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Abstract

Earthquakes, viewed as passive sources, or controlled sources, like explosions,
excite seismic body waves in the earth. One detects these waves at seismic stations
distributed over the earth’s surface. Wave-equation tomography is derived from cross
correlating, at each station, data simulated in a reference model with the observed
data, for a (large) set of seismic events. The times corresponding with the maxima
of these cross correlations replace the notion of residual travel times used as data in
traditional tomography. Using first-order perturbation, we develop an analysis of the
transform, mapping a wavespeed contrast (between the “true” and reference models)
to these maxima. We develop a construction using curvelets, while maintaining an
imprint of geometrical optics reminiscent of the geodesic X-ray transform. We then
introduce the adjoint of the transform, which defines the imaging of wavespeed vari-
ations from “finite-frequency travel time” residuals. The key underlying component
is the construction of the Fréchet derivative of the solution to the seismic Cauchy
initial value problem in wavespeed models of limited smoothness. The construction
developed in this paper essentially clarifies how a wavespeed model is probed by the
method of wave-equation tomography.
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1 Introduction
Earthquakes, viewed as passive sources, or controlled sources, like explosions, excite seis-
mic body waves in the earth. One detects these waves at seismic stations distributed over
the earth’s surface. It is common practice to try and estimate the travel (or arrival) times
of phases of interest in the seismic records. These travel times, together with the source-
receiver positions, can be compiled as “data” for reconstruction of the wavespeed in Earth’s
interior by methods of tomography.

Indeed, travel times of seismic body waves have played a key role in many seismo-
logical studies of Earth’s interior structure. For instance, tomographic inversions of vast
amounts of routinely processed travel time residuals from international data centers, such
as the International Seismological Centre, have been used to delineate three-dimensional
heterogeneity in rather spectacular detail [28, 34, 12, 1]. These studies use geometrical
(optics) ray theory with first-order perturbation assuming a well chosen reference model
and form differential travel times.

The above mentioned rays can be viewed as geodesics, travel times as their lengths,
while describing the wavespeed in Earth’s interior by a Riemannian metric. The “data”
then comprise knowledge of the boundary distance function; for the analysis of the as-
sociated inverse problem, see [19] and references cited therein. In this framework, the
above mentioned first-order perturbation leads to the introduction of the geodesic X-ray
transform. For the range characterization of, and stability estimates for the geodesic X-ray
transform restricted to geodesic complex (the dimension of which equals the dimension of
space), see [11]. For each source-receiver pair, the kernel of the geodesic X-ray transform
is supported on the geodesic connecting them. In this paper, we, essentially, consider and
analyze a generalization of this transform arising in seismic applications.

Since the advent of routine, broadband digital recording, an increasing number of stud-
ies of Earth’s interior has been relying on knowledge gleaned from cross correlations of
data simulated in the above mentioned reference model with the observed data. The times
corresponding with the maxima of these cross correlations then replace the above men-
tioned differential travel times, and were considered, for example, in [16, 35]. Using first-
order perturbation, we develop an analysis of the transform, mapping a wavespeed contrast
(between the “true” and reference models) to these maxima; in the seismic literature one
refers to such a transform as the “sensitivity”, and to the maxima as “finite-frequency
travel times”. In an earlier paper [7] we established that this transform, in the limit of in-
finite bandwidth and assuming smooth wavespeed models, asymptotically reduces to the
geodesic X-ray transform.

The implications of the “cross-correlation-criterion” approach to tomography have been
debated in the literature [6, 8, 32, 18, 33]. The “sensitivity” was described by banana-
doughnut-kernels (BDKs) [5]. Here, we shed light on the subject of wave-equation tomog-
raphy making use of multi-scale analysis.

The generalization encompasses the following aspects. The transform is derived from
the full wave solutions to the seismic Cauchy initial value problems (one for each source),
and no longer infers information of the singular supports (or wavefront sets) of the solu-
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tions. We develop a multi-scale approach – this replaces the straightforward decomposition
of data into separate time-frequency bands in use in seismic applications. The wavespeed
models can be of limited smoothness; they will be assumed to belong to C1,1, which allows
a natural connection with the integral-geometric formulation of travel time tomography to
be established. We consider the restriction to a finite set of (isolated) source-receiver pairs.
The kernel of the transform will have a volumetric extent, rather than being supported on
the rays connecting receivers to sources. This facilitates data fusion, that is, assimilation
of different wave types in the data in different, but overlapping, frequency bands.

In this paper, we develop a construction of the above mentioned transform using curvelets,
while maintaining an imprint of geometrical optics reminiscent of the geodesic X-ray
transform. We also introduce the adjoint of the transform, which defines the imaging of
wavespeed variations from “finite-frequency travel time” data. The key underlying com-
ponent is the construction of the Fréchet derivative of the solution to the seismic Cauchy
initial value problem in wavespeed models of limited smoothness. In principle, this con-
struction can also be incorporated in the process of “waveform tomography” [22] based on
least-squares fitting of selected waveforms. Moreover, one can consider the reverse-time
wave-equation formulation of annihilator-based reflection tomography [26, 27, 9] and de-
velop the linearization of the map from wavespeed model to annihilated data.

1.1 Sensitivity kernels in transmission tomography
The sensitivity of the cross correlation approach to tomography has been studied in [17, 5,
36] and other publications. The distribution kernel of the associated transform has received
attention, in particular, while trying to understand how it generalizes the geodesic X-ray
transform and changes the scope of tomography. The construction developed in this paper
essentially provides the anatomy of the transform and clarifies how a wavespeed model is
probed by the method of wave-equation tomography.

1.2 The underlying initial value problem
We begin with a few definitions. We assume that U ⊂ Rn is open, and 0 < γ ≤ 1. With
x ∈ Rn, we set Dxj

= i−1∂xj
, while Dt = i−1∂t.

Definition 1. (i) If u : U → R is bounded and continuous, we write

‖u‖C(Ū) := sup
x∈U

|u(x)|.

(ii) The γth Hölder seminorm of u : U → R is given by

[u]C0,γ(Ū) := sup
x,y∈U,x 6=y

{
|u(x)− u(y)|
|x− y|γ

}
,

and the γth Hölder norm is

‖u‖C0,γ(Ū) := ‖u‖C(Ū) + [u]C0,γ(Ū) .
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Definition 2. The Hölder space, Ck,γ(Ū), consists of all u ∈ Ck(Ū) for which the norm

‖u‖Ck,γ(Ū) :=
∑
|α|≤k

‖Dαu‖C(Ū) +
∑
|α|=k

[Dαu]C0,γ(Ū)

is finite.

In this paper, we encounter the spaces Ck−1,1, and use the equivalent norms ‖u‖Ck−1,1 =∑
|α|≤k‖Dαu‖L∞ .

Definition 3. The space, Lp([0, T ] ; X), consists of all measurable functions u : [0, T ] →
X with

‖u‖Lp([0,T ];X) :=

(∫ T

0

‖u(t)‖pdt

) 1
p

< ∞,

for 1 ≤ p < ∞, while

‖u‖L∞([0,T ];X) := ess sup
0≤t≤T

‖u(t)‖ < ∞.

Throughout the paper, we will use an abbreviation for the latter space, namely L∞
t X ,

where X is a Sobolev space. In a similar fashion, we denote by C0
t X the space of functions,

u(t, x), continuous in time, for which

‖u‖C0([0,T ];X) := sup
0≤t≤T

‖u(t)‖X < ∞,

and by C1
t X the space of functions, u(t, x), for which

u(t, x) ∈ C0([0, T ] ; X) and ∂tu(t, x) ∈ C0([0, T ] ; X).

Let aij(x) be functions in C1,1(Rn) such that the matrix (aij(x)) is symmetric and
positive definite with a uniform bound when x ∈ Rn. Then the operator A(x, Dx) =∑n

i,j=1 aij(x)Dxi
Dxj

is uniformly elliptic, and we may consider the Cauchy initial value
problem for the wave equation,

[D2
t − A(x, Dx)]u(t, x) = 0,

u|t=0 = 0,

∂tu|t=0 = g.

(1.1)

Here, g ∈ Hα and u(t, x) is a function in Rt × Rn
x. The regularity condition for the

coefficient functions is natural in the context of tomography, since the Hamiltonian flow is
well defined for C1,1 metrics, but not, for example, for C1,γ metrics where γ < 1.

If M is a large positive constant such that

‖aij‖C1,1 ≤ M, aijξiξj ≥ M−2|ξ|2,
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and −1 ≤ α ≤ 2, it is well known that the Cauchy problem above has a unique weak
solution u ∈ C0([−M, M ]; Hα+1) ∩ C1([−M, M ]; Hα). We will write this solution as

u(t, x) = uA(t, x) = (SA(t)g)(x).

If aij = δij , which corresponds to the Euclidean metric, it is an elementary fact that

S(t)g =
sin(t

√
−∆)√

−∆
g, with ∆ = −

n∑
i=1

D2
xi

.

The solution operator SA(t) is the corresponding “sine propagator” in the variable coeffi-
cient case.

Remark 1. One can consider solutions to the Cauchy initial value problem defined in (1.1)
but with more regular metrics, aij ∈ Cm−1,1, with m ≥ 2. Then u ∈ C0([−M, M ]; Hα+1)∩
C1([−M, M ]; Hα) with −m + 1 ≤ α ≤ m, see also Appendix A.

We are interested in studying the properties of uA(t, .) = SA(t)g when g is fixed, but
the coefficient matrix of A varies. This is a common situation in tomographic imaging
problems. In these problems, for the purpose of imaging and optimization, one performs
a linearization about a fixed wavespeed model (metric). The main result of this paper is a
multi-scale approach to constructing the linearization of operator SA(t) with respect to A.
This approach reveals the imprint of traditional tomography following geodesics.

We assume that the functions g represent earthquakes, parametrized by their locations,
s, and write g = gs. To express the source parametrization, we also write uA = uA(t, x; s).
The wave solution is observed in seismic stations located at r. We assume that r ∈ S ∼
Sn−1 ⊂ Rn; s lies in an annulus, VS,h of “thickness” h with outer boundary coinciding
with S; see Fig. 1.

2 Main results
In this section, we present our main results pertaining to the existence and mapping prop-
erties of the Fréchet derivative of the wave solution operator, and its application to wave-
equation tomography.

2.1 Fréchet derivative
If g is a fixed function in Rn, we consider the map A 7→ SA(t)g from C1,1 metrics to
solutions of the wave equation. To begin with, the solution depends continuously on the
metric. This is a consequence of energy estimates (see Stolk [25]), but our starting point is
the constructive proof in Salo [20], which is based on curvelets.
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Figure 1: Configuration for wave-equation tomography.

Theorem 1. Let A = (aij) and B = (bij) be two C1,1 metrics in Rn, and let M be a large
constant such that

‖aij‖C1,1 ≤ M,
n∑

i,j=1

aijξiξj ≥ M−2|ξ|2; (2.1)

similar conditions are satisfied for the metric B. Let t ∈ [−M, M ]; if −1 ≤ α ≤ 1, we
have

‖(SB(t)− SA(t))g‖Hα+1 ≤ C‖B − A‖C0,1‖g‖Hα+1 , (2.2)

where C depends only on M and n.

We will use the notation . to indicate≤ C ·where C depends only on M and n. If A is
a C1,1 metric then SA(t) is a bounded operator from Hα(Rn) to Hα+1(Rn) if−1 ≤ α ≤ 2,
by energy estimates [25] or curvelet methods [23]. Theorem 1 gives Lipschitz stability in
the case where the initial value g is one derivative smoother than required by the mapping
properties of SA(t). This “loss of derivatives” is a natural feature of the stability results
and will be present throughout this paper.

One of the contributions of this paper is the constructive proof establishing that the
map A 7→ SA(t)g is not just continuous, but also Fréchet differentiable with respect to the
metric. By definition, the Fréchet derivative, DS, exists at A if for small C1,1 perturbations,
∆,

(RS)A,∆(t) := SA+∆(t)− SA(t)− (DS)A,∆(t),

is o(‖∆‖) in suitable norms; here, (DS)A,∆(t) is linear in ∆. This is the content of the
following theorem. Again, the result can be proved in an abstract way via energy estimates
[25]. We present, here, a multi-scale approach and a constructive proof using curvelets.
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Theorem 2. Let A and A+∆ be two metrics satisfying (2.1). There exists a linear operator
(DS)A,∆(t), which acts linearly in ∆ and satisfies

‖(DS)A,∆(t)g‖Hα+1 . ‖∆‖C0,1‖g‖Hα+1 , −1 ≤ α ≤ 1, (2.3)

while

‖(RS)A,∆(t))g‖Hα+1 . ‖∆‖2
C0,1‖g‖Hα+2 , −1 ≤ α ≤ 0. (2.4)

Note that there is a “loss of one derivative” in (2.3) and a “loss of two derivatives”
in (2.4). This is consistent with [25] where one has estimates in spaces which have one
derivative less regularity each time.

Remark 2. For more regular metrics, aij ∈ Cm−1,1 with m ≥ 2, using the techniques and
results in Appendix A, we find that

‖SA(t)g‖Hα+1 . ‖∆‖Cm−2,1‖g‖Hα , −m + 1 ≤ α ≤ m, (2.5)

while

‖(DS)A,∆(t)g‖Hα+1 . ‖∆‖Cm−2,1‖g‖Hα+1 , −m + 1 ≤ α ≤ m− 1, (2.6)

and

‖(RS)A,∆(t))g‖Hα+1 . ‖∆‖2
Cm−2,1‖g‖Hα+2 , −m + 1 ≤ α ≤ m− 2. (2.7)

A direct consequence of Theorems 1 and 2 is

Corollary 1. If g ∈ Hα+1 with −1 ≤ α < 1, then

‖(RS)A,∆(t))g‖Hα+1 = o(‖∆‖C0,1) (2.8)

as ‖∆‖C0,1 → 0.

Proof. We decompose g = gs + gr, where gs ∈ H2 and ‖gr‖Hα+1 is small. Then

‖(RS)A,∆(t)gs‖H2 ≤ ‖(SA+∆(t)− SA(t))gs‖H2 + ‖(DS)A,∆(t)gs‖H2

. ‖∆‖C0,1‖gs‖H2 . (2.9)

Also, by Theorem 2
‖(RS)A,∆(t)gs‖H1 . ‖∆‖2

C0,1‖gs‖H2 .

Interpolating the last two estimates gives

‖(RS)A,∆(t)gs‖Hα+1 . ‖∆‖2−α
C0,1‖gs‖H2

for 0 ≤ α ≤ 1. By the same argument as in (2.9),

‖(RS)A,∆(t)gr‖Hα+1 . ‖∆‖C0,1‖gr‖Hα+1 .

Combining the last two estimates implies (2.8) upon choosing gr so that ‖gr‖Hα+1 is suffi-
ciently small.
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We need this corollary to obtain pointwise estimates, pertaining to the solution of the
wave equation and its Fréchet derivatives in three dimensions, that apply to observations
in isolated (“point”) seismic stations. Indeed, if n = 3, Sobolev embedding [10, p.270,
Theorem 6] implies that Hs(R3) embeds in the bounded, continuous functions if s > 3/2,
and then ‖u‖L∞(R3) ≤ C‖u‖Hs(R3), thus leaving admissible α-values 1/2 < α < 1.

2.2 Wave-equation tomography
In wave-equation tomography the dimension is n = 3, and the data, d = d(t, r; s), are
modelled by uA0(t, r; s), with t ∈ [0, T ] (assuming T < M ) while r ∈ S belongs to a
finite set and s belongs to a finite set contained in VS,h. We assume that the interior of the
earth can be described by the C1,1 metric A0. In the process of tomography, the sources,
gs, are known while the metric, A0, is unknown. The objective is to find a good C1,1

approximation A to A0, by developing a mismatch criterion based on the cross-correlations

C(A, t) =

∫
R

uχ
A(t̄, r; s)dχ(t + t̄, r; s) dt̄. (2.10)

Here, uχ
A(t, r; s) = χ[T1,T2](t) uA(t, r; s), with uA representing data modeled with coeffi-

cients A assuming the same source g = gs that generates d; also,
dχ(t, r; s) = χ[T1,T2](t) d(t, r; s). The window function, χ[T1,T2] ∈ C∞

0 , is chosen to select
particular time intervals in the seismic records, with 0 ≤ T1 < T2 < M ; χ[T1,T2](t) = 0 for
t < T1 and t > T2. We assume that g is compactly supported. If g ∈ H1/2+ε then uA and
d are continuous by Sobolev embedding.

For the true metric A0, we have C(A0,−t) = C(A0, t) whence t 7→ C(A0, t) has a
maximum at t = 0. If g ∈ H3/2+ε then ∂tu ∈ CtCx by Sobolev embedding, and one may
compute the time derivative

F(A, t) := ∂tC(A, t) =

∫
uχ

A(t̄)∂tu
χ
A0

(t + t̄) dt̄.

Here, and below, we write uχ
A(t) = uχ

A(t, r; s) and similarly for uχ
A0

. We have the property
that F(A0, 0) = 0.

The “finite-frequency” traveltime difference ∆t = ∆t(s, r) is defined as the real num-
ber with smallest absolute value which solves

F(A, ∆t) = 0.

If A coincides with the true model, A0, then ∆t(s, r) = 0 for all (s, r). The next result
states that ∆t is well defined for metrics near A0.

Lemma 1. If (A, t) is sufficiently close to (A0, 0), then there is a C1 function ∆t defined
for C1,1 metrics near A0 such that

F(A, t) = 0 for (A, t) near (A0, 0) ⇔ t = ∆t(A).
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Proof. In a neighborhood of (A0, 0) in C1,1 × R, the function F is C1 because

∂tF(A, t) = ∂t

∫
uχ

A(t̄− t)∂tu
χ
A0

(t̄) dt̄ = −
∫

∂tu
χ
A(t̄− t)∂tu

χ
A0

(t̄) dt̄,

while
∂AF(A, t)δA =

∫
((DS)A,δA(t̄)g)χ[T1,T2](t̄) ∂tu

χ
A0

(t + t̄) dt̄,

so that

F(A + δA, t + δt)− F(A, t)− ∂tF(A, t)δt− ∂AF(A, t + δt)δA

=

∫
[(SA+δA(t̄)− SA(t̄)− (DS)A,δA(t̄))g]χ[T1,T2](t̄) ∂tu

χ
A0

(t̄ + t + δt) dt̄

+

∫
[uχ

A(t̄− t− δt)− uχ
A(t̄− t)− ∂tu

χ
A(t̄− t)(−δt)] ∂tu

χ
A0

(t̄) dt̄.

We use that g ∈ H3/2+ε. Moreover, we use the estimates

‖(SA+δA(t̄)− SA(t̄)− (DS)A,δA(t̄))g‖H3/2+ε = o(‖δA‖C0,1),

and
‖uA(t′ − δt)− uA(t′)− ∂tuA(t′)(−δt)‖H3/2+ε = o(|δt|).

Since F(A0, 0) = 0 and ∂tF(A0, 0) = −
∫
|∂tu

χ
A0

(t̄)|2 dt̄ < 0, the existence of a C1 function
∆t with stated properties follows from the implicit function theorem.

Differentiating the identity F(A, ∆t(A)) = 0 near A0 gives

(∂A∆t)(A)δA = −∂AF(A, ∆t(A))δA

∂tF(A, ∆t(A))
.

This can be interpreted as the sensitivity with respect to changes in A for wave-equation
tomography. Using that ∆t(A0) = 0, we obtain the sensitivity map, δA 7→ δt with

δt := ∂A∆t(A0)δA = −∂AF(A0, 0)δA

∂tF(A0, 0)
=

∫
((DS)A0,δA(t̄)g)χ[T1,T2](t̄) ∂tu

χ
A0

(t̄) dt̄∫
∂tu

χ
A0

(t̄)∂tu
χ
A0

(t̄) dt̄

.

(2.11)
(We substitute uA0(t̄) = SA0(t̄)g.) This map replaces the geodesic X-ray transform in con-
ventional tomography. Its construction – with an “imprint” of the geodesic X-ray trans-
form – is the topic of Sections 4 and 5.
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Figure 2: Support of a wavepacket ĝλ(η; x, ξ).

3 Multi-scale approach

3.1 Wavepackets and curvelets
Originally, the parametrix construction
based on wavepackets (or curvelets) for the wave equation with C1,1 coefficients appeared
in Smith [23]. Smith initially constructed a tight frame of curvelets, where the frame
elements were compactly supported in the frequency domain. These tight frames were also
considered by Candès and Donoho [2, 3, 4]. The analysis of the parametrix construction is
somewhat simplified by using a continuous wavepacket representation, also called the FBI
transform. This idea appeared in the works of Tataru [29, 30, 31] for wavepackets based on
the Gaussian. Smith [24] gave a construction based on wavepackets compactly supported
in frequency, which approach will be taken here.

We will use similar notation as in [20]. Let φ be a real, even Schwartz function in
Rn with ‖φ‖L2 = (2π)−n/2, and assume φ̂ is supported in the unit ball. For λ ≥ 1 and
y, x, ξ ∈ Rn, we define

φλ(y; x, ξ) = λn/4ei〈ξ,y−x〉φ(λ1/2(y − x)). (3.1)

This is a wavepacket at frequency level λ, centered in space at x and in frequency at ξ, see
Fig. 2. Its Fourier transform is given by

φ̂λ(η; x, ξ) = λ−n/4e−i〈η,x〉φ̂(λ−1/2(η − ξ)).

The FBI transform of a function f ∈ S (Rn) is given by

Tλf(x, ξ) =

∫
f(y)φλ(y; x, ξ) dy. (3.2)
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Suppose that λ ≥ 26. Then, if f̂ is supported in 1
4
λ < |ξ| < λ, Tλf vanishes unless

1
8
λ < |ξ| < 2λ. If F ∈ S (R2n

x,ξ), the adjoint T ∗
λ of Tλ has the form

T ∗
λF (y) =

∫∫
F (x, ξ)φλ(y; x, ξ) dxdξ. (3.3)

It follows that T ∗
λTλ = I , and ‖Tλf‖L2(R2n

x,ξ) = ‖f‖L2(Rn).
The following result [24, Lemma 3.1] states the L2 boundedness of FBI transform type

operators:

Lemma 2. Suppose that φx,ξ is a (x, ξ)-family of Schwartz functions on Rn, whose Schwartz
seminorms are bounded uniformly in x and ξ. Let

(φx,ξ)λ(y; x, ξ) = λn/4ei〈ξ,y−x〉φx,ξ(λ
1/2(y − x)).

The operator

T ′
λf(x, ξ) =

∫
f(y)(φx,ξ)λ(y; x, ξ) dy (3.4)

is bounded from L2(Rn) to L2(R2n
x,ξ). Furthermore, its adjoint, given by

(T ′
λ)
∗F (y) =

∫
F (x, ξ)(φx,ξ)λ(y; x, ξ) dxdξ (3.5)

is bounded from L2(R2n
x,ξ) to L2(Rn).

The norms of T ′
λ, (T ′

λ)
∗ are bounded by sup(x,ξ) CN+1(φx,ξ), with

CN(φx,ξ) :=
∑
|α|≤N

‖〈y〉N ∂α
y φx,ξ(y)‖L∞ , (3.6)

and N > 2n.

Proof. The Schwartz kernel of the composition T ′
λ (T ′

λ)
∗ is given by

K(x, ξ; x′ξ′) = ei(〈ξ,x〉−〈ξ′,x′〉)
∫

eiλ−1/2〈ξ′−ξ,y〉 φx,ξ(y − λ1/2x)φx′,ξ′(y − λ1/2x′) dy.

This kernel satisfies the estimates [24]

|K(x, ξ; x′ξ′)| ≤ C (1 + λ−1/2|ξ − ξ′|+ λ1/2 |x− x′|)−N

for all N ∈ N. Here, the constant C depends on N and can be further estimated by finitely
many Schwartz semi-norms of φx,ξ, that is, by

sup
(x,ξ)

CN+1(φx,ξ)
2.

Choosing N > 2n, we can use Schur’s lemma to show that T ′
λ (T ′

λ)
∗ is bounded on

L2(R2n
x,ξ).

We will use this lemma several times in the proofs of Section 5, with different types of
wavepackets, φx,ξ. Furthermore, we will identify λ with dyadic scales, that is, λ = 2k, and
write Tk for Tλ.
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3.2 Symbol smoothing and model decomposition
We discuss the principal multi-scale decomposition. We let χ(ξ) be a smooth cutoff, sup-
ported in the unit ball, with χ = 1 for |ξ| ≤ 1/2. We subject the coefficients, aij ∈ C1,1, in
the wave equation to the smoothing

aij
k (x) = χ(2−k/2Dx)a

ij(x). (3.7)

This operation directly implies smoothing of the symbol, A(x, ξ), in (1.1).
In conjunction with the symbol smoothing, we use the Littlewood-Paley frequency

decomposition. We take βk(D) to be a Littlewood-Paley partition of unity, with

β0(ξ) +
∞∑

k=1

βk(ξ) = 1,

where β0 is supported in the unit ball, β1 is supported in {1
2

< |ξ| < 2}, and βk(ξ) =
β1(2

−k+1ξ). We subject the initial data, g, to such a decomposition:

gk = βk(D)g. (3.8)

4 Summary of parametrix construction
In this section, we summarize the parametrix construction for wave equations with C1,1

metrics, cf. (1.1). We follow the construction in [20], which was based on [23] and [24].
Following the Littlewood-Paley decomposition, for each k, we consider the initial value

problem, 
[D2

t − Ak(x, Dx)]uk(t, x) = 0,

uk|t=0 = 0,

∂tuk|t=0 = gk;

(4.1)

here, the metric is smooth. We begin with constructing an approximate solution while
distinguishing forward and backward time directions. We construct pseudodifferential op-
erators, P±

A;k(x, Dx), with symbols

p±A;k(x, ξ) = ±χ(2−k/2Dx)
√

Ak(x, ξ) (4.2)

so that p±A;k(x, ξ)βk(ξ) ∈ S1
1,1/2. Furthermore, we construct pseudodifferential operators,

Q±
A;k(x, Dx), with symbols

q±A;k(x, ξ) = χ(2−k/2Dx)
1

p±A;k(x, ξ)
(4.3)

so that q±A;k(x, ξ)βk(ξ) ∈ S−1
1,1/2.
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Remark 3. We discuss the decomposition into forward and backward solutions, starting
from (4.1). Since Ak(x, Dx) is elliptic, we can introduce its square root, Bk(x, Dx) =√

Ak(x, Dx). Then

u±(t, x) = 1
2
uk(t, x)± 1

2
iBk(x, Dx)

−1∂tuk(t, x)

so that

u±(t = 0, x) = 1
2
uk(t, x)|t=0 ± 1

2
iBk(x, Dx)

−1∂tu(t, x)|t=0 = ±1
2
iBk(x, Dx)

−1gk,

solve the initial value problems{
[∂t ± iBk(x, Dx)]u±(t, x) = 0,

u±|t=0 = ±1
2
iBk(x, Dx)

−1gk.
(4.4)

In the above, P±
A;k(x, Dx) essentially coincides with ±Bk(x, Dx), up to principal parts,

and Q±
A;k(x, Dx) essentially coincides with ±Bk(x, Dx)

−1, up to principal parts.

We build “flow” operators for the metric subjected to smoothing according to:

E±
A;k(t)g = T ∗

k U±
A;k(t) Tk(

1
2
iQ±

A;kβk(D)g). (4.5)

Here, U±
A;k(t) represents a rigid motion of wavepackets along the Hamilton flow associated

with p±A;k, that is,

U±
A;k(t)F = F ◦ χA;k,±

t,0 ,

T ∗
k U±

A;k(t) Tkf =

∫∫
(Tkf)(χA;k,±

t,0 (x′, ξ′)) φk(.; x
′, ξ′) dx′dξ′

(x′,ξ′)=Φ±A;k(t)(x,ξ)
=

∫∫
(Tkf)(x, ξ) φk(.;Φ

±
A;k(t)(x, ξ)) dxdξ, (4.6)

where Φ±
A;k(t) = χA;k,±

0,t , with the flow χA;k,±
t,0 : (x, ξ) 7→ (x(t; x, ξ), ξ(t; x, ξ)) being

generated by the Hamilton system,

ẋ(t) = ∂ξp
±
A;k(x(t), ξ(t)),

ξ̇(t) = −∂xp
±
A;k(x(t), ξ(t)),

subject to initial conditions (x(0), ξ(0)) = (x, ξ). The following property will be used
throughout the paper: If (x(t; x, ξ), ξ(t; x, ξ)) satisfy the Hamilton system and |ξ(0)| =
|ξ| ≈ 2k then |ξ(t; x, ξ)| ≈ 2k for |t| ≤ M [20, pp.4-5].

We then construct the leading-order approximation to the solution operator of (4.1) by
summing over scales:

S̃A(t)g = t
∑
k<k0

gk +
∑
k≥k0

(u+
k + u−k ), u±k = E±

A;k(t)g, (4.7)
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Figure 3: Illustration of the “flow” operator, U±
A;k(t).

with k0 sufficiently large. We introduce the shorthand notation, u+
k + u−k =

∑
± uk =∑

± EA;k(.)g. S̃A(t)g does not satisfy the initial conditions, that is, S̃A(t)g|t=0 = 0 but
∂tS̃A(t)g|t=0 6= g in general. The value for the initial velocity follows to be

∂tS̃A(t)g
∣∣∣
t=0

=
∑
k<k0

gk + i
∑
±

∑
k≥k0

(Dt + PA;k)uk

∣∣∣
t=0

− i
∑
±

∑
k≥k0

PA;kuk

∣∣∣
t=0

= (I + KA)g, (4.8)

where KA is given by

KA =
∑
±

∑
k≥k0

[
iR̃A;k(0) + 1

2
RA;kβk(D)

]
. (4.9)

Here,
R̃±

A;k(t) = (Dt + P±
A;k) E±

A;k(t), (4.10)

while R±
A;kβk(D) are pseudodifferential operators with symbols in S0

1,1/2 (in fact, also in
S−1

1,1/2), defined by
P±

A;kQ
±
A;kβk(D) = (I + R±

A;k) βk(D). (4.11)

In the above, k0 is chosen sufficiently large such that (I + KA)−1 exists. It follows that

ŜA(t) = S̃A(t) (I + KA)−1 (4.12)

has the property that

ŜA(t)g|t=0 = 0 and ∂tŜA(t)g|t=0 = g.
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To construct the solution of (1.1) one introduces a “residual force” source, G:

u(t, .) = ŜA(t)g +

∫ t

0

ŜA(t, s)G(s, .) ds, ŜA(t, s) = ŜA(t− s). (4.13)

To find the residual force G(s, x), we apply the wave operator operator, D2
t −A(x, Dx), to

this equality. With

∂2
t

(∫ t

0

ŜA(t, s)G(s, .) ds
)

= G(t, .) +

∫ t

0

∂2
t ŜA(t, s)G(s, .) ds,

we obtain

[D2
t − A(x, Dx)]u(t, .) = TA(t)g −G(t, .) +

∫ t

0

TA(t, s)G(s, .) ds,

where

TA(t, s) = [D2
t − A(x, Dx)] ŜA(t, s), setting TA(t) = TA(t, 0), (4.14)

is an operator of order 0, that is, it is bounded on Hα(Rn) for −1 ≤ α ≤ 2. (In the
later analysis, we will also introduce T̃A(t, s) = [D2

t − A(x, Dx)] S̃A(t, s).) Then u will
be a solution of (1.1) provided that G(t, .) = VA(TA(t)g), where G = VA(h) solves the
Volterra equation

G(t, .)−
∫ t

0

TA(t, s)G(s, .) ds = h(t, .).

Since TA(t, s) is bounded on Hα, VA is bounded on L∞
t Hα

x , for −1 ≤ α ≤ 2. The full
solution operator follows to be

SA(t)g = ŜA(t)g +

∫ t

0

ŜA(t, s)VA(TAg)(s, .) ds. (4.15)

In the process of obtaining the appropriate estimates, one introduces the operators

M±
A;k = (Dt + P±

A;k) T ∗
k U±

A;kTk and N±
A;k = [D2

t − (P±
A;k)

2] T ∗
k U±

A;kTk, (4.16)

cf. (4.10) and (4.14), respectively.

5 Fréchet derivative of SA(t): Proof of Theorem 2
We begin with some general considerations. We let X, Y = Rn or R2n. A map C1,1 3
A 7→ HA, HA : Hα(X) → Hα′(Y ), is Fréchet differentiable at A if

1. HA is continuous at A,
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2. there is a map, (DH)A,∆ : Hα(X) → Hα′(Y ), which acts linearly in ∆ = B − A,
such that

‖HB −HA − (DH)A,∆‖L(Hα(X),Hα′ (Y )) = o(‖∆‖C1,1), (5.1)

with ∆ satisfying ‖∆‖C1,1 < ε for some ε > 0.

Instead of (5.1), one typically establishes that

‖(HB −HA − (DH)A,∆)g‖Hα′ ≤ C(∆) ‖g‖Hα for all g ∈ Hα, (5.2)

in which
C(∆) = o(‖∆‖C1,1). (5.3)

We adopt notation
(RH)A,∆ := (HB −HA)− (DH)A,∆. (5.4)

For the operators relevant to our analysis we establish, in fact, that

C(∆) . ‖∆‖2
C0,1 . (5.5)

Moreover, we will refine the measure of the coefficient perturbation; that is, we will use
nested spaces, L∞(Rn), and Cm−1,1(Rn) with norms ‖aij‖Cm−1,1 =

∑
|α|≤m ‖∂αaij‖L∞

for m = 1, 2, . . ., with . . . ⊂ C1,1 ⊂ C0,1 ⊂ L∞.
We simplify the notation, by denoting the Fréchet derivative of operators HA;k by

(DH)A,∆ instead of (DH)A,∆;k whenever it is clear from the context. Furthermore, for
simplicity of notation, we will suppress the superscripts ±. We define ∆̄(x, Dx) = B(x, Dx)
− A(x, Dx) =

∑n
i,j=1 ∆ij(x)Dxi

Dxj
. In the following lemmata, we will use functions

f ∈ L2 the Fourier transform f̂ of which is understood to be supported in |ξ| ≈ 2k. Such
a function is reminiscent of the Littlewood-Paley decomposition of g. We will follow the
diagram in Fig. 4.

Lemma 3. Let (DP )A,∆ and (DQ)A,∆ be the pseudodifferential operators with symbols

(Dp)A,∆(x, ξ) = χ(2−k/2Dx)

[
∆̄k(x, ξ)√
Ak(x, ξ)

]
, (5.6)

(Dq)A,∆(x, ξ) = χ(2−k/2Dx)

[
(Dp)A,∆(x, ξ)

p2
A;k(x, ξ)

]
, (5.7)

and (DR)A,∆ be the pseudodifferential operator defined through the composition,

(DR)A,∆ = (DP )A,∆QA;k + PA;k(DQ)A,∆. (5.8)

If f ∈ L2 and f̂ is supported in |ξ| ≈ 2k, then

‖(DP )A,∆ f‖L2 . 2k ‖∆‖L∞‖f‖L2 , (5.9)
‖(DQ)A,∆ f‖L2 . 2−k ‖∆‖L∞‖f‖L2 , (5.10)
‖(DR)A,∆ f‖L2 . ‖∆‖L∞‖f‖L2 , (5.11)
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Figure 4: Diagram describing the proof of Fréchet differentiability of SA(t), and the inter-
relation of the operators involved.

while

‖(RP )A,∆ f‖L2 . 2k ‖∆‖2
L∞‖f‖L2 , (5.12)

‖(RQ)A,∆ f‖L2 . 2−k ‖∆‖2
L∞‖f‖L2 , (5.13)

‖(RR)A,∆ f‖L2 . ‖∆‖2
L∞‖f‖L2 . (5.14)

Proof. We consider a function

h̃(x, ξ) = (2kn/2χ(2k/2 . )
(x)
∗ [F (Bk( . , ξ))− F (Ak( . , ξ))

− F ′(Ak( . , ξ))(Bk − Ak)( . , ξ)]) β̃k(ξ),

where β̃k is a cutoff to |ξ| ≈ 2k, and F (t) = t1/2. We wish to show that

|∂α
x ∂β

ξ h̃(x, ξ)| ≤ CM,α,β‖B − A‖2
L∞(2k)1−|β|+ 1

2
|α|, (5.15)

which implies estimate (5.12). In ∂α
x ∂β

ξ h̃ we let the x-derivatives, in the convolution, act
on the mollifier, χ, which yields the desired growth. We now assume that α = 0. Each
ξ-derivative acting on β̃k(ξ) generates a factor 2−k. It remains to consider the ξ-derivatives
acting on the factor F (Bk)− F (Ak)− F ′(Ak)(Bk − Ak). We write

F (Bk)− F (Ak)− F ′(Ak)(Bk − Ak) =

∫ 1

0

(1− r)F ′′(rBk + (1− r)Ak)(Bk − Ak)
2 dr.

(5.16)
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The matrix rbij
k + (1 − r)aij

k satisfies (2.1), and it appears natural to introduce the one-
parameter family of symbols,

Cr;k(x, ξ) = rBk(x, ξ) + (1− r)Ak(x, ξ), r ∈ [0, 1].

Moreover, the integrand is homogeneous of degree 1 in ξ. Hence, observing that ‖Bk −
Ak‖L∞ . ‖B − A‖L∞ ,

|(∂β
ξ [F (Bk)− F (Ak)− F ′(Ak)(Bk − Ak)]) β̃k(ξ)| ≤ CM,β‖B − A‖2

L∞(2k)1−|β|.

The constant in this inequality depends on M through the lower bounds for the symbols of
A and B (cf. (2.1)). We then identify (Dp)A,∆ in (5.6) with χ(2−k/2D)F ′(Ak) ∆̄k.

To obtain estimate (5.9), we consider the function

ȟ(x, ξ) = (2kn/2χ(2k/2 . )
(x)
∗ [F ′(Ak( . , ξ))(Bk − Ak)( . , ξ)]) β̃k(ξ).

It follows that
|∂α

x ∂β
ξ ȟ(x, ξ)| ≤ CM,α,β‖B − A‖L∞(2k)1−|β|+ 1

2
|α|, (5.17)

from which estimate (5.9) follows.
Next, we consider the operator difference, QB;k −QA;k. For the symbols, we have

qB;k − qA;k = χ(2−k/2D)
( 1

pB;k

− 1

pA;k

)
.

We note that
1

pB;k

− 1

pA;k

=
pB;k − pA;k

p2
A;k

− (pB;k − pA;k)
2

p2
A;kpB;k

.

With (5.7) we arrive at the remainder (cf. (5.4))

(Rq)A,∆ = χ(2−k/2D)

[
(Rp)A,∆

p2
A;k

− (pB;k − pA;k)
2

p2
A;kpB;k

]
.

The symbol in (5.7) satisfies the estimate

|∂α
x ∂β

ξ (Dq)A,∆(x, ξ) β̃k(ξ)| ≤ CM,α,β‖B − A‖2
L∞(2k)−1−|β|+ 1

2
|α|,

from which (5.10) follows. Moreover, it can be shown that (pB;k−pA;k)(x, ξ) β̃k(ξ) satisfies
the estimates for ȟ(x, ξ) in (5.17). Using this estimate, the estimate for (Dp)A,∆, and
standard symbol calculus yields the result,

|∂α
x ∂β

ξ (Rq)A,∆(x, ξ) β̃k(ξ)| ≤ CM,α,β‖B − A‖2
L∞(2k)−1−|β|+ 1

2
|α|.

We then consider the operator difference, RB;k−RA;k. Suppressing the cutoffs, βk, we
have (cf. (4.11))

RB;k −RA;k = PB;kQB;k − PA;kQA;k = (PB;k − PA;k) QA;k

+ PA;k (QB;k −QA;k) + (PB;k − PA;k) (QB;k −QA;k).
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It follows that the remainder (cf. (5.4)) attains the form

(RR)A,∆ = (RP )A,∆ QA;k + PA;k (RQ)A,∆ + (PB;k − PA;k) (QB;k −QA;k).

By composition, the estimates above imply (5.11) and (5.14).

We now consider the Fréchet derivative of Uk,A(t) Tk (cf. 4.6). To this end, we need to
perturb the reverse Hamiltonian flow, ΦA;k(t). To arrive at this perturbation, we introduce
the one-parameter family of symbols,

Cr(x, ξ) = rB(x, ξ) + (1− r)A(x, ξ), r ∈ [0, 1],

defining, upon smoothing, the Hamiltonians

pCr;k(x, ξ) = χ(2−k/2Dx)
√

Cr;k(x, ξ)

(cf. (4.2)). These define the smooth family, (ΦCr;k)r∈[0,1], of symplectic diffeomorphisms
on T ∗Rn, where ΦCr;k(t) = χCr;k

0,t , with the flow
χCr;k

t,0 : (x, ξ) 7→ (xr(t; x, ξ), ξr(t; x, ξ)) being generated by the Hamilton system,

ẋ(t) = ∂ξpCr;k(x(t), ξ(t)),

ξ̇(t) = −∂xpCr;k(x(t), ξ(t)),

subject to initial conditions (x(0), ξ(0)) = (x, ξ). We differentiate the Hamilton system,
noting that

∂rpCr;k = −χ(2−k/2Dx)
Bk(x, ξ)− Ak(x, ξ)

2
√

Cr;k(x, ξ)
= −χ(2−k/2Dx)

∆̄k(x, ξ)

2
√

Cr;k(x, ξ)
.

For the Hamiltonian, and its first-order derivatives, we have the estimates

|∂α
x ∂β

ξ pCr;k(x, ξ)| ≤ CM,α,β(2k)1−|β|+ 1
2

max(0,|α|−2), (5.18)

|∂α
x ∂β

ξ (∂rpCr;k)(x, ξ)| ≤ CM,α,β‖B − A‖C0,1(2k)1−|β|+ 1
2

max(0,|α|−1), (5.19)

or

|∂α
x ∂β

ξ (∂rpCr;k)(x, ξ)| ≤ CM,α,β‖B − A‖C1,1(2k)1−|β|+ 1
2

max(0,|α|−2), (5.20)

for |ξ| ≈ 2k (compare, also, (5.17)). The first-order perturbation of the flow is then de-
scribed by the Hamilton-Jacobi equations,

d

dt

(
∂rxr

∂rξr

)
=

(
∂x∂ξpCr;k ∂2

ξ pCr;k

−∂2
xpCr;k −∂ξ∂xpCr;k

)(
∂rxr

∂rξr

)
+

(
∂ξ∂rpCr;k

−∂x∂rpCr;k

)
, (5.21)
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subject to substituting for (x, ξ) in the expressions on the right-hand side the solution
(xr(t; x, ξ), ξr(t; x, ξ)), and supplemented by the initial conditions (∂rxr(0), ∂rξr(0)) =
(0, 0). We use the notation Θk = Θk(r; t, x, ξ) = (xr(t; x, ξ), ξr(t; x, ξ)) for bicharacteris-
tics, and denote the fundamental matrix associated with system (5.21) by Ψr(t). Then

(∂rΘk)(t) =

∫ t

0

Ψr(t) Ψr(t
′)−1br(t

′) dt′, with br =

(
∂ξ∂rpCr;k

−∂x∂rpCr;k

)

(cf. (5.21)). In particular, (∂rΘk)r=0(−t) defines (DΦ)A;∆(t)(x, ξ); we write

(DΦ)A;∆,1(t)(x, ξ) = (∂rxr)r=0(−t; x, ξ), (DΦ)A;∆,2(t)(x, ξ) = (∂rξr)r=0(−t; x, ξ).

To obtain estimates, we compensate for the fact that if |ξ(0)| = |ξ| ≈ 2k then |ξ(t; x, ξ)| ≈
2k, as usual for |t| ≤ M , by redefining Θk as

Θ ′
k = Θ ′

k(r; t, x, ξ) = (xr(t; x, ξ), 2−kξr(t; x, ξ))

with Θ ′
k(r; 0, x, ξ) = (x, 2−kξ). Using estimates (5.18)-(5.19), system (5.21) and the ho-

mogeneity of the Hamiltonian, we find that∣∣∣∣ d

dt
∂rΘ

′
k(t)

∣∣∣∣ . |∂rΘ
′
k(t)|+ ‖B − A‖C0,1 . (5.22)

Because ∂rΘ
′
k(0) = 0, Gronwall’s lemma implies that |∂rΘ

′
k(t)| . ‖B − A‖C0,1 , leading

to

|(∂rxr)(t; x, ξ)| . ‖B − A‖C0,1 , (5.23)

|(∂rξr)(t; x, ξ)| . 2k‖B − A‖C0,1 . (5.24)

An expression for the remainder, (RΦ)A;∆, is obtained by considering the Taylor ex-
pansions,

(xB − xA)(t; x, ξ) = (∂rxr)r=0(t; x, ξ) +

∫ 1

0

(1− r)(∂2
rxr)(t; x, ξ) dr, (5.25)

(ξB − ξA)(t; x, ξ) = (∂rξr)r=0(t; x, ξ) +

∫ 1

0

(1− r)(∂2
r ξr)(t; x, ξ) dr. (5.26)

To estimate the integrals on the right-hand sides, we need to develop the second-order
perturbation of the flow, which requires taking the second-order derivative,

∂2
rpCr;k = χ(2−k/2Dx)

[Bk(x, ξ)− Ak(x, ξ)]2

4Cr;k(x, ξ)3/2
= χ(2−k/2Dx)

∆̄k(x, ξ)2

4Cr;k(x, ξ)3/2
,

satisfying the estimate

|∂α
x ∂β

ξ (∂2
rpCr;k)(x, ξ)| ≤ CM,α,β‖B − A‖2

C0,1(2k)1−|β|+ 1
2

max(0,|α|−1), (5.27)
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for |ξ| ≈ 2k (compare, also, (5.15)). Taking the derivative of (5.21) with respect to r, using
estimates (5.18), (5.19) and (5.27), and the homogeneity of the Hamiltonian, leads to∣∣∣∣ d

dt
(∂2

rxr)(t; x, ξ)

∣∣∣∣ . |(∂2
rxr)(t; x, ξ)|+ 2−k|(∂2

r ξr)(t; x, ξ)|+ ‖B − A‖2
C0,1 ,∣∣∣∣ d

dt
(∂2

r ξr)(t; x, ξ)

∣∣∣∣ . 2k|(∂2
rxr)(t; x, ξ)|+ |(∂2

r ξr)(t; x, ξ)|+ 23k/2‖B − A‖2
C0,1 ;

hence, ∣∣∣∣ d

dt
∂2

rΘ
′
k(t)

∣∣∣∣ . |∂2
rΘ

′
k(t)|+ 2k/2‖B − A‖2

C0,1 . (5.28)

Because ∂2
rΘ

′
k(0) = 0, Gronwall’s lemma implies that |∂2

rΘ
′
k(t)| . 2k/2‖B − A‖2

C0,1 ,
leading to

|(∂2
rxr)(t; x, ξ)| . 2k/2 ‖B − A‖2

C0,1 , (5.29)

|(∂2
r ξr)(t; x, ξ)| . 23k/2‖B − A‖2

C0,1 . (5.30)

These estimates carry over directly to (RΦ)A;∆ using (5.25)-(5.26).
The transform in (3.2), initiating the approximate solution via U±

A;k(t) (cf. (4.5)), has
the properties

∂α
x Tkf = Tk(∂

αf), ∂β
ξ Tkf = (2k)−

1
2
|β| T̃ β

k f, (5.31)

where
T̃ β

k f(x, ξ) =

∫
f(y)(φ̃β)k(y; x, ξ) dy, φ̃β(y) = (iy)β φ(y), (5.32)

satisfying bounds similar to those of Tk. These properties are used in

Lemma 4. Let ŨA;k(t) = UA;k(t)Tk, and (DŨ)A,∆ : Hα(Rn) → Hα−1(R2n) be the
mapping defined according to 1

((DŨ)A,∆f)(x, ξ) =
n∑

j=1

(DΦ)A;∆,1,j(x, ξ) (Tk(∂xj
f))(ΦA;k(x, ξ))

+ 2−k/2

n∑
j=1

(DΦ)A;∆,2,j(x, ξ) (T̃ εj

k f)(ΦA;k(x, ξ)). (5.33)

If f ∈ L2 and f̂ is supported in |ξ| ≈ 2k, we have

‖(DŨ)A,∆f‖L2(R2n
(x,ξ)

) . 2k ‖∆‖C0,1‖f‖L2 , (5.34)

while
‖(RŨ)A,∆f‖L2(R2n

(x,ξ)
) . (2k)2 ‖∆‖2

C0,1‖f‖L2 . (5.35)

1We use the multi-index notation, εj : εj
l = 0 if l 6= j, while εj

j = 1. Moreover we use the notation εij : If
i 6= j then εij

l = 0 if l 6= i and l 6= j, while εij
i = εij

j = 1; otherwise, εii
l = 0 if l 6= i and εii

i = 2.
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Proof. Using the family, (ΦCr;k)r∈[0,1], of symplectic diffeomorphisms on T ∗Rn, we can
write ((DŨ)A,∆f)(x, ξ) in the form,

(∂rTkf(ΦCr;k(x, ξ)))r=0 =
n∑

j=1

(∂rxr;j)r=0(.; x, ξ) (Tk(∂xj
f))(ΦA;k(x, ξ))

+ 2−k/2

n∑
j=1

(∂rξr;j)r=0(.; x, ξ) (T̃ εj

k f)(ΦA;k(x, ξ)). (5.36)

We use estimates (5.23)-(5.24) and account for the derivative, ∂xj
f , from which it follows

that the right-hand side is dominated by the first summation, and obtain (5.34).
We can now write the remainder, ((RŨ)A,∆f)(x, ξ), in the form,∫ 1

0

∫ r′

0

∂r

[ n∑
j=1

(∂rxr;j)(.; x, ξ) (Tk(∂xj
f))(ΦCr;k(x, ξ))

+ 2−k/2

n∑
j=1

(∂rξr;j)(.; x, ξ) (T̃ εj

k f)(ΦCr;k(x, ξ))

]
drdr′

=

∫ 1

0

∫ r′

0

[ n∑
i,j=1

(∂rxr;i)(.; x, ξ)(∂rxr;j)(.; x, ξ) (Tk(∂xi
∂xj

f))(ΦCr;k(x, ξ))

+ 2−k/2

n∑
i,j=1

(∂rξr;i)(.; x, ξ)(∂rxr;j)(.; x, ξ) (T̃ εi

k (∂xj
f))(ΦCr;k(x, ξ))

+
n∑

j=1

(∂2
rxr;j)(.; x, ξ) (Tk(∂xj

f))(ΦCr;k(x, ξ))

+ 2−k/2

n∑
i,j=1

(∂rxr;i)(.; x, ξ)(∂rξr;j)(.; x, ξ) (T̃ εj

k (∂xi
f))(ΦCr;k(x, ξ))

+ 2−k

n∑
i,j=1

(∂rξr;i)(.; x, ξ)(∂rξr;j)(.; x, ξ) (T̃ εij

k f)(ΦCr;k(x, ξ))

+ 2−k/2

n∑
j=1

(∂2
r ξr;j)(.; x, ξ) (T̃ εj

k f)(ΦCr;k(x, ξ))

]
drdr′. (5.37)

We use estimates (5.23)-(5.24) and (5.29)-(5.30), and account for the derivatives, ∂xi
f ,

∂xj
f and ∂xi

∂xj
f , from which it follows that the right-hand side is dominated by the first

summation, and obtain (5.35).

Making use of the fact that T ∗
k is an isometry, it is immediate that

‖(T ∗
k (DŨ)A,∆) f‖L2 . 2k ‖∆‖C0,1‖f‖L2 ,

and that

‖(T ∗
k (UB;k − UA;k) Tk − T ∗

k (DŨ)A,∆) f‖L2 . 22k ‖∆‖2
C0,1‖f‖L2 ,
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assuming that f ∈ L2 and that f̂ is supported in |ξ| ≈ 2k. Together with Lemma 3, this
leads to (cf. (4.5))

Lemma 5. Let (DE)A,∆ : Hα(Rn) → Hα(Rn) be the mapping defined according to

(DE)A,∆(t)g = T ∗
k (DŨ)A,∆(t) (1

2
i QA;kβk(D)g)

+ (T ∗
k UA;k(t)Tk)(

1
2
i (DQ)A,∆βk(D)g). (5.38)

We have
‖(DE)A,∆(t)g‖L2 . ‖∆‖C0,1‖βk(D)g‖L2 , (5.39)

while

‖(RE)A,∆(t)g‖L2 . 2k ‖∆‖2
C0,1‖βk(D)g‖L2 . (5.40)

Following (4.7) then leads to the Fréchet derivative, (DS̃)A,∆(t) : Hα(Rn) → Hα(Rn),
of S̃A(t),

(DS̃)A,∆(t)g =
∑
±

∑
k≥k0

(DE)A,∆(t)g. (5.41)

Since (DE)A,∆(t)g is localized near |ξ| ≈ 2k, the sum over scales converges in Hα(Rn) 2.
The Fréchet derivative satisfies the estimate

‖(DS̃)A,∆(t)g‖Hα . ‖∆‖C0,1‖g‖Hα , (5.42)

while
‖(RS̃)A,∆(t)g‖Hα−1 . ‖∆‖2

C0,1‖g‖Hα . (5.43)

To obtain the Fréchet derivative of ŜA(t) (cf. (4.8)), we need to consider the operators
MA;k defined in (4.16). Using (4.6), we note that

MA;kf =

∫∫
(Tkf)(x, ξ)

([PA;k(y, Dy) + LA;k
ΦA;k(t)(x,ξ)(Dx, Dξ)] φk)(y;ΦA;k(t)(x, ξ)) dxdξ, (5.44)

where
LA;k

x,ξ (Dx, Dξ) = 〈(∂ξpA;k)(x, ξ), Dx〉 − 〈(∂xpA;k)(x, ξ), Dξ〉. (5.45)

Within the integral on the right-hand side of (5.44), we analyze

[PA;k(y, Dy) + LA;k
x,ξ (Dx, Dξ)] φk(y; x, ξ) =: (φA

x,ξ)k(y; x, ξ).

2For the Sobolev norms, we have ‖g‖2Hα ≈
∑

k(2k)2α‖gk‖2L2 .
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Following [20, Lemma 5.3], φA
x,ξ can be generated with a pseudodifferential operator,

mA;k
x,ξ (z, Dz), with symbol

mA;k
x,ξ (z, ζ) =

∫ 1

0

(1− s) ∂2
s [pA;k(x + s 2−k/2z, ξ + s 2k/2ζ)] ds; (5.46)

that is,
φA

x,ξ(z) = mA;k
x,ξ (z, Dz)φ(.), (5.47)

from which (φA
x,ξ)k(y; x, ξ) is obtained according to (3.1). Now we can write MA;kf =

(TA
k )∗UA;kTkf , with

(TA
k )∗F (y) =

∫
F (x, ξ)(φA

x,ξ)k(y; x, ξ) dxdξ, (5.48)

cf. Lemma 2 upon substituting T ′
k = TA

k . Thus, in the process of constructing Fréchet
derivatives, we need to differentiate (TA

k )∗, and, hence, φA
x,ξ:

(Dφx,ξ)A,∆(z) = (2π)−n

∫
ei〈ζ,z〉 (Dmx,ξ)A,∆(z, ζ) φ̂(ζ) dζ, (5.49)

where

(Dmx,ξ)A,∆(z, ζ) =

∫ 1

0

(1− s) ∂2
s [(Dp)A,∆(x + s 2−k/2z, ξ + s 2k/2ζ)] ds. (5.50)

In a similar fashion, the remainder can be expressed as

(Rφx,ξ)A,∆(z) = φB
x,ξ(z)− φA

x,ξ(z)− (Dφx,ξ)A,∆(z)

= (2π)−n

∫
ei〈ζ,z〉 (Rmx,ξ)A,∆(z, ζ) φ̂(ζ) dζ, (5.51)

with

(Rmx,ξ)A,∆(z, ζ) =

∫ 1

0

(1− s) ∂2
s [(Rp)A,∆(x + s 2−k/2z, ξ + s 2k/2ζ)] ds. (5.52)

While making use of the symbol estimates in the proof of Lemma 3, we obtain

Lemma 6. The Schwartz seminorms of (Dφx,ξ)A,∆ are . 2k‖∆‖L∞ , uniformly in x and ξ.
Moreover, the Schwartz seminorms of (Rφx,ξ)A,∆ are . 2k‖∆‖2

L∞ , uniformly in x and ξ.
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Proof. We use elements of the proofs in [20, Lemma 5.3, Lemma 6.2], and set

(x̃, ξ̃) = (x + s 2−k/2z, ξ + s 2k/2ζ),

so that the integrand of (5.50) is given by

∂2
s [(Dp)A,∆(x̃, ξ̃)] =

∑
j,k

[
(∂xj

∂xk
(Dp)A,∆)(x̃, ξ̃) 2−kzjzk

+ (∂xj
∂ξk

(Dp)A,∆)(x̃, ξ̃) zjζk + (∂ξj
∂ξk

(Dp)A,∆)(x̃, ξ̃) 2kζjζk

]
.

In view of the support of φ̂, we only need to consider |ζ| < 2. Applying (5.17), and
observing that 2k/2|ζ| � 2k ≈ |ξ|, we obtain

|∂α
z ∂β

ζ ∂2
s [(Dp)A,∆(x̃, ξ̃)]| . ‖B − A‖L∞ (2k)1− 1

2
|β|〈z〉2.

Using (5.50), these estimates carry directly over to

|(∂α
z ∂β

ζ (Dmx,ξ)A,∆)(z, ζ)| . (2k)1− 1
2
|β| ‖B − A‖L∞ 〈z〉2, |ζ| < 2. (5.53)

The Schwartz seminorms of (Dφx,ξ)A,∆ are determined by this estimate, upon integration
by parts.

In a similar fashion, applying (5.15) to (5.52) we obtain,

|(∂α
z ∂β

ζ (Rmx,ξ)A,∆)(z, ζ)| . (2k)1− 1
2
|β| ‖B − A‖2

L∞ 〈z〉2, |ζ| < 2. (5.54)

Again, the Schwartz seminorms of (Rφx,ξ)A,∆ are determined by this estimate using inte-
gration by parts.

We have now the tools to analyze the Fréchet derivative of the residual operator (DR̃)A,∆,
following (4.10), which we will need at zero (initial) time (cf. (4.9) while ΦA;k(0) = I):

Lemma 7. Let ((DR̃)A,∆)(0) : Hα(Rn) → Hα(Rn) be the operator defined by

(DR̃)A,∆(0)g = 1
2
i
[ ∫∫

(Tk(DQ)A,∆βk(D)g)(x, ξ)(φA
x,ξ)k(.; x, ξ) dxdξ

+

∫∫
(TkQA;kβk(D)g)(x, ξ)(Dφx,ξ)A,∆(.; x, ξ) dxdξ

]
; (5.55)

we have
‖(DR̃)A,∆(0)g‖L2 . ‖∆‖L∞‖βk(D)g‖L2 , (5.56)

while
‖(RR̃)A,∆(0)g‖L2 . ‖∆‖2

L∞‖βk(D)g‖L2 . (5.57)
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Proof. We have

(R̃B;k(0)− R̃A;k(0))g = 1
2
i
[ ∫∫

(Tk(QB;k −QA;k)βk(D)g)(x, ξ)(φA
x,ξ)k(.; x, ξ) dxdξ

+

∫∫
(TkQA;kβk(D)g)(x, ξ)(φB

x,ξ − φA
x,ξ)k(.; x, ξ) dxdξ

+

∫∫
(Tk(QB;k −QA;k)βk(D)g)(x, ξ)(φB

x,ξ − φA
x,ξ)k(.; x, ξ) dxdξ

]
;

this leads to the introduction of expression (5.55) for the Fréchet derivative (noting that
(DΦ)A;∆(0) = 0) with remainder

(RR̃)A,∆(0)g = 1
2
i
[ ∫∫

(Tk(RQ)A,∆βk(D)g)(x, ξ)(φA
x,ξ)k(.; x, ξ) dxdξ

+

∫∫
(TkQA;kβk(D)g)(x, ξ)(Rφx,ξ)A,∆(.; x, ξ) dxdξ

+

∫∫
(Tk(QB;k −QA;k)βk(D)g)(x, ξ)(φB

x,ξ − φA
x,ξ)k(.; x, ξ) dxdξ

]
.

Using the estimates in (5.13), Lemma 6, and [20, Lemma 6.1 and Lemma 6.2] it follows
that the first term on the right-hand side is bounded by 2−k‖B − A‖2

L∞‖βk(D)g‖L2 , and
the second and third terms on the right-hand side are bounded by
‖B−A‖2

L∞‖βk(D)g‖L2 . We obtain (5.57). The estimate in (5.56) follows from (5.10) and
Lemma 6.

The Fréchet derivative, (DK)A,∆ : Hα(Rn) → Hα(Rn), of KA (cf. (4.9)) now follows
to be

(DK)A,∆ =
∑
±

∑
k≥k0

[
i (DR̃)A,∆(0) + 1

2
(DR)A,∆βk(D)

]
, (5.58)

satisfying
‖(DK)A,∆g‖Hα . ‖∆‖L∞‖g‖Hα , (5.59)

while
‖(RK)A,∆g‖Hα−1 . ‖∆‖2

L∞‖g‖Hα . (5.60)

Since

(I + KB)−1 − (I + KA)−1 = −(I + KA)−1(KB −KA)(I + KA)−1

− ((I + KB)−1 − (I + KA)−1)(KB −KA)(I + KA)−1,

it follows that the Fréchet derivative, (D(I + K)−1)A,∆ : Hα(Rn) → Hα(Rn), of (I +
KA)−1 is given by

(D(I + K)−1)A,∆ = −(I + KA)−1(DK)A,∆(I + KA)−1, (5.61)
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and, with (5.59), satisfies the estimate

‖(D(I + K)−1)A,∆g‖Hα . ‖∆‖L∞‖g‖Hα . (5.62)

For the remainder,

(R(I + K)−1)A,∆ = −(I + KA)−1(RK)A,∆(I + KA)−1

− ((I + KB)−1 − (I + KA)−1)(KB −KA)(I + KA)−1,

we obtain the estimate

‖(R(I + K)−1)A,∆g‖Hα−1 . ‖∆‖2
L∞‖g‖Hα . (5.63)

We arrive at

Lemma 8. Let (DŜ)A,∆ : Hα(Rn) → Hα(Rn) be the operator defined by

(DŜ)A,∆(t) = (DS̃)A,∆(t)(I + KA)−1 + S̃A(t)(D(I + K)−1)A,∆; (5.64)

we have
‖(DŜ)A,∆(t)g‖Hα . ‖∆‖C0,1‖g‖Hα , (5.65)

while
‖(RŜ)A,∆(t)g‖Hα−1 . ‖∆‖2

C0,1‖g‖Hα . (5.66)

Proof. Estimates (5.65) and (5.62) imply (5.65). The remainder can be written in the form

(RŜ)A,∆(t) = (RS̃)A,∆(I + KA)−1 + S̃A(t)(R(I + K)−1)A,∆

+ (S̃B(t)− S̃A(t))((I + KB)−1 − (I + KA)−1).

We apply (5.66), (5.63), and [20, (19)] and the proof of [20, Lemma 6.6] to obtain (5.66).

Operator N±
A;k in (4.16) essentially measures, upon symbol smoothing, how accurate

the solution operator ŜA(t) is. We note that Dt commutes with P±
A;k, whence

D2
t − (P±

A;k)
2 = (Dt + P±

A;k)
2 − 2P±

A;k(Dt + P±
A;k).

Similar to (5.44), we have

(Dt + PA;k)
2 T ∗

k UA;kTk =

∫∫
(Tkf)(x, ξ)

([PA;k(y, Dy) + LA;k
ΦA;k(t)(x,ξ)(Dx, Dξ)] (φ

A
x,ξ)k)(y;ΦA;k(t)(x, ξ)) dxdξ. (5.67)
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Within the integral on the right-hand side, we analyze the factor

([PA;k(y, Dy) + LA;k
x,ξ (Dx, Dξ)] (φ

A
x,ξ)k)(y; x, ξ) =: (φ̃A

x,ξ)k(y; x, ξ).

Following [20, Lemma 5.5], φ̃A
x,ξ can be generated by pseudodifferential operators

mA;k
x,ξ (z, Dz) (with symbol given in (5.46)) and m̃A;k

x,ξ (z, Dz), with symbol

m̃A;k
x,ξ (z, ζ) =

∫ 1

0

(1− s) ∂2
s [(L

A;k
x,ξ (Dx, Dξ)pA;k)(x + s 2−k/2z, ξ + s 2k/2ζ)] ds; (5.68)

that is,
φ̃A

x,ξ(z) = mA;k
x,ξ (z, Dz)φ

A
x,ξ(.) + m̃A;k

x,ξ (z, Dz)φ(.), (5.69)

from which (φ̃A
x,ξ)k(y; x, ξ) is obtained according to (3.1). Now we can write (Dt +

PA;k)
2 T ∗

k UA;kTkf = (T̃A
k )∗UA;kTkf , with

(T̃A
k )∗F (y) =

∫
F (x, ξ)(φ̃A

x,ξ)k(y; x, ξ) dxdξ, (5.70)

cf. Lemma 2 upon substituting T ′
k = T̃A

k .
The symbol integrand in (5.68) attains the form

∂2
s [(L

A;k
x,ξ (Dx, Dξ)pA;k)(x̃, ξ̃)] =

∑
j,k,l

(∂ξl
pA;k)(x, ξ)

[
(∂xj

∂xk
Dxl

pA;k)(x̃, ξ̃) 2−kzjzk

+ (∂xj
∂ξk

Dxl
pA;k)(x̃, ξ̃) zjζk + (∂ξj

∂ξk
Dxl

pA;k)(x̃, ξ̃) 2kζjζk

]
−
∑
j,k,l

(∂xl
pA;k)(x, ξ)

[
(∂xj

∂xk
Dξl

pA;k)(x̃, ξ̃) 2−kzjzk + (∂xj
∂ξk

Dξl
pA;k)(x̃, ξ̃) zjζk

+ (∂ξj
∂ξk

Dξl
pA;k)(x̃, ξ̃) 2kζjζk

]
,

by which we obtain the estimates

|∂α
z ∂β

ζ m̃A;k
x,ξ (z, ζ)| . (2k)

1
2
− 1

2
|β| 〈z〉2, |ζ| < 2.

To develop the Fréchet derivative of T̃A
k , we need the Fréchet derivative,

(Dφ̃x,ξ)A,∆(z) = (Dmx,ξ)A,∆(z, Dz)φ
A
x,ξ(.) + mA;k

x,ξ (z, Dz)(Dφx,ξ)A,∆(.)

+ (Dm̃x,ξ)A,∆(z, Dz)φ(.),

with remainder given by

(Rφ̃x,ξ)A,∆(z) = φ̃B
x,ξ(z)− φ̃A

x,ξ(z)− (Dφ̃x,ξ)A,∆(z)

= (Rmx,ξ)A,∆(z, Dz)φ
A
x,ξ(.) + mA;k

x,ξ (z, Dz)(Rφx,ξ)A,∆(.)

+ (Rm̃x,ξ)A,∆(z, Dz)φ(.) + [mB;k
x,ξ (z, Dz)−mA;k

x,ξ (z, Dz)] (φ
B
x,ξ(.)− φA

x,ξ(.)). (5.71)
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The symbols of the relevant, additional pseudodifferential operators are given by

(Dm̃x,ξ)A,∆(z, ζ) =

∫ 1

0

(1− s) ∂2
s [(L

A;k
x,ξ (Dx, Dξ)(Dp)A;∆)(x̃, ξ̃)

+ 〈(∂ξ(Dp)A;∆)(x, ξ), (DxpA;k)(x̃, ξ̃)〉 − 〈(∂x(Dp)A;∆)(x, ξ), (DξpA;k)(x̃, ξ̃)〉] ds

and

(Rm̃x,ξ)A,∆(z, ζ) =

∫ 1

0

(1− s) ∂2
s [(L

A;k
x,ξ (Dx, Dξ)(Rp)A;∆)(x̃, ξ̃)

+ 〈(∂ξ(Rp)A;∆)(x, ξ), (DxpA;k)(x̃, ξ̃)〉 − 〈(∂x(Rp)A;∆)(x, ξ), (DξpA;k)(x̃, ξ̃)〉
+ 〈(∂ξ(pB;k − pA;k))(x, ξ), (Dx(pB;k − pA;k))(x̃, ξ̃)〉

− 〈(∂x(pB;k − pA;k))(x, ξ), (Dξ(pB;k − pA;k))(x̃, ξ̃)〉] ds.

Lemma 9. The Schwartz seminorms of (Dφ̃x,ξ)A,∆ are . (2k)3/2‖∆‖L∞ , uniformly in x

and ξ. Moreover, the Schwartz seminorms of (Rφ̃x,ξ)A,∆ are . (2k)2‖∆‖2
L∞ , uniformly in

x and ξ.

Proof. By methods used in the proof of Lemma 6 we find that

|(∂α
z ∂β

ζ (Dm̃x,ξ)A,∆)(z, ζ)| . (2k)
3
2
− 1

2
|β| ‖B − A‖L∞ 〈z〉2, |ζ| < 2. (5.72)

The Schwartz seminorms of (Dφ̃x,ξ)A,∆ are dominated by this estimate for α = β = 0,
which follows upon integration by parts.

In a similar fashion, we obtain,

|(∂α
z ∂β

ζ (Rm̃x,ξ)A,∆)(z, ζ)| . (2k)
3
2
− 1

2
|β| ‖B − A‖2

L∞ 〈z〉2, |ζ| < 2. (5.73)

Thus, the contribution to the Schwartz seminorms of (Rφx,ξ)A,∆ from the third term on the
right-hand side of (5.71) is dominated by (2k)3/2 ‖B − A‖2

L∞ . The contributions from the
first two terms are dominated by 2k ‖B−A‖2

L∞ . However, the contribution from the fourth
term on the right-hand side of (5.71) is dominated by (2k)2 ‖B − A‖2

L∞ [20], from which
the second statement in the lemma is a consequence.

Lemma 10. Let (DM)A,∆ : Hα(Rn) → Hα−1(Rn) be the operator defined by

(DM)A,∆f =

∫∫
((DŨ)A,∆f)(x, ξ) (φA

x,ξ)k(.; x, ξ) dxdξ

+

∫∫
(UA;k(Tkf))(x, ξ) (Dφx,ξ)A,∆(.; x, ξ) dxdξ, (5.74)
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cf. (5.33), and let (DN)A,∆ : Hα(Rn) → Hα−2(Rn) be the operator defined by

(DN)A,∆f = −2(DP )A;∆MA;kf − 2PA;k(DM)A,∆f

+

∫∫
((DŨ)A,∆f)(x, ξ) (φ̃A

x,ξ)k(.; x, ξ) dxdξ

+

∫∫
(UA;k(Tkf))(x, ξ) (Dφ̃x,ξ)A,∆(.; x, ξ) dxdξ. (5.75)

If f ∈ L2 and f̂ is supported in |ξ| ≈ 2k, we have

‖(DM)A,∆f‖L2 . 2k ‖∆‖C0,1‖f‖L2 , (5.76)
‖(DN)A,∆f‖L2 . (2k)2 ‖∆‖C0,1‖f‖L2 , (5.77)

while

‖(RM)A,∆f‖L2 . (2k)2 ‖∆‖2
C0,1‖f‖L2 , (5.78)

‖(RN)A,∆f‖L2 . (2k)3 ‖∆‖2
C0,1‖f‖L2 . (5.79)

Proof. The estimate for (DM)A,∆ follows directly from (5.34) and Lemma 6. For the
remainder,

(RM)A,∆f =

∫∫
((RŨ)A,∆f)(x, ξ) (φA

x,ξ)k(.; x, ξ) dxdξ

+

∫∫
(UA;k(Tkf))(x, ξ) (Rφx,ξ)A,∆(.; x, ξ) dxdξ

+

∫∫
((UB;k − UA;k)(Tkf))(x, ξ) (φB

x,ξ − φA
x,ξ)k(.; x, ξ) dxdξ, (5.80)

we use (5.35) to estimate the first term on the right-hand side, Lemma 6, again, to estimate
the second term, and [20, Lemma 6.2 and Lemma 6.4] to estimate the third term.

We write operators NA;k in the form

NA;k = (T̃A
k )∗UA;kTk − 2PA;kMA;k. (5.81)

The estimate for (DN)A,∆ follows directly from (5.9), (5.76), (5.34) and Lemma 9. To an-
alyze the remainder, we consider the two terms on the right-hand side of (5.81) separately.
We get

(R(P M))A,∆ = (RP )A,∆MA;k + PA;k(RM)A,∆ + (PB;k − PA;k)(MB;k −MA;k),

and using (5.12), (5.78) and [20, Lemma 6.1 and Lemma 6.5], we find that

‖(R(P M))A,∆f‖L2 . 2k‖B − A‖2
L∞‖f‖L2

+ (2k)3‖B − A‖2
C0,1‖f‖L2 + (2k)2‖B − A‖L∞‖B − A‖C0,1‖f‖L2

. (2k)3‖B − A‖2
C0,1‖f‖L2 . (5.82)



Wave-Equation Tomography 31

Furthermore,

(R((T̃k)
∗UTk))A,∆f =

∫∫
((RŨ)A,∆f)(x, ξ) (φ̃A

x,ξ)k(.; x, ξ) dxdξ

+

∫∫
(UA;k(Tkf))(x, ξ) (Rφ̃x,ξ)A,∆(.; x, ξ) dxdξ

+

∫∫
((UB;k − UA;k)(Tkf))(x, ξ) (φ̃B

x,ξ − φ̃A
x,ξ)k(.; x, ξ) dxdξ,

and using (5.35), Lemma 9, and [20, Lemma 6.4 and Lemma 6.5], we find that

‖(R((T̃k)
∗UTk))A,∆f‖L2 . (2k)5/2‖B − A‖2

C0,1‖f‖L2

+ (2k)2‖B − A‖2
L∞‖f‖L2 + (2k)3‖B − A‖L∞‖B − A‖C0,1‖f‖L2

. (2k)3‖B − A‖2
C0,1‖f‖L2 . (5.83)

Adding (5.82) and (5.83) yields (5.79).

For the Fréchet derivative of TA(t) = T̃A(t)(I + KA)−1 (cf. (4.14)) we have

Lemma 11. Let (DT)A,∆ : Hα+1(Rn) → Hα(Rn), for −1 ≤ α ≤ 1, be defined by

(DT)A,∆g = (DT̃)A,∆(I + KA)−1g + T̃A (D(I + K)−1)A,∆g, (5.84)

in which

(DT̃)A,∆g = −t
∑
k<k0

∆̄ βk(D)g

+
∑
±

∑
k≥k0

[
(DN)A,∆(1

2
i QA;kβk(D)g) + NA;k (1

2
i (DQ)A,∆βk(D)g)

]
+
∑
±

∑
k≥k0

[
PA;k(DP )A,∆EA;kg + (DP )A,∆PA;kEA;kg

]
+
∑
±

∑
k≥k0

((PA;k)
2 − Ak)(DE)A,∆g

+
∑
±

∑
k≥k0

(Ak − A)(DE)A,∆g +
∑
±

∑
k≥k0

(−∆̄) EA;kg. (5.85)

We have
‖(DT)A,∆g‖Hα . ‖∆‖C0,1‖g‖Hα+1 . (5.86)

For −1 ≤ α ≤ 0, it holds true that

‖(RT)A,∆g‖Hα . ‖∆‖2
C0,1‖g‖Hα+2 . (5.87)
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Remark 4. It holds also true that ‖(DT)A,∆g‖Hα . ‖∆‖C1,1‖g‖Hα+1 and ‖(RT)A,∆g‖Hα

. ‖∆‖2
C1,1‖g‖Hα+2 both for −1 ≤ α ≤ 2. However, these estimates are not applicable to

next lemma.

Proof. We decompose T̃A(t) = [D2
t − A(x, Dx)] S̃A(t) into four contributions:

T̃1,A(t)g = −t
∑
k<k0

A βk(D)g, (5.88)

T̃2,A(t)g =
∑
±

∑
k≥k0

NA;k (1
2
i QA;kβk(D)g), (5.89)

T̃3,A(t)g =
∑
±

∑
k≥k0

((PA;k)
2 − Ak)EA;k(t)g, (5.90)

T̃4,A(t)g =
∑
±

∑
k≥k0

(Ak − A) EA;k(t)g. (5.91)

The Fréchet derivative of the first term follows immediately to be

(DT̃1)A,∆(t)g = T̃1,B(t)g − T̃1,A(t)g = −t
∑
k<k0

∆̄ βk(D)g.

We have the estimate
‖(DT̃1)A,∆g‖Hα . ‖∆‖C0,1‖g‖Hα , (5.92)

while, clearly, (RT̃1)A,∆(t) ≡ 0.
From the second term (cf. (5.89)) we deduce that

(DT̃2)A,∆(t)g =
∑
±

∑
k≥k0

[
(DN)A,∆(1

2
i QA;kβk(D)g) + NA;k (1

2
i (DQ)A,∆βk(D)g)

]
;

using (5.77) and (5.10), we obtain

‖(DN)A,∆(1
2
i QA;kβk(D)g) + NA;k (1

2
i (DQ)A,∆βk(D)g)‖L2

. (2k)2‖B − A‖C0,12−k‖βk(D)g‖L2 + 2k2−k‖B − A‖L∞‖βk(D)g‖L2

. 2k ‖B − A‖C0,1‖βk(D)g‖L2 ,

hence, upon summation over scales,

‖(DT̃2)A,∆(t)g‖Hα . ‖∆‖C0,1‖g‖Hα+1 . (5.93)

Furthermore,

(RT̃2)A,∆(t)g =
∑
±

∑
k≥k0

[
(RN)A,∆(1

2
i QA;kβk(D)g)

+ NA;k (1
2
i (RQ)A,∆βk(D)g) + (NB;k −NA;k) (1

2
i (QB;k −QA;k)βk(D)g)

]
;
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using (5.79), (5.13), and [20, Lemma 6.1 and Lemma 6.5.] we obtain that

‖(RN)A,∆(1
2
i QA;kβk(D)g) + NA;k (1

2
i (RQ)A,∆βk(D)g)

+ (NB;k −NA;k) (1
2
i (QB;k −QA;k)βk(D)g)‖L2

. (2k)3‖B − A‖2
C0,12−k‖βk(D)g‖L2 + 2k2−k‖B − A‖2

L∞‖βk(D)g‖L2

+ (2k)2‖B − A‖C0,12−k‖B − A‖L∞‖βk(D)g‖L2

. (2k)2‖B − A‖2
C0,1‖βk(D)g‖L2 ,

whence, upon summation,

‖(RT̃2)A,∆(t)g‖Hα . ‖∆‖2
C0,1‖g‖Hα+2 . (5.94)

From the third term (cf. (5.90)) we need to account for

(DT̃3)A,∆(t)g =
∑
±

∑
k≥k0

[
PA;k(DP )A,∆EA;k(t)g + (DP )A,∆PA;kEA;k(t)g

+ (Bk − Ak)EA;k(t)g + (P 2
A;k − Ak)(DE)A,∆(t)g

]
; (5.95)

for the first two terms on the righthand side, we use the estimate

‖(DP 2)A,∆EA;k(t)g‖L2 . 2k‖∆‖C0,1‖βk(D)g‖L2 ,

and for the fourth term on the righthand side of (5.95) we use the estimate [20, Lemma
5.5]

‖(P 2
A;k − Ak)(DE)A,∆(t)g‖L2 . 2k‖∆‖C0,1‖βk(D)g‖L2 .

The third term on the righthand side of (5.95) contains a pseudodifferential operator of
type S0

1,1/2. Following Appendix A, namely the discussion after equation (A.5), replacing
∇ak by bij

k − aij
k and Fkg by Dxi

Dxj
EA;k(t)g, we obtain

‖−(Bk − Ak)EA;k(t)g‖L2 . 2k‖∆‖C0,1‖βk(D)g‖L2 ,

and, consequently,

‖
∑

k

−(Bk − Ak)EA;k(t)g‖2
Hm . ‖∆‖2

Cm−1,1‖g‖2
Hm+1 .

For the relevant range of α, we find that

‖
∑

k

−(Bk − Ak)EA;k(t)g‖2
Hα . ‖∆‖2

C0,1‖g‖2
Hα+1 .

We note that this term will not be present in final formula for (DT̃)A,∆(t), because it
will cancel against the corresponding contribution from the term (∆̄k − ∆̄)EA;k(t)g in
(DT̃4)A,∆(t) below.
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The remainder is given by

(RT̃3)A,∆(t)g =
∑
±

∑
k≥k0

[
PA;k(RP )A,∆EA;k(t)g + (RP )A,∆PA;kEA;k(t)g

+ (PB;k − PA;k)
2EA;k(t)g + (P 2

A;k − Ak)(RE)A,∆(t)g

+ ((P 2
B;k −Bk − (P 2

A;k − Ak))(EB;k − EA;k)(t)g
]
. (5.96)

The first three terms on the righthand side are combined in the estimate

‖(RP 2)A,∆EA;k(t)g‖L2 . 2k‖∆‖2
C0,1‖βk(D)g‖L2 ,

while the fourth term satisfies the estimate (cf. (5.40))

‖(P 2
A;k − Ak)(RE)A,∆(t)g‖L2 . (2k)2‖∆‖2

C0,1‖βk(D)g‖L2 .

The last term on the righthand side of (5.96) can be written in the form∑
±

∑
k≥k0

((P 2
B;k −Bk − (P 2

A;k − Ak))(EB;k − EA;k)(t)g

=
∑
±

∑
k≥k0

(P 2
B;k − P 2

A;k)(EB;k − EA;k)(t)g +
∑
±

∑
k≥k0

(Ak −Bk)(EB;k − EA;k)(t)g.

(5.97)

Because P 2
B;k − P 2

A;k = 1
2
[(PB;k − PA;k)(PB;k + PA;k) + (PB;k + PA;k)(PB;k − PA;k)], we

have
‖((P 2

B;k − P 2
A;k)(EB;k − EA;k)(t)g‖L2 . (2k)2‖∆‖2

C0,1‖βk(D)g‖L2 .

The term
∑

±
∑

k≥k0
(Ak − Bk)(EB;k − EA;k)(t)g will cancel against a corresponding

contribution to (RT̃4)A,∆(t); using Appendix A, the discussion following equation (A.5),
it follows that

‖
∑

k

−(Bk − Ak)(EB;k − EA;k)(t)g‖2
Hα . ‖∆‖2

C0,1‖g‖2
Hα+2 .

Combining the estimates yields

‖(DT̃3)A,∆(t)g‖Hα . ‖∆‖C0,1‖g‖Hα+1 , (5.98)

‖(RT̃3)A,∆(t)g‖Hα . ‖∆‖2
C0,1‖g‖Hα+2 . (5.99)

The Fréchet derivative of the fourth term, T̃4,A(t), follows to be

(DT̃4)A,∆(t)g =
∑
±

∑
k≥k0

[(Ak − A)(DE)A,∆(t)g + (∆̄k − ∆̄)EA;k(t)g];
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the associated remainder is given by

(RT̃4)A,∆(t)g =
∑
±

∑
k≥k0

[(Ak − A)(RE)A;∆(t)g + (∆̄k − ∆̄)(EB;k(t) − EA;k(t))g].

The operators appearing on the righthand sides sense the “rough” parts of the wavespeed
model. They are analyzed in the Appendix A. We use Lemma 13 and Lemma 5 to obtain

‖(DT̃4)A,∆(t)g‖Hα . ‖∆‖C0,1‖g‖Hα+1 , −1 ≤ α ≤ 1, (5.100)

‖(RT̃4)A,∆(t)g‖Hα . ‖∆‖2
C0,1‖g‖Hα+2 , −1 ≤ α ≤ 0. (5.101)

Combining these with (5.92), (5.93), (5.98) and (5.62) yields (5.86), and with (5.94), (5.99)
and (5.63) yields (5.87).

We then consider the Fréchet derivative of the Volterra solution operator. We have

Lemma 12. Let (DV )A,∆ : L∞
t Hα+1

x → L∞
t Hα

x be given by 3

(DV )A,∆F (t, .) =
∞∑

j=1

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

j∑
l=1

TA(t, s1) · · ·TA(sl−2, sl−1)

(DT)A,∆(sl−1, sl)TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1 (5.102)

For −1 ≤ α ≤ 1, we have

‖(DV )A,∆F‖L∞t Hα
x

. ‖∆‖C0,1‖F‖L∞t Hα+1
x

; (5.103)

for −1 ≤ α ≤ 0 it holds true that

‖(RV )A,∆F‖L∞t Hα
x

. ‖∆‖2
C0,1‖F‖L∞t Hα+2

x
. (5.104)

Proof. The Volterra solution operator, VA, is given by

VAF (t, .) = F (t, .) +
∞∑

j=1

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TA(t, s1)TA(s1, s2) · · ·

TA(sj−1, sj)F (sj, .) dsj · · · ds1.

3We use a simplified notation here. We note that the term l = 1 does not contain the composition with
TA(t, s1) · · ·TA(sl−2, sl−1), while s0 = t, and the term l = j does not contain the composition with
TA(sl, sl+1) · · ·TA(sj−1, sj).
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Hence,

VBF (t, .)− VAF (t, .) =
∞∑

j=1

j∑
l=1

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TB(t, s1) · · ·TB(sl−2, sl−1)

(TB −TA)(sl−1, sl)TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1

=
∞∑

j=1

j∑
l=1

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TA(t, s1) · · ·TA(sl−2, sl−1)(TB −TA)(sl−1, sl)

TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1

+
∞∑

j=1

j∑
l=1

l−1∑
f=1

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TB(t, s1) · · ·TB(sf−2, sf−1)(TB −TA)(sf−1, sf )

TB(sf , sf+1) · · ·TB(sl−2, sl−1)(TB −TA)(sl−1, sl)

TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1.

With (DV )A,∆F (s, .) being given by (5.102), the remainder follows to be

(RV )A,∆F (t, .) =
∞∑

j=1

j∑
l=1

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TA(t, s1) · · ·TA(sl−2, sl−1)

(RT)A,∆(sl−1, sl)TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1

+
∞∑

j=1

j∑
l=1

l−1∑
f=1

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TB(t, s1) · · ·TB(sf−2, sf−1)(TB −TA)(sf−1, sf )

TB(sf , sf+1) · · ·TB(sl−2, sl−1)(TB −TA)(sl−1, sl)

TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1.

We need to estimate the L∞
t Hα

x norms of three types of integral expressions,

Ĩ(t, .) =

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TA(t, s1) · · ·TA(sl−2, sl−1)(DT)A,∆(sl−1, sl)

TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1,

Ǐ(t, .) =

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TA(t, s1) · · ·TA(sl−2, sl−1)(RT)A,∆(sl−1, sl)

TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1,

and

Î(t, .) =

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

TB(t, s1) · · ·TB(sf−2, sf−1)(TB −TA)(sf−1, sf )

TB(sf , sf+1) · · ·TB(sl−2, sl−1)(TB −TA)(sl−1, sl)

TA(sl, sl+1) · · ·TA(sj−1, sj)F (sj, .) dsj · · · ds1.



Wave-Equation Tomography 37

With the previous lemma, we now choose C = C(M) such that for t, s ∈ [−M, M ],

‖TA(t, s)g‖Hα + ‖TB(t, s)g‖Hα ≤ C‖g‖Hα , −1 ≤ α ≤ 2,
‖(TB −TA)(t, s)g‖Hα ≤ C‖∆‖C0,1‖g‖Hα+1 , −1 ≤ α ≤ 1,
‖(DT)A,∆(t, s)g‖Hα ≤ C‖∆‖C0,1‖g‖Hα+1 , −1 ≤ α ≤ 1,
‖(RT)A,∆(t, s)g‖Hα ≤ C‖∆‖2

C0,1‖g‖Hα+2 , −1 ≤ α ≤ 0.

(5.105)

Then, for −1 ≤ α ≤ 1,

‖Ĩ(t, .)‖Hα ≤ Cjtj

j!
‖∆‖C0,1‖F‖L∞t Hα+1

x
.

In (5.102) there are j terms of the form Ĩ(t, .) at level j. It follows that

‖(DV )A,∆F‖L∞t Hα
x
≤
( ∞∑

j=1

j(CM)j

j!

)
‖∆‖C0,1‖F‖L∞t Hα+1

x
.

For (RV )A,∆, let −1 ≤ α ≤ 0; we note that

‖Ǐ(t, .)‖Hα ≤ Cjtj

j!
‖∆‖2

C0,1‖F‖L∞t Hα+2
x

,

and that

‖Î(t, .)‖Hα ≤ Cjtj

j!
‖∆‖2

C0,1‖F‖L∞t Hα+2
x

.

There are j terms of the form Ǐ(t, x) and j(j−1)
2

terms of the form Ǐ(t, x) at level j. It
follows that

‖(RV )A,∆F‖L∞t Hα−1
x

≤
( ∞∑

j=1

[j + j(j−1)
2

](CM)j

j!

)
‖∆‖2

C0,1‖F‖L∞t Hα+2
x

.

This proves the lemma.

Finally, let SA(t) and SB(t) be given by

SA,B(t)g = ŜA,B(t)g +

∫ t

0

ŜA,B(t, s)VA,B(TA,Bg)(s, .) ds,



Wave-Equation Tomography 38

cf. (4.15). Then,

(SB(t)− SA(t))g = (ŜB − ŜA)(t)g +

∫ t

0

(ŜB − ŜA)(t, s)VB(TBg)(s, .) ds

+

∫ t

0

ŜA(t, s)(VB(TBg)− VA(TAg))(s, .) ds

= (ŜB − ŜA)(t)g +

∫ t

0

(ŜB − ŜA)(t, s)VA(TAg)(s, .) ds

−
∫ t

0

(ŜB − ŜA)(t, s)(VB(TBg)− VA(TAg))(s, .) ds

+

∫ t

0

ŜA(t, s)(VB(TBg)− VA(TAg))(s, .) ds,

and we note that

VB(TBg)(s, .)− VA(TAg)(s, .) = (VB − VA)(TAg)(s, .)

+ VA((TB −TA)g)(s, .)− (VB − VA)((TB −TA)g)(s, .).

We combine the estimates in the lemmata above, and obtain the statement of Theorem 2,
with Fréchet derivative DS of S given by

(DS)A,∆(t)g = (DŜ)A,∆(t)g +

∫ t

0

(DŜ)A,∆(t, s)VA(TAg)(s, .) ds

+

∫ t

0

ŜA(t, s)(DV )A,∆(TAg)(s, .) ds +

∫ t

0

ŜA(t, s)VA((DT)A,∆g)(s, .) ds, (5.106)

and remainder

(RS)A,∆(t)g = (RŜ)A,∆(t)g +

∫ t

0

(RŜ)A,∆(t, s)VA(TAg)(s, .) ds

+

∫ t

0

ŜA(t, s)(RV )A,∆(TAg)(s, .) ds +

∫ t

0

ŜA(t, s)VA((RT)A,∆g)(s, .) ds

−
∫ t

0

(ŜB − ŜA)(t, s)(VB(TBg)− VA(TA)g))(s, .) ds

−
∫ t

0

(ŜA)(t, s)(VB − VA)(TB −TA))(s, .) ds. (5.107)

6 Discussion
We address how the results presented here fit in with the literature on, and current practice
of wave-equation tomograhy. Typically, one uses the Born approximation, Sb

A,∆(t)g say,
in place of (DS)A,∆(t) as the starting point in deriving the sensitivity in accordance with
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(2.11) [21]. In the framework of the analysis in this paper, the Born approximation is
obtained as follows.

We consider the Cauchy initial value problem,
[D2

t − A(x, Dx)]u(t, x) = F (t, x),

u|t=0 = 0,

∂tu|t=0 = g

(6.1)

cf. (1.1). Here, g ∈ Hα, F ∈ L1
t H

α
x , and u(t, x) is a function in Rt × Rn

x; t ∈ [−M, M ] as
before. The unique solution can be written in the form

u(t, .) = SA(t)g +

∫ t

0

SA(t− t′) F (t′, .) dt′. (6.2)

We then consider a second Cauchy initial value problem, with the same right-hand side
and initial condition, but with A replaced by A + ∆, that is, B. As in Theorem 2, we now
assume that g ∈ Hα+2 (accounting for the “loss of two derivatives”) and −1 ≤ α ≤ 0.
The difference, v = uA+∆ − uA, satisfies the Cauchy initial value problem,

[D2
t − A(x, Dx)]v(t, x) = ∆̄(x, Dx)uA+∆(t, .),

v|t=0 = 0,

∂tv|t=0 = 0.

(6.3)

By our choice of α, the contrast source is in L1
t L

2
x. Hence, we have

uA+∆(t, .)− uA(t, .) =

∫ t

0

SA(t− t′) ∆̄(x, Dx)uA+∆(t′, .) dt′. (6.4)

The Born approximation is standardly obtained by replacing uA+∆(t′, .) in the integrand
by uA(t′, .). This defines a map Sb

A,∆(t), acting linearly in ∆, given by

Sb
A,∆(t)g :=

∫ t

0

SA(t− t′) ∆̄(x, Dx) SA(t′)g dt′. (6.5)

It follows that the remainder,

Rb
A,∆(t)g = uA+∆(t, .)− uA(t, .)− Sb

A,∆(t)g =

∫ t

0

SA(t− t′) ∆̄(x, Dx) v(t′, .) dt′ (6.6)

satisfies the estimate

‖Rb
A,∆(t)g‖Hα+1 .

∫ t

0

‖∆̄(x, Dx) v(t′, .)‖Hα dt′

. ‖∆‖C0,1 sup
t∈[−M,M ]

‖v(t, .)‖Hα+2 . ‖∆‖2
C0,1‖g‖Hα+2 . (6.7)
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Moreover, ‖Sb
A,∆(t)g‖Hα+1 . ‖∆‖C0,1‖g‖Hα+1 . These estimates confirm that the Born

approximation coincides with the Fréchet derivative, (DS)A,∆(t), as it should.
Finally, to establish the connection with what seismologists call banana-doughnut-

kernels (BDKs [5]) in wave-equation tomography, let n = 3, and consider sources in
S ⊂ R3 (S ⊂ VS,h) and receivers in R ⊂ R3 (R ⊂ S) assumed to be compact sets,
which are either lower dimensional manifolds or closures of bounded open sets in R3. The
wavefield corresponding to a background metric A0, for a given source gs where s ∈ S,
and evaluated at a receiver r ∈ R, is uA0(t, r; s) = (SA0(t)gs)(r). We make the following
assumptions:

1. the map s 7→ gs is continuous S → Hα(R3), where 3/2 < α ≤ 2,

2. χ = χ[T1,T2] ∈ C∞
0 (R) is chosen so that uχ

A0
(t, r; s) = χ(t)uA0(t, r; s) is never

constant in time if r ∈ R, s ∈ S.

The second assumption guarantees that ∂tu
χ
A0

is continuous in t, r, and s, and that the
denominator in δt(∆) (cf. (2.11)) is bounded away from 0. If g ∈ Hα with 3/2 < α ≤ 2,
we have, using (6.5), that

‖(DS)A,∆(t)g‖L∞(R3) . ‖(DS)A,∆(t)g‖Hα(R3) . ‖∆‖C0,1(R3)‖g‖Hα(R3).

Thus,
‖δt(∆)‖L∞(S×R) . ‖∆‖C0,1(R3). (6.8)

We now assume that the contrast, ∆, is supported in a compact set K ⊂ R3, and write
C0,1(K) = {u ∈ C0,1(R3) ; supp(u) ⊆ K}. We consider the map

L : C0,1(K) → L2(S ×R), L(∆)(s, r) = δt(∆)(s, r).

This is a bounded linear map, because L∞(R×S) ⊂ L2(R×S). Using estimate (6.8), we
observe that if the sequence C∞

0 (K) 3 ∆m → 0 in C∞
0 norm, then ‖L(∆m)‖L∞(S×R) →

0. Hence, if φ ∈ C∞(S × R), then also (L(∆m), φ)L2(S×R) → 0, which proves that
L : C∞

0 (K) → D′(S × R) is continuous. Thus the Schwartz kernel theorem applies to
operator L; we denote the Schwartz kernel of L by L ∈ D′(S × R × K), and can write
L(∆)(s, r) = (L(s, r; .),∆)L2(K).

Using the Schwartz kernel, we obtain the adjoint L∗ of L, the sensitivity map in (2.11).
Indeed, L has an adjoint L∗ which is a closed linear operator from L2(S×R) to L2(K). L∗

is commonly referred to as the imaging operator. Its existence opens the way for developing
optimization strategies.

The symbol smoothing in accordance with (3.7) leads to a representation of the con-
trast in terms of ∆k, and a “rough” remainder. In practice, it is advantageous to carry out
tomographic inversion using an `1-norm regularization strategy [15] based on the possi-
bility of obtaining sparse representations of ∆; such representations have been obtained
in earth sciences applications with dual-tree complex wavelets (for n = 2). Indeed, the
“low-pass filtering” (with respect to cubes rather than spheres in frequency) leading to ∆k
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can be obtained through the dual-tree complex wavelet transform [13, 14]. The mentioned
strategy allows fine-scale features and rapid variations across boundaries to be honored in
the inversion locally in regions of “proper” illumination, while emphasizing coarse-scale
features locally in regions of “poor” illumination.

A Paradifferential estimates
In this appendix, we prove paradifferential type estimates which apply to the contributions
to TA(t) and (DT)A,∆ which account for the nonsmooth metric. We follow the develop-
ment in [23].

Let a be a function in Cm−1,1(Rn), where m ≥ 2 is an integer. We define frequency
truncated versions

ak = χ(2−k/2D)a (A.1)

as in (3.7) where χ is a smooth function in Rn, supported in the unit ball and satisfying
χ(ξ) = 1 for |ξ| ≤ 1/2. While considering ak = χ(2−k/2D)a as a convolution, expanding
the relevant integrand in a Taylor series, and using the moment conditions,

∫
xαχ̂(x) dx =

0 for α 6= 0, we obtain the estimate

‖a− ak‖L∞ . 2−mk/2‖a‖Cm−1,1 . (A.2)

As in the main text, A . B means A ≤ CB where C is a constant only depending on M ,
m, and n.

We let {Fk}∞k=1 be a family of operators on L2(Rn), satisfying the estimates

‖Fkg‖L2 . R 2kr‖βk(D)g‖L2 , (A.3)

where R > 0 and r ∈ R. Moreover, we assume that the Fk are frequency localized, in the
sense that Fkg = β̃k(D)Fkg for cutoffs β̃k(ξ) supported in |ξ| ≈ 2k. More precisely, we
assume that β̃k(ξ) = β̃(2−kξ) where β̃ is supported in an annulus {ξ | 2−l0 ≤ |ξ| ≤ 2l0},
and l0 = l0(M) is an integer.

Lemma 13. Define the operator

Γg =
∞∑

k=1

(a− ak)Fkg.

If 0 ≤ s ≤ m
2

, then

‖Γg‖Hα+s . R ‖a‖Cm−1,1‖g‖Hα+r , −m ≤ α < m− s. (A.4)

If s = 1, the statement holds also for α = m− 1.



Wave-Equation Tomography 42

Proof. We first assume that −m ≤ α < m− s, and proceed to prove (A.4). We define

Γjk = βj(D)(a− ak)β̃k(D).

By looking at supports on the Fourier side, we get

Γjk =


βj(D)(a− a2k−4l0)β̃k(D), j ≤ k − 4l0,

βj(D)(a− ak)β̃k(D), k − 4l0 ≤ j ≤ k + 4l0,

βj(D)(a− a2j−4l0)β̃k(D), j ≥ k + 4l0.

By (A.2), these satisfy

‖Γjk‖L2→L2 .


‖a‖Cm−1,12−mk, j ≤ k − 4l0,
‖a‖Cm−1,12−mk/2, k − 4l0 ≤ j ≤ k + 4l0,
‖a‖Cm−1,12−mj, j ≥ k + 4l0.

(in the second estimate, naturally, 2−mk/2 can be replaced by 2−mj/2). By considering the
sum over even and odd j separately, and using a similar argument for the sum over k, we
obtain from (A.3) that

‖Γg‖2
Hα+s = ‖

∑
j,k

ΓjkFkg‖2
Hα+s .

∑
j

‖
∑

k

ΓjkFkg‖2
Hα+s .

∑
j

∑
k

‖ΓjkFkg‖2
Hα+s

. R2‖a‖2
Cm−1,1(∑

j

∑
k≤j

22j(α+s)−2mj−2kαAk +
∑

j

∑
j−4l0≤k≤j+4l0

22j(α+s)−mj−2kαAk

+
∑

j

∑
k≥j

22j(α+s)−2mk−2kαAk

)
.

Here, we have written Ak = 22k(α+r)‖βk(D)g‖2
L2 . Using the assumption that α < m − s,

the first sum in parentheses is bounded by∑
k

2−2kαAk

∑
j≥k

22j(α+s−m) .
∑

k

2−2k(m−s)Ak . ‖g‖2
Hα+r .

Since s ≤ m/2, the second sum in parentheses is bounded by∑
j

2−2j(m/2−s)Aj . ‖g‖2
Hα+r .

The third sum is bounded by ∑
k

2−2k(m+α)Ak

∑
j≤k

22j(α+s).
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By assumption, m + α ≥ 0. If α + s < 0, the sum over j is . 1, and if α + s = 0 then
m+α > 0 and k 2−2k(m+α) . 1. In both cases one gets a bound by ‖g‖2

Hα+r . Furthermore,
if α + s > 0, then the third sum is bounded by∑

k

22k(α+s)−2k(m+α)Ak =
∑

k

2−2k(m−s)Ak . ‖g‖2
Hα+r .

This proves (A.4).
If s = 1, then (A.4) shows that

‖Γg‖Hα+1 . R ‖a‖Cm−1,1‖g‖Hα+r , −m ≤ α < m− 1.

We now need to show that the estimate holds true also for α = m− 1. We note that

‖Γg‖Hm . ‖Γg‖Hm−1 + ‖∇Γg‖Hm−1 .

The first term on the righthand side is
. R ‖a‖Cm−1,1‖g‖Hm−2+r . R ‖a‖Cm−1,1‖g‖Hm−1+r . For the second term, we compute

∇Γg = (∇a)
∑

k

Fkg −
∑

k

(∇ak)Fkg +
∑

k

(a− ak)∇Fkg. (A.5)

We estimate the three sums on the righthand side separately. Since ∇a is a multiplier in
Hm−1, the bound (A.3) for frequency localized operators shows that the first sum satisfies
the estimate

‖(∇a)
∑

k

Fkg‖Hm−1 . ‖a‖Cm−1,1‖
∑

k

Fkg‖Hm−1 . R ‖a‖Cm−1,1‖g‖Hm−1+r .

For the second sum, note that multiplication by ∇ak preserves localization to frequency
≈ 2k, since the Fourier transform of∇ak is supported in {ξ | |ξ| ≤ 2k/2}. The family of op-
erators {(∇ak)Fk} is then frequency localized (the degree of localization being controlled
by M ) and satisfies ‖(∇ak)Fkg‖L2 . R ‖a‖Cm−1,12kr‖βk(D)g‖L2 . The second sum thus
satisfies the estimate

‖
∑

k

(∇ak)Fkg‖2
Hm−1 .

∑
k

‖(∇ak)Fkg‖2
Hm−1 . R2 ‖a‖2

Cm−1,1‖g‖2
Hm−1+r .

Finally, applying (A.4) to the family of operators {∇Fk} which satisfy ‖∇Fkg‖L2 .
R 2k(r+1)‖βk(D)g‖L2 , the third sum has the bound,

‖
∑

(a− ak)∇Fkg‖Hm−1 . R ‖a‖Cm−1,1‖g‖Hm−1+r .

This proves that (A.4) also holds for α = m− 1, if s = 1.

Remark 5. We can also obtain estimates in the C0,1 norm. We have [20, Lemma 6.7]

‖a− ak‖L∞ ≤ 2−k/2‖a‖C0,1 . (A.6)

Carrying out estimates similar to the ones in the proof above, it follows that

‖Γg‖Hα+s . R ‖a‖C0,1‖g‖Hα+r , −1 ≤ α < 1− s

if 0 ≤ s ≤ 1
2
. Furthermore, if s = 0, then this estimate also holds for α = 1. This follows

from the observation that in (A.5) ∇a is a multiplier in H0 = L2 with norm bounded by
‖a‖C0,1 , and ‖(∇ak)Fkg‖L2 . R ‖a‖C0,12kr‖βk(D)g‖L2 .



Wave-Equation Tomography 44

References
[1] H. Bijwaard, W. Spakman, and E.R. Engdahl: Closing the gap between regional and

global travel time tomography, J. Geophys. Res. 103, 30055–30078 (1998)

[2] E.J. Candès and D. Donoho: New tight frames of curvelets abd optimal representa-
tions of objects with piecewise-C2 singularities, Comm. Pure Appl. Math. 57, 219–
266 (2004)

[3] : Continuous curvelet transform: I. Resolution of the wavefront set, Applied and
Computational Harmonic Analysis 19, 162–197 (2005)

[4] : Continuous curvelet transform: II. Discretization and frames, Applied and
Computational Harmonic Analysis 19, 198–222 (2005)

[5] F.A. Dahlen, S.-H. Hung, and G. Nolet: Fréchet kernels for finite-frequency
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