δ〈hD〉2kf‖L2 .

The last estimate applied to Af and then (2) give

‖〈hD〉2k〈x〉δAf‖L2 ≤ C‖〈x〉δ〈hD〉2kf‖L2

≤ C
∑
|α|≤2k

‖〈x〉δ(hD)αf‖L2

≤ C
∑
|α|≤2k

‖(hD)α〈x〉δf‖L2

≤ C‖〈hD〉2k〈x〉δf‖L2 .

The interpolation (now the Stein-Weiss theorem on the Fourier side) and
duality give the desired result.

3 Estimates for ∂ equations

In this section we collect some elementary estimates for equations of ∂ type
in Rn. Let µ = γ1 + iγ2 where γj ∈ Rn, |γj | = 1, and γ1 · γ2 = 0. The
operator Nµ = µ · ∇ is just ∂x1 + i∂x2 in different coordinates, so it has an
inverse given by

N−1
µ f(x) =

1
2π

∫
R2

1
y1 + iy2

f(x− y1γ1 − y2γ2) dy1 dy2.

This operator satisfies the following.

Lemma 3.1. Let f ∈ W k,∞(Rn) with f = 0 for |x| ≥ M . Then u =
N−1

µ f ∈ W k,∞(Rn) solves the equation Nµu = f in Rn and satisfies for
|α| ≤ k

|∂αu(x)| ≤ C(M)‖∂αf‖L∞〈xT 〉−1χB(0,M)(x⊥) (4)

where xT is the projection of x to the plane T = span{γ1, γ2}, x⊥ = x−xT ,
and χB(0,M) is the characteristic function of B(0,M).

Proof. Since the statements are rotation invariant we may assume γj = ej
(the jth coordinate vector) and Nµ = ∂ = ∂x1 + i∂x2 . Then u = N−1

µ f is

u(x) =
1
2π

∫
R2

1
y1 + iy2

f(x′ − y′, x′′) dy′. (5)
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We have u ∈ L∞ since f ∈ L∞c . If ϕ ∈ C∞ satisfies ϕ = 0 for |x| ≥ R we
have

〈u,−∂ϕ〉 = − 1
2π

∫
Rn

∫
R2

1
y1 + iy2

f(x′ − y′, x′′)∂ϕ(x) dy′ dx.

The integrand is nonzero only if |y′| ≤M +R, which justifies using Fubini’s
theorem. A change of variables and another use of Fubini’s theorem gives

〈u,−∂ϕ〉 =
∫
Rn

f(x)
(
− 1

2π

∫
R2

1
y1 + iy2

∂ϕ(x′ + y′, x′′) dy′
)
dx.

The inner integral is ϕ(x), which shows that ∂u = f even when f ∈ L∞c .
It is enough to prove (4) for α = 0. From (5) we see that u(x) = 0 for

|x′′| ≥M . If |x′| ≥ 2M then |y′| ≥ |x′|/2 on the support of the integrand in
(5), and (4) follows. Since (4) is easy when |x′| ≤ 2M we obtain the required
result.

We will need a version of Lemma 3.1 where f and µ depend on a para-
meter. Let V ⊆ Rn be an open set and let γj(ξ) (j = 1, 2) be C∞ functions
of ξ ∈ V which satisfy

1− ε ≤ |γj(ξ)| ≤ 1 + ε, |γ1(ξ) · γ2(ξ)| ≤ ε (6)

and also |∂αγj(ξ)| ≤M1 for |α| ≥ 1.

Lemma 3.2. Let ε > 0 be small enough and let f(x, ξ) ∈ C∞(Rn × V )
satisfy f(x, ξ) = 0 for |x| ≥M . Then the function

u(x, ξ) =
1
2π

∫
R2

1
y1 + iy2

f(x− y1γ1(ξ)− y2γ2(ξ), ξ) dy1 dy2

is in C∞(Rn × V ), solves (γ1(ξ) + iγ2(ξ)) · ∇xu = f in Rn, and satisfies

|∂α
x ∂

β
ξ u(x, ξ)| ≤ CαβMM1

( ∑
|γ+δ|≤|α+β|

‖∂γ
x∂

δ
ξf‖L∞(Rn×V )

)
〈xT 〉|β|−1χB(0,M)(x⊥)

where xT is the projection of x to the plane T = span{γ1(ξ), γ2(ξ)} and
x⊥ = x− xT .

Proof. Since f is smooth and compactly supported in x it is easy to see that
u is smooth and solves the given equation. We have

∂ξj
(f(x− y1γ1(ξ)− y2γ2(ξ), ξ)) = ∇xf(x− y1γ1(ξ)− y2γ2(ξ), ξ)·

(−y1∂ξj
γ1(ξ)− y2∂ξj

γ2(ξ)) + ∂ξj
f(x− y1γ1(ξ)− y2γ2(ξ), ξ).
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Induction and the estimate on the derivatives of γj(ξ) imply that

|∂α
x ∂

β
ξ u(x, ξ)| ≤ CαβM1

∑
|γ+δ|≤|α+β|

|β|∑
r=0

∫
R2

|y′|r−1|∂γ
x∂

δ
ξf(x−y1γ1(ξ)−y2γ2(ξ), ξ)| dy′.

(7)
The integrals in (7) are over the set

K(x, ξ) = {y′ ∈ R2 ; x− y1γ1(ξ)− y2γ2(ξ) ∈ B(0,M)}.

We first note that if |x⊥| ≥M then the right hand side of (7) is zero, so we
may assume |x⊥| ≤M . For the behaviour in xT we note that

y′ ∈ K(x, ξ) ⇔ x−A(y1, y2, 0)t ∈ B(0,M)

⇔ (y1, y2, 0)t ∈ A−1x+A−1B(0,M), (8)

where A = A(ξ) = (γ1(ξ), . . . , γn(ξ)) is a matrix written in terms of col-
umn vectors, and where γj(ξ) (3 ≤ j ≤ n) are any orthonormal basis of
{γ1(ξ), γ2(ξ)}⊥.

We need to estimate the matrix norm ‖A−1‖ = sup|x|=1|A−1x|. From
(6) we obtain ‖A‖ ≤ 2 for small ε, so |A−1x| ≥ |x|/2. An easy calculation
using the orthogonality properties of the γj gives in terms of row vectors

A−1 = (aγt
1 + bγt

2, cγ
t
1 + dγt

2, γ
t
3, . . . , γ

t
n)

where a, b, c, d are obtained from(
a b

c d

)
=

1
|γ1|2|γ2|2 − (γ1 · γ2)2

(
|γ2|2 −γ1 · γ2

−γ1 · γ2 |γ1|2
)
.

It follows from (6) that for small ε one has a, d ∼ 1 and b, c ∼ 0, implying
that ‖A−1‖ ≤ 3/2 for small ε.

Suppose |xT | ≥ 12M . If y′ ∈ K(x, ξ) then (8) gives

|y′| ≥ |A−1xT | − |A−1x⊥| − ‖A−1‖M ≥ |xT |/2− 3M/2− 3M/2 ≥ |xT |/4

and also

|y′| ≤ |A−1xT |+ |A−1x⊥|+ ‖A−1‖M ≤ 3|xT |/2 + 3M ≤ 2|xT |.

Since (8) implies thatK(x, ξ) is contained in a ball of radius 3M/2, we obtain
the desired estimate for u from (7) in the case |xT | ≥ 12M . If |xT | ≤ 12M
then (8) implies |y′| ≤ 21M , and the desired estimate follows also in this
case.
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4 Proof of Theorem 1.1

We want to prove the existence, uniqueness, and norm estimates of solutions
of

(∆ζ + 2W ·Dζ + q)u = f

with f ∈ L2
δ+1(R

n). This will be based on the following fundamental esti-
mates for the inverse of ∆ζ , which imply Theorem 1.1 in the case W = q = 0.

Proposition 4.1. Let −1 < δ < 0 and let ζ ∈ Cn, ζ · ζ = 0, |ζ| ≥ 1. Then
for any f ∈ L2

δ+1(R
n) the equation

∆ζu = f

has a unique solution u ∈ L2
δ(R

n). The solution operator, denoted by ∆−1
ζ ,

is a bounded map from L2
δ+1 to H2

δ and satisfies for 0 ≤ s ≤ 2

‖∆−1
ζ f‖Hs

δ
≤ C0|ζ|s−1‖f‖L2

δ+1
,

where C0 = C0(n, δ).

Proof. The main estimate is the case s = 0, which is proved in [23]. Since
we could not find a reference for the H2

δ result we will give the proof here
following the s = 1 case in [1].

Take φ(ξ) ∈ C∞c (Rn) with φ = 1 for |ξ| ≤ 4|ζ|, φ = 0 for |ξ| ≥ 8|ζ|, and
|∇φ| ≤ C/|ζ|. For f ∈ L2

δ+1 we write

DjDk∆−1
ζ f = T (∆−1

ζ f) + Sf (9)

where

Tu = F−1{ξjξkφ(ξ)û(ξ)},

Sf = F−1
{ξjξk(1− φ(ξ))

|ξ|2 + 2ζ · ξ
f̂(ξ)

}
.

We claim that when −1 ≤ δ ≤ 1,

‖Tu‖L2
δ
≤ C|ζ|2‖u‖L2

δ
. (10)

For δ = 0 this follows by Fourier multiplier properties since |ξjξkφ(ξ)| ≤
C|ζ|2. For δ = 1 the statement is equivalent with

‖T̂ u‖H1 ≤ C|ζ|2‖û‖H1 .
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One has
∇(T̂ u(ξ)) = ∇(ξjξkφ(ξ))û(ξ) + ξjξkφ(ξ)∇û(ξ).

Since |∇(ξjξkφ(ξ))| ≤ C|ζ|, we have ‖T̂ u‖H1 ≤ C(|ζ|2+|ζ|)‖û‖H1 ≤ C|ζ|2‖û‖H1

using |ζ| ≥ 1. This gives (10) for δ = 1, duality gives the estimate for δ = −1,
and an interpolation gives (10) for −1 ≤ δ ≤ 1.

For S we claim that
‖Sf‖L2

δ
≤ C‖f‖L2

δ
(11)

for −1 ≤ δ ≤ 1. We may write Sf = F−1{ψf̂} where ψ(ξ) = ξjξk(1−φ(ξ))
|ξ|2+2ζ·ξ . If

|ξ| ≥ 4|ζ| then ||ξ|2 + 2ζ · ξ| ≥ |ξ|2− 2|ζ| |ξ| ≥ |ξ|2/2, so |ψ| ≤ C and |∇ψ| ≤
C/|ζ|. Similar computations as for T imply (11) for −1 ≤ δ ≤ 1. Then (9),
the s = 0 estimate for ∆−1

ζ , (10), (11), and the embedding L2
δ+1 → L2

δ imply

‖DjDk∆−1
ζ f‖L2

δ
≤ C|ζ|‖f‖L2

δ+1

for −1 < δ < 0 and |ζ| ≥ 1. This gives the s = 2 estimate for ∆−1
ζ , and an

interpolation gives the estimate for 0 ≤ s ≤ 2.

An easy perturbation argument using Proposition 4.1 proves Theorem
1.1 in the case where W = 0. The perturbation argument fails in the case
where W is nonzero and large. Following Nakamura and Uhlmann [14] we
will use pseudodifferential operators to conjugate the first order term into a
zero order term, so that the perturbation argument can be applied.

First we will write the equation in semiclassical notation. If ζ ∈ Cn

satisfies ζ ·ζ = 0, then we have ζ = µ/h with µ = γ1 + iγ2 where γ1, γ2 ∈ Rn

satisfy |γj | = 1 and γ1 · γ2 = 0, and h =
√

2/|ζ| is a small parameter.
Note that Proposition 4.1 gives ‖∆−1

ζ f‖H1
δ,h
≤ Ch‖f‖L2

δ+1
, and one also has

‖Dζf‖L2
δ
≤ Ch−1‖f‖H1

δ,h
. With this notation,

∆ζ = h−2q(hD),

W ·Dζ = h−1r(x, hD)

with q(ξ) = ξ2 + 2µ · ξ and r(x, ξ) = W (x) · (ξ + µ). To take care of the
nonsmooth symbol r we will make a h-dependent decomposition r = r] +r[,
where r] is a smooth approximation and r[ is a remainder which will have
small norm on suitable spaces when h is small.

Next, we will show that one may conjugate the first order term r] into a
zero order term. In the proof we need some facts about the symbol q. Since
q(ξ) = (ξ + γ1)2 − 1 + 2iγ2 · ξ, this symbol has zero set

q−1(0) = {ξ ∈ Rn ; |ξ + γ1| = 1, ξ · γ2 = 0}.

11



For ε > 0 we will consider the neighborhood

U(ε) = {ξ ∈ Rn ; 1− ε < |ξ + γ1| < 1 + ε, |ξ · γ2| < ε}.

Lemma 4.1. Let 0 < σ0 < σ < 1/2 and let r] ∈ S1
σ0

(Rn) have the special
form r](x, ξ) = W ](x) · (ξ + µ), where W ] ∈ C∞(Rn;Cn) satisfies

|∂αW ](x)| ≤ Cαh
−σ0|α|,

W ](x) = 0 for |x| ≥M.

Then there exist a, b, r0 ∈ S0
σ(Rn) and ε = ε(σ0, σ) > 0 such that

(Q+ 2hR])A = BQ+ h1+εR0. (12)

Further, 〈x〉r0 ∈ S0
σ so that R0 is bounded from L2

δ to L2
δ+1, and for any

s0, δ0 > 0 there is h0 ≤ 1 such that whenever h ≤ h0, A and B are bounded
and have bounded inverses on Hs

δ,h for |s| ≤ s0, |δ| ≤ δ0, all with norms
bounded uniformly in h.

Proof. If a ∈ S0
σ then a direct computation using the special forms of Q and

R] implies that

(Q+2hR])A = AQ+hOph(
1
i
Hqa+2r]a)+h2Oph(∆xa+2W ] ·Dxa). (13)

The last term is in h2−2σOph S
0
σ, and looking at (12) we would like the

middle term to vanish. If a = eiφ with φ ∈ S0
σ, this would mean that

(ξ + µ) · ∇xφ = −r]

since Hq = 2(ξ+µ) ·∇x. The operator (ξ+γ1 + iγ2) ·∇x looks like ∂x1 + i∂x2

in different coordinates provided that ξ ∈ q−1(0), but degenerates away
from q−1(0). Therefore we will only work in a neighborhood of q−1(0) and
introduce a cutoff ψ(ξ) ∈ C∞c (Rn) with ψ = 1 in U(ε/4) and ψ = 0 outside
of U(ε/2), with ε as in Lemma 3.2. This will give a symbol w(x, ξ) with the
following properties.

Lemma 4.2. The function

w(x, ξ) = − 1
2π

∫
R2

1
y1 + iy2

ψ(ξ)r](x− y1(ξ + γ1)− y2γ2, ξ) dy1 dy2 (14)

is C∞, solves the equation

(ξ + µ) · ∇xw = −ψ(ξ)r](x, ξ),

and satisfies the estimates

|∂α
x ∂

β
ξ w(x, ξ)| ≤ Cαβh

−σ0|α+β|〈x〉|β|−1. (15)

12



Proof. This follows from Lemma 3.2 with V = U(ε), γ1(ξ) = ξ + γ1, and
γ2(ξ) = γ2.

Note that w is compactly supported in ξ but does not have good be-
haviour in x. To take care of this we will need another cutoff χ(x) ∈ C∞c (Rn)
with χ = 1 on B(0,M), and we will define

φ(x, ξ) = χ(hθx)w(x, ξ)

where θ = σ − σ0. Then (15) shows that φ satisfies

|∂α
x ∂

β
ξ φ(x, ξ)| ≤ Cαβ〈x〉−1h−σ|α+β|.

Thus φ and 〈x〉φ are in S0
σ, and also a = eiφ is in S0

σ. We have

1
i
Hqa+ 2r]a = 2(ξ + µ) · (∇xφ)eiφ + 2r]eiφ

= 2eiφ
[
(ξ + µ) · χ(hθx)∇xw + r] + hθ(ξ + µ) · w∇χ(hθx)

]
.

Since h ≤ 1 we have r] = χ(hθx)r] and

1
i
Hqa+ 2r]a = 2eiφ

[
(1− ψ(ξ))r] + hθ(ξ + µ) · w∇χ(hθx)

]
.

The second term is compactly supported in x and ξ, but the first term is of
first order and we are not yet in the situation of (12). Here we are saved
by the fact that the main operator Q in (12) is elliptic on the support of
1− ψ(ξ), and we may define b ∈ S0

σ by

b = a+ 2h
1− ψ(ξ)
q(ξ)

eiφr].

Then (13) becomes

(Q+ 2hR])A = BQ+ h1+θOph(2eiφ[(ξ + µ) · w∇χ(hθx)])

+ h2−2σOph(h2σ[∆xa+ 2W ] ·Dxa]).

Choosing ε = min{θ, 1 − 2σ} gives (12) with r0 ∈ S0
σ, and one even has

〈x〉r0 ∈ S0
σ. Proposition 2.2 gives that R0 is bounded from L2

δ to L2
δ+1 with

norm bounded uniformly in h.
It remains to show that A and B are bounded and invertible on Hs

δ,h for
|s| ≤ s0, |δ| ≤ δ0 when h is small enough, and that all norms are bounded

13



uniformly in h. The boundedness of A and B follows from Proposition 2.2.
To show invertibility we note that 1/a = e−iφ is in S0

σ and

Oph(a)Oph(1/a) = I + h1−2σOph(m)

where m ∈ S0
σ by Proposition 2.1. Since Oph(m) has bounded norm on Hs

δ,h

for |s| ≤ s0, |δ| ≤ δ0, the operator I + h1−2σOph(m) is invertible on these
spaces if h is small enough. Then also A is invertible with norm of the inverse
uniformly bounded in h. The same applies to B since b = a+hOph S

−1
σ .

Remark. Lemma 4.1 is a global nonsmooth version of the pseudodifferential
conjugation technique in [14] (see also [15]). Similar ideas have been used
in inverse scattering [4], [6], nonlinear Schrödinger equations [24], [7] and
periodic Schrödinger operators [20].

The problem in extending the method to the global case is seen in (15),
where the derivatives in ξ of the symbol grow in x. This behaviour leads
to poor global properties. A solution, presented in [24] and [7], was to
multiply a symbol a satisfying |∂α

x ∂
β
ξ a(x, ξ)| ≤ Cαβ〈x〉|β|〈ξ〉−|β| by a cutoff

χ(R0〈x〉/〈ξ〉). The new symbol is of type (0, 0), hence bounded on L2, and
the error term which appears in the equation because of this modification
is of lower order. One can even invert related operators on L2 by adjusting
the parameter R0.

In the present case there is an additional parameter h which may be taken
arbitrarily small, and additionally |ξ| ≤ Ch−1 in the support of w(x, hξ).
Therefore our cutoff has the simpler form χ(hθx), where θ is chosen so that
the new symbol falls into S0

σ with σ < 1/2.

We proceed to prove the main norm estimates.

Proof. (of Theorem 1.1) The proof is given in three steps.

Step 1 : A decomposition

Let ϕ ∈ C∞c (Rn), ϕ ≥ 0, ϕ = 1 for |x| ≤ 1/2, and ϕ = 0 for |x| ≥
1. Let also ϕε(x) = ε−nϕ(x/ε) be the usual mollifier. We will use the
decomposition (as in [18])

W = W ] +W [ (16)

where W ] = W ∗ ϕε is a smooth approximation of W , and we make the
specific choice

ε = hσ0

14



where 0 < σ0 < 1/2. Then W [ is a small remainder term, and one has

|∂αW ](x)| ≤ Cαh
−σ0|α|,

‖W [‖L∞ → 0 as h→ 0,

the second estimate by the continuity of W .

Step 2 : Existence

Using the decomposition (16), we write the equation (1) as

(∆ζ + 2W ] ·Dζ + 2W [ ·Dζ + q)u = f. (17)

Choosing σ with σ0 < σ < 1/2 and s0 = δ0 = 2, Lemma 4.1 gives h0 ≤ 1
and a, b, r0 ∈ S0

σ with

(∆ζ + 2W ] ·Dζ)A = B∆ζ + h−1+εR0. (18)

We will assume h ≤ h0, so A and B will be invertible. We look for a
solution of (17) of the form u = ∆−1

ζ v for v ∈ L2
δ+1. Then u = AA−1∆−1

ζ v,
and inserting this in (17) and using (18) gives

(B∆ζA
−1∆−1

ζ + h−1+εR0A
−1∆−1

ζ + 2W [ ·Dζ∆−1
ζ + q∆−1

ζ )v = f.

We will show that in the operator on the left, the last three terms are small
perturbations of the first term when h is small.

Consider the operator

M = B∆ζA
−1∆−1

ζ .

From (18) we get

M = I + 2W ] ·Dζ∆−1
ζ − h−1+εR0A

−1∆−1
ζ ,

and therefore M is bounded on L2
δ+1 with norm bounded uniformly in h. It

is easy to see that M has the inverse

M−1 = ∆ζA∆−1
ζ B−1.

Similarly from (18) we obtain

M−1 = I − 2W ] ·DζA∆−1
ζ B−1 + h−1+εR0∆−1

ζ B−1

15



which is again bounded on L2
δ+1, with norm bounded uniformly in h. Also,

using the mapping properties of the related operators and the decay of
‖W [‖L∞ , we have

‖h−1+εR0A
−1∆−1

ζ + 2W [ ·Dζ∆−1
ζ + q∆−1

ζ ‖L2
δ+1→L2

δ+1
= o(1)

as h→ 0. Then we obtain a solution u of (1) in the form

u = ∆−1
ζ M−1(I+h−1+εR0A

−1∆−1
ζ M−1+2W [·Dζ∆−1

ζ M−1+q∆−1
ζ M−1)−1f.

Thus u = ∆−1
ζ v with ‖v‖L2

δ+1
≤ C‖f‖L2

δ+1
. The norm estimates for u follow

from Proposition 4.1.

Step 3 : Uniqueness

It is enough to show that if u ∈ H1
δ satisfies

(∆ζ + 2W ] ·Dζ + 2W [ ·Dζ + q)u = 0, (19)

then u = 0. We use Lemma 4.1. It follows that u = Av for v = A−1u ∈ H1
δ ,

so that v satisfies

(B∆ζ + h−1+εR0 + 2W [ ·DζA+ qA)v = 0.

Applying B−1 from the left we get

∆ζv = −(h−1+εB−1R0 + 2B−1W [ ·DζA+B−1qA)v. (20)

The right hand side of (20) is in L2
δ+1 since R0 and qA map L2

δ to L2
δ+1

and W [ ·DζA maps H1
δ to L2

δ+1. We are now in the situation of Proposition
4.1, and using the H1

δ estimate of that Proposition to (20) implies

‖v‖H1
δ
≤ C(‖(h−1+εB−1R0 +B−1qA)v‖L2

δ+1
+ ‖2B−1W [ ·DζAv‖L2

δ+1
).

The first term on the right is bounded by C|ζ|‖v‖L2
δ

and the second term
is bounded by C‖〈x〉W [‖L∞(‖v‖H1

δ
+ |ζ|‖v‖L2

δ
), with C independent of ζ.

Choosing |ζ| so large that ‖〈x〉W [‖L∞ ≤ 1/(2C), we have that the coefficient
of ‖v‖H1

δ
on the right is ≤ 1/2, and we may move this term to the left. We

are left with the estimate

‖v‖H1
δ
≤ C|ζ|‖v‖L2

δ
(21)

with C independent of ζ.
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Finally, we use the L2
δ estimate of Proposition 4.1 to (20). This implies

‖v‖L2
δ
≤ C

|ζ|
(‖(h−1+εB−1R0 +B−1qA)v‖L2

δ+1
+ ‖2B−1W [ ·DζAv‖L2

δ+1
)

The first term inside the parentheses is ≤ C|ζ|1−ε‖v‖L2
δ
, and the second is

≤ C‖〈x〉W [‖L∞(‖v‖H1
δ

+ |ζ| ‖v‖L2
δ
). Using (21) this becomes

‖v‖L2
δ
≤ C(|ζ|−ε + ‖〈x〉W [‖L∞)‖v‖L2

δ

where C is independent of ζ. Choosing |ζ| large enough we obtain ‖v‖L2
δ
≤

1
2‖v‖L2

δ
, implying v = 0 and also u = 0.

5 Equivalent problems

In this section we show that complex geometrical optics solutions for the
magnetic Schrödinger equation can be characterized in several different ways.
The treatment is almost completely analogous with [11]. We begin by stat-
ing the main result and explain the notation later as we go along.

Proposition 5.1. Let Ω ⊆ Rn be a bounded domain with C1,1 boundary.
Suppose W ∈ L∞Ω (Rn;Cn) with D ·W ∈ L∞, and suppose q ∈ L∞Ω (Rn;C).
Also suppose that 0 is not a Dirichlet eigenvalue of HW,q in Ω. Let ζ ∈ Cn

with ζ2 = 0, and consider the following four problems:

(DE)

{
HW,qu = 0 in Rn

u = eiζ·x(1 + ω) with ω ∈ ∆−1
ζ L2

Ω,

(IE)

{
u+Gζ ∗ (2W ·Du+ (W 2 +D ·W + q)u) = eiζ·x in Rn

u ∈ H1
loc(R

n),

(EP)


i) ∆u = 0 in Ω′

ii) u ∈ H2(Ω′R) for any R > R0

iii) u satisfies (22) for almost every x ∈ Rn

iv) ∂u
∂ν+

= ΛW,q(u+) on ∂Ω,

(BE)

{
(1
2I + SζΛW,q −Bζ)f = eiζ·x on ∂Ω
f ∈ H3/2(∂Ω).

Then all these problems are equivalent, in the sense that if a solution exists
(is unique) for one problem, then a solution exists (is unique) for all the
problems. If u is a solution of (DE), then u solves (IE), u|Ω′ solves (EP),
and u|∂Ω solves (BE).
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Remark. The assumption that 0 is not an eigenvalue is for simplicity. With
appropriate changes, similar results are valid also when 0 is an eigenvalue.

The first step is to show the equivalence of the differential equation (DE)
and the integral equation (IE). This involves the Green function Gζ , defined
by

Gζ = eiζ·xgζ

where gζ is the tempered distribution such that ∆−1
ζ f = gζ ∗ f for f in the

Schwartz class (gζ exists since ∆−1
ζ is translation invariant). Then

∆Gζ = ζ2Gζ + 2eiζ·xζ ·Dgζ + eiζ·x∆gζ = eiζ·x∆ζgζ = δ0

where δ0 is the Dirac measure at 0. Consequently Gζ = G0 + Hζ where
G0(x) = cn|x|2−n is the usual fundamental solution of ∆, and Hζ is a global
harmonic function (one has cn = 1

n(n−2)α(n) where α(n) is the volume of the
n-dimensional unit ball).

We note that the left hand side of (IE) is well defined for any u ∈
H1

loc(R
n), since then 2W ·Du+(W 2 +D ·W +q)u ∈ L2

Ω(Rn) is a compactly
supported distribution. Also note that Gζ ∗ f = eiζ·x∆−1

ζ e−iζ·xf whenever
f ∈ L2

c(R
n).

Lemma 5.1. Assume the conditions of Proposition 5.1. Then, u is a solu-
tion of (DE) if and only if u is a solution of (IE). Also, a solution of (DE) is
unique if and only if a solution of (IE) is unique.

Proof. Let first u = eiζ·x(1 + ω) solve (DE) where ω = ∆−1
ζ f with f ∈ L2

Ω.
Clearly u ∈ H1

loc(R
n), and HW,qu = 0 implies

(∆ζ + 2W ·Dζ + (W 2 +D ·W + q))(1 + ∆−1
ζ f) = 0.

We have ∆ζ(1 + ∆−1
ζ f) = f . Now applying ∆−1

ζ to both sides, which is
allowed since the left hand side is in L2

Ω, gives

ω + ∆−1
ζ (2W ·Dζ(1 + ω) + (W 2 +D ·W + q)(1 + ω)) = 0.

We obtain (IE) by adding the constant one to both sides and multiplying
by eiζ·x.

For the converse, suppose u solves (IE), and write u = eiζ·xu0. Then u0

solves u0 +∆−1
ζ (2W ·Dζu0 +(W 2 +D ·W +q)u0) = 1. Applying ∆ζ to both

sides gives HW,qu = 0. Also, one sees that u0 − 1 = ∆−1
ζ f for f ∈ L2

Ω(Rn).
The uniqueness part is obtained just by noting that if u1 and u2 solve

(DE) then u1 and u2 solve (IE), and vice versa.
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Next we show that (IE) and the exterior problem (EP) are equivalent.
We have used the notation Ω′ = Rn r Ω and Ω′R = B(0, R) r Ω, where
R > R0 and Ω ⊆ B(0, R0). We write u+ (resp. u−) for the restriction of u
to ∂Ω from the exterior (resp. interior), and ∂u

∂ν+
(resp. ∂u

∂ν−
) for the value

of ∇u · ν on ∂Ω from the exterior (resp. interior), where ν is the outer unit
normal to ∂Ω. We also write Gζ(x, y) = Gζ(x− y).

A main point will be that a solution u of (IE) satisfies the radiation
condition ∫

|y|=R

(
Gζ(x, y)

∂u

∂ν
(y)− u(y)

∂Gζ(x, y)
∂ν(y)

)
dS(y) → eiζ·x (22)

for a.e. x ∈ Rn as R → ∞. For applications of Green’s identity below, we
define a smooth approximation of Gζ by Gε

ζ = Gε
0 +Hζ , where

Gε
0(x) = cn(ε2 + |x|2)

2−n
2 .

Note that ∆Gε
ζ(x) = ε−nϕ(x/ε) where

ϕ(x) =
1

α(n)
(1 + |x|2)−

n+2
2

and
∫
ϕ(x) dx = 1. Thus ∆Gε

ζ is an approximation of the identity.
Before showing the equivalence of (IE) and (EP) we need a lemma on

regularity properties of solutions of HW,qu = 0 and of ΛW,q.

Lemma 5.2. Under the conditions of Proposition 5.1, the operator PW,q,
which maps f ∈ H3/2(Ω) to the solution u of HW,qu = 0 in Ω with u|∂Ω = f ,
is bounded H3/2(∂Ω) → H2(Ω). Further, one has ΛW,q : H3/2(∂Ω) →
H1/2(∂Ω), and

ΛW,qf =
∂u

∂ν

∣∣∣
∂Ω
.

Proof. The operator HW,q, written in nondivergence form, satisfies the as-
sumptions of [5, Theorem 8.12] (the theorem is given for C2 domains but
the result holds with the same proof for C1,1 domains). This shows that u is
in H2(Ω) if f ∈ H3/2(∂Ω), and that the solution operator PW,q is bounded.

For the second part, we claim that if W ∈ Ln
Ω(Rn;Cn) and D ·W ∈

Ln/2(Rn;C), then for any v ∈W 1,n/(n−1)(Ω) one has∫
Ω
(W ·Dv + (D ·W )v) dx = 0. (23)
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This statement means that W · ν = 0 on ∂Ω, in a certain weak sense. The
expression is well defined since v ∈ Ln/(n−2) by Sobolev embedding. We
take Wj ∈ C∞c (Rn;Cn) to be convolution approximations of W so that
Wj →W in Ln and D ·Wj → D ·W in Ln/2, and we take an extension of v
in W 1,n/(n−1)(Rn). If the supports of Wj and W are contained in B(0, R),
then∫

Ω
(W ·Dv + (D ·W )v) dx = lim

j→∞

∫
B(0,R)

(Wj ·Dv + (D ·Wj)v) dx

= lim
j→∞

1
i

∫
∂B(0,R)

(Wj · ν)v dS = 0.

Now let f, g ∈ H3/2(Ω) and let uf = PW,qf and eg ∈ H2(Ω) with eg|∂Ω = g.
An integration by parts gives

〈
∂uf

∂ν

∣∣∣
∂Ω
, g〉 =

∫
Ω
(∇uf ·∇eg +(2W ·Duf +(W 2 +D ·W +q)uf )eg) dx. (24)

Now ufeg ∈ W 2,1(Ω) ⊆ W 1,n/(n−1)(Ω). Using (23) with v = ufeg and

substituting this to (24) gives ∂uf

∂ν

∣∣∣
∂Ω

= ΛW,qf . This also shows that ΛW,q

is bounded H3/2(∂Ω) → H1/2(∂Ω).

Lemma 5.3. Assume the conditions of Proposition 5.1. Then, if u is a
solution of (IE), then u|Ω′ is a solution of (EP). Conversely, if u is a solution
of (EP), then there is a unique extension ũ of u to Rn so that ũ is a solution
of (IE). Also, a solution of (IE) is unique if and only if a solution of (EP) is
unique.

Proof. Suppose u solves (IE). By Lemma 5.1 we have HW,qu = 0 and u ∈
H2

δ (Rn), which shows (EP) i)-ii). To prove iii) fix x ∈ Rn and let R > |x|
and R > R0, and write∫

|y|=R

(
Gε

ζ(x, y)
∂u

∂ν
(y)− u(y)

∂Gε
ζ(x, y)
∂ν(y)

)
dS(y)

= −
∫

B(0,R)
(Gε

ζ(x, y)∆u(y)− u(y)∆yG
ε
ζ(x, y)) dy

=
∫

B(0,R)
u∆yG

ε
ζ(x, y) dy+

∫
B(0,R)

Gε
ζ(x, y)(2W ·Du+(W 2+D ·W+q)u) dy

= (∆Gε
ζ ∗ uχB(0,R))(x) + (Gε

ζ ∗ (2W ·Du+ (W 2 +D ·W + q)u))(x)
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since W and q have their supports inside B(0, R).
As ε → 0, the first term on the right converges to u(x) outside a set of

measure zero (this set depends on R, but one may take the union of such
sets for countably many R). The second term on the right converges to
(Gζ ∗ (2W · Du + (W 2 + D ·W + q)u))(x) for a.e. x ∈ Rn by dominated
convergence, since Gζ ∈ L1

loc and the other function is in L2
c . Since |x| < R

the boundary integrals present no problem and one may replace Gε
ζ by Gζ .

We obtain for a.e. x

lim
R→∞

∫
|y|=R

(
Gζ(x, y)

∂u

∂ν
(y)− u(y)

∂Gζ(x, y)
∂ν(y)

)
dS(y)

= u(x) + (Gζ ∗ (2W ·Du+ (W 2 +D ·W + q)u))(x). (25)

Since u satisfies (IE) we obtain (EP) iii). Further, since u ∈ H2
loc and 0 is

not a Dirichlet eigenvalue of HW,q in Ω, Lemma 5.2 gives

∂u

∂ν+
=

∂u

∂ν−
= ΛW,qu− = ΛW,qu+

which is (EP) iv).
Let now u solve (EP). We use Lemma 5.2 and let v = PW,qu+ ∈ H2(Ω),

and we define ũ(x) = u(x) for x ∈ Ω′ and ũ(x) = v(x) for x ∈ Ω. Now
ũ− = v− = u+ = ũ+ and

∂ũ

∂ν−
=

∂v

∂ν−
= ΛW,qv− = ΛW,qu+ =

∂u

∂ν+
=

∂ũ

∂ν+

by Lemma 5.2 and (EP) iv). This shows that ũ ∈ H2
loc(R

n). By (EP) i) we
have HW,qũ = 0 in Rn, and then the computation above leads to (25) with
u replaced by ũ. The condition (EP) iii) shows that ũ solves (IE).

The uniqueness part follows from the facts that if u1 and u2 solve (IE)
then u1|Ω′ and u2|Ω′ solve (EP), and if u1 and u2 solve (EP) then ũ1 and ũ2

solve (IE).

The final equivalence will be between (EP) and the boundary integral
equation (BE). Here we need the layer potentials depending on ζ, defined in
terms of the Green function Gζ . The single layer potential Sζ , double layer
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potential Dζ , and boundary layer potential Bζ are defined by

Sζf(x) =
∫

∂Ω
Gζ(x, y)f(y) dS(y) (x ∈ Rn r ∂Ω),

Dζf(x) =
∫

∂Ω

∂Gζ(x, y)
∂ν(y)

f(y) dS(y) (x ∈ Rn r ∂Ω),

Bζf(x) =
∫

∂Ω

∂Gζ(x, y)
∂ν(y)

f(y) dS(y) (x ∈ ∂Ω).

Since ∂Ω is C1,1 one does not need a principal value in the definition of Bζ .
The operators have the following properties, given in [11].

Proposition 5.2. Let Ω ⊆ Rn, n ≥ 3, be a bounded domain with C1,1

boundary, and suppose that Ω ⊆ B(0, R0).

(a) Let f ∈ H1/2(∂Ω) and u = Sζf . Then u is in H2(Ω) and H2(Ω′R) for
any R > R0, and ∆u = 0 in Rn r ∂Ω. If R > R0, then u satisfies the
radiation condition∫

|y|=R

(
Gζ(x, y)

∂u

∂ν
(y)− u(y)

∂Gζ(x, y)
∂ν(y)

)
dS(y) = 0 (26)

for almost every x with |x| < R.

(b) Let f ∈ H3/2(∂Ω) and v = Dζf . Then v has the properties listed in
(a).

(c) In the situation of (a), one has u− = u+ on ∂Ω, in the sense of
H3/2(∂Ω) as well as nontangential convergence a.e. on ∂Ω. We will
write u = Sζf on ∂Ω. The map f 7→ Sζf is bounded Hs(∂Ω) →
Hs+1(∂Ω) for 0 ≤ s ≤ 1, and one has

∂u

∂ν−
− ∂u

∂ν+
= f on ∂Ω. (27)

(d) In the situation of (b), one has

v± = ±1
2
f +Bζf on ∂Ω, (28)

in the sense of H3/2(∂Ω) as well as nontangential convergence.

(e) The map Bζ is bounded Hs(∂Ω) → Hs(∂Ω) for 0 ≤ s ≤ 3/2.
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Lemma 5.4. Assume the conditions of Proposition 5.1. Then, if u is a
solution of (EP), then f = u|∂Ω is a solution of (BE). Conversely, if f is a
solution of (BE), then

u = eiζ·x − SζΛW,qf +Dζf (29)

is a solution of (EP), with u+ = f . Also, a solution of (EP) is unique if and
only if a solution of (BE) is unique.

Proof. Suppose u solves (EP). We let f = u+ on ∂Ω. Then f ∈ H3/2(∂Ω).
If x ∈ Ω′ and R > |x|, we have

−
∫

Ω′R

(Gε
ζ(x, y)∆u(y)− u(y)∆yG

ε
ζ(x, y)) dy

=
( ∫

|y|=R
−

∫
∂Ω

)(
Gε

ζ(x, y)
∂u

∂ν
(y)− u(y)

∂Gε
ζ(x, y)
∂ν(y)

)
dS(y).

Letting ε→ 0 and using (EP) i) we obtain

u(x) =
∫
|y|=R

(
Gζ(x, y)

∂u

∂ν
(y)−u(y)

∂Gζ(x, y)
∂ν(y)

)
dS(y)−Sζ

( ∂u

∂ν+

)
(x)+Dζ(u+)(x)

(30)
for a.e. x in Ω′. We let R → ∞, use (EP) iii)-iv), and then let x →
∂Ω nontangentially and use Proposition 5.2 (d), which gives that f = u+

satisfies (BE).
Conversely, suppose f satisfies (BE) and define u by (29) in Ω′. Then

u satisfies (EP) i)-iii) by Proposition 5.2 (it is an easy calculation that the
left hand side of (26) equals eiζ·x if u = eiζ·x). We need to show (EP) iv).
First note that by Proposition 5.2 (d),

u+ = eiζ·x − SζΛW,qf +
1
2
f +Bζf on ∂Ω,

which gives u+ = f using (BE). The formula (30) holds for u with the same
proof, and as R→∞ we obtain

u(x) = eiζ·x − Sζ

( ∂u

∂ν+

)
(x) +Dζf(x)

a.e. in Ω′. Comparing with (29) we get

Sζ

( ∂u

∂ν+
− ΛW,qf

)
= 0 (31)
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a.e. in Ω′. This holds also on ∂Ω by Proposition 5.2 (c), and the uniqueness
in the Dirichlet problem for ∆ in Ω shows that we have (31) in Rn. Then
(27) gives that ∂u

∂ν+
= ΛW,qf on ∂Ω.

If u1 and u2 solve (EP) then u1|∂Ω and u2|∂Ω solve (BE), and if f1 and
f2 solve (BE) then the corresponding functions defined by (29) solve (EP).
This shows the uniqueness part.

Remark. Following Nachman [12], (BE) is equivalent to{
(I + Sζ(ΛW,q − Λ0,0))f = eiζ·x on ∂Ω
f ∈ H3/2(∂Ω).

This follows since for x ∈ Ω′

Dζf(x) =
∫

∂Ω

∂Gζ

∂ν(y)
(x, y)f(y) dS(y) = 〈Λ0,0Gζ(x, · ), f〉

= 〈Gζ(x, · ),Λ0,0f〉 = Sζ(Λ0,0f)(x)

and letting x→ ∂Ω nontangentially gives 1
2I +Bζ = SζΛ0,0.

Proposition 5.1 is an immediate consequence of Lemmas 5.1 to 5.4. We
conclude the section by showing that the operator arising in (BE) is of
the form I + K with K compact. This fact and the Fredholm alternative
show, for instance, that uniqueness in one of the problems in Proposition
5.1 implies the existence of a unique solution for all the problems.

Lemma 5.5. Let Ω ⊆ Rn, n ≥ 3, be a bounded domain with C1,1 boundary.
Then the operator SζΛW,q −Bζ − 1

2I : H3/2(∂Ω) → H3/2(∂Ω) is compact.

Proof. Let f ∈ H3/2(∂Ω) and let u = PW,qf . If x ∈ Ω we have

−
∫

Ω
(Gε

ζ(x, y)∆u(y)− u(y)∆yG
ε
ζ(x, y)) dy

=
∫

∂Ω

(
Gε

ζ(x, y)
∂u

∂ν
(y)− u(y)

∂Gε
ζ(x, y)
∂ν(y)

)
dS(y).

If ε→ 0 we get

u(x) +
∫

Ω
Gζ(x, y)(2W ·Du+ (W 2 +D ·W + q)u) dy = (SζΛW,q −Dζ)f(x)

a.e. in Ω. Let then x→ ∂Ω nontangentially, so that Proposition 5.2 gives

(SζΛW,q−Bζ−
1
2
I)f = R

∫
Ω
Gζ(x, y)(2W ·D+(W 2+D ·W+q))PW,qf(y) dy.
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This reads
SζΛW,q −Bζ −

1
2
I = RGζMJPW,q

where R is the trace H2(Ω) → H3/2(∂Ω), Gζ : L2(Ω) → H2(Ω) restricts
Gζ ∗ ũ = eiζ·x∆−1

ζ e−iζ·xũ to Ω where ũ is the extension by zero of u ∈ L2(Ω)
to Rn, M : H1(Ω) → L2(Ω) maps u to 2W ·Du+ (W 2 +D ·W + q)u, and
J is the embedding H2(Ω) → H1(Ω). All these maps are bounded and J is
compact, so the composition is compact.

6 Reconstruction of the magnetic field

The preceding section considered equivalent formulations for problems which
give rise to CGO solutions, but did not consider the solvability of any of the
problems. The next result, which follows directly from Theorem 1.1, shows
that if W is continuous then the problems indeed have unique solutions for
large ζ.

Proposition 6.1. Assume the conditions in the beginning of Theorem 1.2.
Then there exists C = C(n,Ω,W, q) so that whenever |ζ| ≥ C, then each of
the problems (DE), (IE), (EP), (BE) has a unique solution.

Proof. It is enough to show that (DE) has a unique solution. Now u =
eiζ·x(1 + ω) solves HW,qu = 0 if and only if

(∆ζ + 2W ·Dζ + (W 2 +D ·W + q))ω = −(2ζ ·W +W 2 +D ·W + q). (32)

From Theorem 1.1 we know that if |ζ| ≥ C(n,Ω,W, q) this equation has a
unique solution ω ∈ H1

δ . Then (32) gives that ∆ζω = f for some f ∈ L2
Ω, so

that ω ∈ ∆−1
ζ L2

Ω. This shows that u is the unique solution of (DE).

We will from now on assume the conditions in the beginning of Theorem
1.2. For given ζ we denote by uζ the unique solution of (DE). It follows that
if one knows ΛW,q then the boundary values uζ |∂Ω may be reconstructed as
the unique solution of the boundary integral equation (BE). The rest of the
section will be devoted to showing that the magnetic field curlW may be
reconstructed from this knowledge. The first step, similarly as in [11], is to
consider a (non-physical) scattering transform.

Definition. Let ξ ∈ Rn be such that |ξ|2 is not a Dirichlet eigenvalue of ∆
in Ω. Then for any ζ ∈ Cn which satisfies ζ2 = 0, |ζ| ≥ C, Re ζ ⊥ ξ, and
Im ζ ⊥ ξ, we define

tW,q(ξ, ζ) = 〈(ΛW,q − Λ0,−|ξ|2)(uζ |∂Ω), e−ix·(ξ+ζ)|∂Ω〉.

25



It is clear from the preceding discussion that ΛW,q determines tW,q for
the appropriate ξ, ζ. Using the weak formulation of the DN map and the
fact that H0,−|ξ|2e

−ix·(ξ+ζ) = 0 in Ω, one easily sees that

tW,q(ξ, ζ) =
∫

Ω
e−ix·ξ(2(ζ ·W )u0+W ·Du0+(W 2+ξ·W+|ξ|2+q)u0) dx, (33)

where we write u0 = e−iζ·xuζ .
We know from (DE) that u0 = 1 + ω with ω ∈ ∆−1

ζ L2
Ω. If one had

‖ω‖L2(Ω) → 0 as |ζ| → ∞ one could divide (33) by |ζ| and let |ζ| → ∞,
which would then give essentially the Fourier transform of curlW . However,
ω is obtained by solving (32) where the L2

δ+1 norm of the right hand side is
O(|ζ|) instead of o(|ζ|), so one gets that ‖ω‖L2(Ω) is bounded but may not
be small when |ζ| is large (in fact Lemma 6.1 shows that ω → eiφ − 1 in
L2(Ω) as |ζ| → ∞, where φ is defined below).

To deal with this difficulty we write the solution uζ in a different form
where one gets a small remainder term for |ζ| large. For this we employ a
decomposition

W = W ] +W [

where W ] = W ∗ ϕε with ϕε the usual mollifier, and we make the choice

ε = |ζ|−σ

with 0 < σ < 1/2. Then W ] is C∞ and

‖W ]‖W 1,∞ = o(|ζ|σ), (34)

‖W ]‖W 2,∞ = o(|ζ|2σ), (35)

‖W [‖L∞ = o(1) (36)

as |ζ| → ∞.
We also write ζ = sµ where µ = γ1 + iγ2, |γj | = 1, γ1 ⊥ γ2. Finally, we

fix χ ∈ C∞c (Rn) with χ = 1 in B(0,M/2), χ = 0 outside of B(0,M), and
Ω ⊆ B(0,M/2).

Lemma 6.1. Fix θ > 0 with σ + θ < 1/2. For |ζ| large enough, the CGO
solution uζ of HW,quζ = 0 in Rn may be written in the form

uζ = eiζ·x(ω0 + ω) (37)
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where ω0 = eiχζφ]
with

χζ(x) = χ(x/|ζ|θ), (38)

φ](x) = N−1
µ (−µ ·W ]), (39)

and ω ∈ H1
δ with ‖ω‖L2

δ
= o(1), ‖ω‖H1

δ
= o(|ζ|) as |ζ| → ∞.

Proof. We first show that the equation HW,qu = 0 in Rn has a solution of
the form (37) with the required properties. This will be the case if ω satisfies

(∆ζ + 2W ·Dζ +G)ω = −f (40)

where G = W 2 +D ·W + q ∈ L∞Ω and

f = (∆ζ + 2W ·Dζ +G)ω0 = eiχζφ]
[
iχζ∆φ] + 2iDχζ ·Dφ] + iφ]∆χζ

+ (χζ∇φ] + φ]∇χζ)2 + 2ζ · (∇χζ)φ] + 2ζ · (∇φ])χζ

+ 2W · (∇χζ)φ] + 2W · (∇φ])χζ + 2W ] · ζ + 2W [ · ζ +G
]
.

We need to know the behaviour of ‖f‖L2
δ+1

as |ζ| grows. The choice of φ]

implies
2ζ · ∇φ] + 2W ] · ζ = 0.

Since W ] = χζW
] this removes the worst two terms from f , and one obtains

in terms of L2
δ+1 norms

‖f‖ ≤ C
[
‖χζ∆φ]‖+ ‖∇χζ · ∇φ]‖+ ‖φ]∆χζ‖+ ‖|χζ∇φ]|2‖+ ‖|φ]∇χζ |2‖

+ |ζ|1−θ‖(∇χ(x/|ζ|θ))φ]‖+ ‖W · (∇χζ)φ]‖+ ‖W · (∇φ])χζ‖

+ ‖W [ · ζ‖+ ‖G‖
]
. (41)

Lemma 3.1 implies

|∂αφ](x)| ≤ C|ζ|σ|α|〈xT 〉−1χB(0,M)(x⊥) (42)

where xT is the projection of x to span{γ1, γ2} and x⊥ = x− xT . Then for
instance

‖χζ∆φ]‖ =
( ∫

Rn

〈x〉2(δ+1)χζ(x)2|∆φ](x)|2 dx
)1/2

≤ C|ζ|2σ
( ∫

|xT |≤M |ζ|θ,|x⊥|≤M
〈x〉2(δ+1)〈xT 〉−2 dx

)1/2

≤ C|ζ|2σ
( ∫

|xT |≤M |ζ|θ
〈xT 〉2δ dxT

)1/2
≤ C|ζ|2σ+(δ+1)θ.
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This has the worst behaviour of the first five terms of (41) since derivatives
hitting χζ bring decay in |ζ| and the other terms involve only first derivatives
of φ]. A similar computation shows that the sixth term is O(|ζ|1−θ+(δ+1)θ) =
O(|ζ|1+δθ). One has W ·∇χζ = 0 and Wχζ = W for large |ζ| so the seventh
and eight terms are 0 and O(|ζ|σ), respectively. The final two terms are
o(|ζ|) and O(1), respectively, since ‖W [‖L∞ → 0 as |ζ| → ∞. Using the
choices of σ and θ and the fact that −1 < δ < 0, we obtain ‖f‖L2

δ+1
= o(|ζ|).

The solution ω of (40) has the desired properties by Theorem 1.1.
It remains to show that u given by (37) is the CGO solution. One has

u = eiζ·x(1 + ω̃) where
ω̃ = eiχζφ] − 1 + ω.

Now eiχζφ]−1 is in H1
δ for any δ < 0, since for instance eiχζφ]−1 = O(|χζφ

]|)
and (42) implies

‖eiχζφ] − 1‖L2
δ
≤ C

( ∫
Rn

〈x〉2δχζ(x)2|φ](x)|2 dx
)1/2

≤ C
( ∫

R2

〈xT 〉2δ−2 dxT

)1/2
<∞.

Also ω ∈ H1
δ so ω̃ ∈ H1

δ for −1 < δ < 0. This and HW,qu = 0 imply
ω̃ ∈ ∆−1

ζ L2
Ω, so u is indeed the unique solution of (DE) given by Proposition

6.1.

We may now plug in u0 = ω0 + ω from (37) to (33). The estimates for
ω and the form of ω0 imply that

RW,q(ξ, µ) = lim
s→∞

s−1tW,q(ξ, sµ) = 2
∫
e−ix·ξeiφ(µ ·W ) dx

where φ = N−1
µ (−µ · W ). This shows that we may recover a nonlinear

Fourier transform RW,q(ξ, µ) of µ ·W from the knowledge of ΛW,q, for any
µ and ξ with ξ · µ = 0 and |ξ|2 not a Dirichlet eigenvalue of ∆ in Ω.

The next argument, due to Eskin and Ralston [4], shows that this nonlin-
ear Fourier transform is in fact just an ordinary Fourier transform. Similar
ideas appear in Sun [21].

Lemma 6.2. One has

RW,q(ξ, µ) = 2
∫
e−ix·ξ(µ ·W ) dx.
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Proof. It is enough to prove this for µ = e1 + ie2, so that ξ = (0, ξ′′) and
(∂1 + i∂2)φ = −(W1 + iW2). Then

RW,q(ξ, µ) = 2
∫
Rn

e−ix′′·ξ′′eiφ(−(∂1 + i∂2)φ) dx

= 2
∫
Rn−2

e−ix′′·ξ′′h(x′′) dx′′

where

h(x′′) = i

∫
R2

(∂1 + i∂2)(eiφ(x′,x′′)) dx′ = lim
R→∞

i

∫
|x′|≤R

(∂1 + i∂2)(eiφ(x′,x′′)) dx′

= lim
R→∞

i

∫
|x′|=R

eiφ(x′,x′′)(ν1 + iν2) dS(x′).

The integrals are well defined by standard approximation arguments. Now
eiφ = 1 + iφ+O(|iφ|2) = 1 + iφ+O(|x′|−2) by Lemma 3.1, and∫

|x′|=R(ν1 + iν2) dS(x′) =
∫
|x′|≤R(∂1 + i∂2)(1) dx′ = 0,∣∣∣ ∫

|x′|=RO(|x′|−2)(ν1 + iν2) dS(x′)
∣∣∣ ≤ C

R → 0 as R→∞,

so we have

h(x′′) = − lim
R→∞

∫
|x′|=R

φ(x′, x′′)(ν1 + iν2) dS(x′)

= − lim
R→∞

∫
|x′|≤R

(∂1 + i∂2)φdx′ =
∫
R2

(e1 + ie2) ·W dx′.

This gives the claim.

We now show that RW,q(ξ, µ) determines curlW , or DjWk −DkWj for
any j 6= k. Let ξ ∈ Rn be such that |ξ|2 is not a Dirichlet eigenvalue of ∆
in Ω. If one of ξj , ξk is nonzero choose γ to be the unit vector with direction
ξjek − ξkej , so that ξ · γ = 0. Since n ≥ 3 we may choose a unit vector
γ̃ with γ · γ̃ = ξ · γ̃ = 0. Letting µ = γ + iγ̃ we see that ΛW,q determines
RW,q(ξ, µ) +RW,q(ξ, µ), which determines∫

e−ix·ξ(ξjWk − ξkWj) dx = (DjWk −DkWj )̂ (ξ)

in fact for any ξ ∈ Rn such that |ξ|2 is not an eigenvalue. Since there are
countably many eigenvalues and sinceDjWk−DkWj is compactly supported,
so the Fourier transform is analytic, we recover DjWk −DkWj .
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7 Reconstruction of the electric potential

Finally, we make the additional assumptions that W is C1+ε and ∂Ω is
C2+ε for some ε > 0, and we indicate how to recover q from ΛW,q. From the
preceding section, we may assume that the magnetic field curlW is known.
The next step is to construct a certain magnetic potential with this magnetic
field.

Lemma 7.1. One can construct W̃ ∈ C1+ε(Ω;Cn) with curl W̃ = curlW
and W̃ |∂Ω = 0.

Proof. For the following concepts we refer to [19]. We write XΛk(Ω) for
a differential k-form in Ω with coefficient functions in X, and tη and nη

for the tangential and normal traces on ∂Ω, respectively, of a form η. Let
ω =

∑n
j=1Wjdxj ∈ C1+εΛ1(Ω) be the 1-form corresponding to W , and let

χ = dω. We start with solving the boundary value problem{
dω̃ = χ in Ω,
tω̃ = 0 on ∂Ω

(43)

for ω̃ in C1+εΛ1(Ω). In the case of smooth domains and Lp Sobolev spaces
this problem is considered in [19], where the solution is reduced to the Hodge
decomposition of χ. For a general form χ ∈ L2Λk(Ω) this decomposition
reads

χ = dα+ δβ + κ (44)

where α ∈ H1Λk−1(Ω) with tα = 0, β ∈ H1Λk+1(Ω) with nβ = 0, and κ

is a harmonic field meaning that dκ = δκ = 0. Here δ is the codifferential.
Further, the three summands in (44) are uniquely determined and mutually
orthogonal with respect to the natural L2 inner product.

The specific form of χ above implies that the decomposition (44) reduces
to χ = dα, where one may choose α = δφ where φ is the Dirichlet potential
of χ (see [19], Section 2.2). Under the present assumptions of C2+ε boundary
and Cε regularity of χ, Theorem 7.7.4 in [10] implies that δφ ∈ C1+ε. It
is then easy to check that ω̃ = δφ solves (43). We note that the Dirichlet
potential φ is obtained constructively using the explicit integral formula for
the corresponding Green operator, as in [9].

Letting W̃ be the vector field corresponding to ω̃, we have that W̃ ∈
C1+ε(Ω;Cn), curl W̃ = curlW , and the tangential components of W̃ vanish
on ∂Ω. We may further replace W̃ by W̃ +∇p where p ∈ C2+ε(Ω) satisfies
p|∂Ω = 0 and ∂p

∂ν |∂Ω = −W̃ · ν, and p is constructed similarly as in Lemma
5.8 of [18]. This completes the proof.
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With W̃ as above, we conclude that W̃ = W +∇p where p ∈ W 1,∞(Ω)
and p|∂Ω = 0. An easy argument for this under the present regularity
assumptions is obtained by extending W̃ −W by zero to Rn as a Lipschitz
vector field, and by noting that W̃ −W = ∇p in a large ball with p ∈W 2,∞

and ∇p|∂Ω = 0. The assumption on the topology of Ω ensures that ∂Ω is
connected, so that p is constant on ∂Ω, and one may substract the constant
to get p|∂Ω = 0. Gauge equivalence then implies that ΛW̃ ,0 = ΛW,0.

Fix ξ ∈ Rn r {0} and take unit vectors γj such that {ξ, γ1, γ2} form an
orthogonal set. For s > 0 define complex vectors

ζ1 = −ξ
2

+ s

√
1− |ξ|2

4s2
γ1 + isγ2,

ζ2 = −ξ
2
− s

√
1− |ξ|2

4s2
γ1 − isγ2.

Using the notation of Lemma 6.1, the equations HW,qu = 0 and H−W,0v = 0
have unique CGO solutions u = uζ1 and v = vζ2 , which have the form

uζ1 = eiζ1·x(eiχζ1
φ]

+ ω1),

vζ2 = eiζ2·x(e−iχζ2
φ]

+ ω2)

where ‖ωj‖L2
δ
→ 0 as s→∞.

We define a new scattering transform

t̃(ξ) = 〈(ΛW,q − ΛW,0)(uζ1 |∂Ω), vζ2 |∂Ω〉.

Since ΛW,q and Λ−W,0 are known, one may construct the boundary values
of uζ1 and vζ2 as solutions of boundary integral equations as in Section 5,
and thus t̃ is known. The definition of DN maps implies

t̃(ξ) =
∫
quζ1vζ2 dx,

and so t̃(ξ) →
∫
e−ix·ξq(x) dx as s→∞. This is the Fourier transform of q,

and we have recovered the electric potential.
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