
DISTRIBUTIONS AND FOURIER TRANSFORM

MIKKO SALO

Introduction. The theory of distributions, or generalized functions, pro-

vides a unified framework for performing standard calculus operations on

nonsmooth functions, measures (such as the Dirac delta function), and even

more general measure-like objects in the same way as they are done for

smooth functions. In this theory, any distribution can be differentiated ar-

bitrarily many times, a large class of distributions have well-defined Fourier

transforms, and general linear operators can be expressed as integral op-

erators with distributional kernel. The distributional point of view is very

useful since it easily allows to perform such operations in a certain weak

sense. However, often additional work is required if stronger statements are

needed.

The theory in its modern form arose from the work of Laurent Schwartz in

the late 1940s, although it certainly had important precursors such as Heav-

iside’s operational calculus in the 1890s and Sobolev’s generalized functions

in the 1930s. The approach of Schwartz had the important feature of being

completely mathematically rigorous while retaining the ease of calculation

of the operational methods. Distributions have played a prominent role in

the modern theory of partial differential equations, and they will be used

heavily in the chapter on Microlocal methods in this encyclopedia.

The idea behing distribution theory is easily illustrated by the standard

example, the Dirac delta function. On the real line, the Dirac delta is a

”function δ(x) which is zero for x 6= 0 with an infinitely high peak at x = 0,

with area equal to one”. Thus, if f(x) is a smooth function then integrating

δ(x)f(x) is supposed to give∫ ∞
−∞

δ(x)f(x) = f(0).

The Dirac delta is not a well defined function (in fact it is a measure),

but integration against δ(x) may be thought of as a linear operator defined

on some class of test functions which for any test function f gives out the

number f(0). After suitable choices of test function spaces, distributions

are introduced as continuous linear functionals on these spaces.
1
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The following will be a quick introduction to distributions and the Fourier

transform, mostly avoiding proofs. Further details can be found in [1], [2],

[3].

Test functions and distributions. Let Ω ⊂ Rn be an open set. We recall

that if f is a continuous function on Ω, the support of f is the set

supp(f) := Ω \ V, V is the largest open subset in Ω with f |V = 0.

Some notation: any n-tuple α = (α1, . . . , αn) ∈ Nn where N = {0, 1, 2, . . .}
is called a multi-index, and its norm is |α| = α1 + . . .+ αn. We write

∂αf(x) =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

f(x).

A function f on Ω is called C∞, or infinitely differentiable, if ∂αf is a

continuous function on Ω for all α ∈ Nn. The following test function space

will be used to define distributions.

Definition. The space of infinitely differentiable functions with compact

support in Ω is defined as

C∞c (Ω) := {f : Ω→ C ; f is C∞ and supp(f) is compact in Ω}.

If Ω is a domain with smooth boundary, then supp(f) is compact in Ω if

and only if f vanishes near ∂Ω. The space C∞c (Ω) contains many functions,

for instance it is not hard to see that

η(x) :=

{
e−1/(1−|x|)2 , |x| < 1,

0, |x| ≥ 1

is in C∞c (Rn). Generally, if K ⊂ V ⊂ V ⊂ Ω where K is compact and V is

open, there exists ϕ ∈ C∞c (Ω) such that ϕ = 1 on K and supp(ϕ) ⊂ V .

To define continuous linear functionals on C∞c (Ω), we need a notion of

convergence:

Definition. We say that a sequence (ϕj)
∞
j=1 converges to ϕ in C∞c (Ω) if

there is a compact set K ⊂ Ω such that supp(ϕj) ⊂ K for all j, and if

‖∂α(ϕj − ϕ)‖L∞(K) → 0 as j →∞, for all α ∈ Nn.

More precisely, one can define a topology on C∞c (Ω) such that this space

becomes a complete locally convex topological vector space, and a linear

functional u : C∞c (Ω) → C is continuous if and only if u(ϕj) → 0 for any

sequence (ϕj) such that ϕj → 0 in C∞c (Ω). We will not go further on this

since the convergence of sequences is sufficient for most practical purposes.

We can now give a precise definition of distributions.

Definition. The set of distributions on Ω, denoted by D′(Ω), is the set of

all continuous linear functionals u : C∞c (Ω)→ C.
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Examples. 1. (Locally integrable functions) Let f be a locally integrable

function in Ω, that is, f : Ω→ C is Lebesgue measurable and
∫
K |f | dx <

∞ for any compact K ⊂ Ω. (In particular, any continuous or L1(Ω)

function is locally integrable.) We define

uf : C∞c (Ω)→ C, uf (ϕ) =

∫
Ω
f(x)ϕ(x) dx.

By the definition of convergence of sequences, uf is a well-defined dis-

tribution. If f1, f2 are two locally integrable functions and uf1 = uf2 ,

then f1 = f2 almost everywhere by the du Bois-Reymond lemma. Thus

a locally integrable function f can be identified with the corresponding

distribution uf .

2. (Dirac mass) Fix x0 ∈ Ω and define

δx0 : C∞c (Ω)→ C, δx0(ϕ) = ϕ(x0).

This is a well-defined distribution, called the Dirac mass at x0.

3. (Measures) If µ is a positive or complex Borel measure in Ω such that the

total variation
∫
K d|µ| <∞ for any compact K ⊂ Ω, then the operator

uµ : ϕ 7→
∫

Ω
ϕ(x) dµ(x)

is a distribution that can be identified with µ.

4. (Derivative of Dirac mass) On the real line, the operator

δ′0 : ϕ 7→ −ϕ′(0)

is a distribution which is not a measure.

We now wish to extend some operations, defined for smooth functions, to

the case of distributions. This is possible via the duality of test functions

and distributions. To emphasize this point, we employ the notation

〈u, ϕ〉 := u(ϕ), u ∈ D′(Ω), ϕ ∈ C∞c (Ω).

Note that if u is a smooth function, then the duality is given by

〈u, ϕ〉 =

∫
Ω
u(x)ϕ(x) dx.

Multiplication by functions. Let a be a C∞ function in Ω. If u, ϕ ∈
C∞c (Ω) we clearly have

〈au, ϕ〉 = 〈u, aϕ〉.
Since ϕ 7→ aϕ is continuous on C∞c (Ω), we may for any u ∈ D′(Ω) define

the product au as the distribution given by

〈au, ϕ〉 := 〈u, aϕ〉, ϕ ∈ C∞c (Ω).
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Distributional derivatives. Similarly, motivated by the corresponding

property for smooth functions, if u ∈ D′(Ω) and β ∈ Nn is a multi-index

then the (distributional) derivative ∂βu is the distribution given by

〈∂βu, ϕ〉 := (−1)|β|〈u, ∂βϕ〉, ϕ ∈ C∞c (Ω).

(If u is a smooth function this is true by the integration by parts formula∫
Ω
u(x)∂xjϕ(x) dx = −

∫
Ω
∂xju(x)ϕ(x) dx.)

The last fact is one of the most striking features of distributions: in this

theory, any distribution (no matter how irregular) has infinitely many well

defined derivatives!

Examples. 1. In Example 4 above, the distribution δ′0 is in fact the distri-

butional derivative of the Dirac mass δ0.

2. Let u(x) := |x|, x ∈ R. Since u is continuous, we have u ∈ D′(R). We

claim the one has the distributional derivatives

u′ = sign(x),

u′′ = 2δ0.

In fact, if ϕ ∈ C∞c (R), one has

〈u′, ϕ〉 = −〈u, ϕ′〉 =

∫ 0

−∞
xϕ′(x) dx−

∫ ∞
0

xϕ′(x) dx

=

∫
R

sign(x)ϕ(x) dx = 〈sign(x), ϕ〉,

using integration by parts and the compact support of ϕ. Similarly,

〈u′′, ϕ〉 = −〈u′, ϕ′〉 =

∫ 0

−∞
ϕ′(x) dx−

∫ ∞
0

ϕ′(x) dx

= 2ϕ(0) = 〈2δ0, ϕ〉.

Homogeneous distributions. We wish to discuss homogeneous distribu-

tions, which are useful in representing fundamental solutions of differential

operators for instance. We concentrate on a particular example following [2,

Section 3.2]. If a > −1, define

fa(x) :=

{
xa, x > 0,

0, x < 0.

This is a locally integrable function, and positively homogeneous of degree

a in the sense that fa(tx) = taf(x) for t > 0. For a > −1 we can define the

distribution xa+ := fa. If a > 0 it has the properties

xxa−1
+ = xa+,

(xa+)′ = axa−1
+ .
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We would like to define xa+ for any real number a as an element of D′(R) so

that some of these properties remain valid.

First note that if a > −1, then for k ∈ N by repeated differentiation

〈xa+, ϕ〉 = − 1

a+ 1
〈xa+1

+ , ϕ′〉 = . . .

= (−1)k
1

(a+ 1)(a+ 2) · · · (a+ k)
〈xa+k

+ , ϕ(k)〉.

If a /∈ {−1,−2, . . .} we can define xa+ ∈ D′(R) by the last formula.

If a is a negative integer, we need to regularize the expression xa+ to obtain

a valid distribution. For fixed ϕ ∈ C∞c (R), the quantity F (a) = 〈xa+, ϕ〉 =∫
fa(x)ϕ(x) dx can be extended as an analytic function for complex a with

Re(a) > −1. The formula above for xa+ with negative a then shows that

F is analytic is C \ {−1,−2, . . .}, and it has simple poles at the negative

integers with residues

lim
a→−k

(a+ k)F (a) =
(−1)k〈x0

+, ϕ
(k)〉

(−k + 1)(−k + 2) · · · (−1)
=
ϕ(k−1)(0)

(k − 1)!
.

We define x−k+ ∈ D′(R), after a computation, by

〈x−k+ , ϕ〉 := lim
a→−k

(F (a)− ϕ(k−1)(0)

(k − 1)!(a+ k)
)

=
1

(k − 1)!

−∫ ∞
0

(log x)ϕ(k)(x) dx+

k−1∑
j=1

1

j

ϕ(k−1)(0)

 .

Then xxa−1
+ = xa+ is valid for all a ∈ R, and (xa+)′ = axa−1

+ holds true except

for nonpositive integers a.

Schwartz kernel theorem. One of the important features of distribution

theory is that it allows to write almost any linear operator as an integral

operator, at least in a weak sense. If Ω,Ω′ ⊂ Rn are open sets and if

K ∈ L2(Ω× Ω′), by Cauchy-Schwarz one has a bounded linear operator

T : L2(Ω′)→ L2(Ω), Tϕ(x) :=

∫
Ω′
K(x, y)ϕ(y) dy.

The function K is called the integral kernel of the operator T . There is a

general one-to-one correspondence between continuous linear operators and

integral kernels.

Theorem. If T : C∞c (Ω′) → D′(Ω) is a continuous linear map, then there

is K ∈ D′(Ω× Ω′) such that

〈T (ϕ), ψ〉 = 〈K,ψ ⊗ ϕ〉, ϕ ∈ C∞c (Ω′), ψ ∈ C∞c (Ω).
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Here (ψ ⊗ ϕ)(x, y) = ψ(x)ϕ(y). Conversely, any K ∈ D′(Ω× Ω′) gives rise

to a continuous linear map T by the above formula.

Tempered distributions. In the following, we will give a brief review of

the Fourier transform in the general setting of tempered distributions. We

introduce a test function space designed for the purposes of Fourier analysis.

Definition. The Schwartz space S (Rn) is the set of all infinitely differen-

tiable functions f : Rn → C such that the seminorms

‖f‖α,β := ‖xα∂βf(x)‖L∞(Rn)

are finite for all multi-indices α, β ∈ Nn. If (fj)
∞
j=1 is a sequence in S , we

say that fj → f in S if ‖fj − f‖α,β → 0 for all α, β.

It follows from the definition that a smooth function f is in S (Rn) iff for

all β and N there exists C > 0 such that

|∂βf(x)| ≤ C〈x〉−N , x ∈ Rn.

Here and below, 〈x〉 := (1 + |x|2)1/2. Based on this, Schwartz space is

sometimes called the space of rapidly decreasing test functions.

Example. Any function in C∞c (Rn) is in Schwartz space, and functions

like e−γ|x|
2
, γ > 0, also belong to S . The function e−γ|x| is not in Schwartz

space because it is not smooth at the origin, and also 〈x〉−N is not in S

because it does not decrease sufficiently rapidly at infinity.

There is a topology on S such that S becomes a complete metric space.

The operations f 7→ Pf and f 7→ ∂βf are continuous maps S → S , if P

is any polynomial and β any multi-index. More generally, let

OM (Rn) := {f ∈ C∞(Rn) ; for all β there exist C,N > 0

such that |∂βf(x)| ≤ C〈x〉N}.

It is easy to see that the map f 7→ af is continuous S → S if a ∈ OM .

Definition. If f ∈ S (Rn), then the Fourier transform of f is the function

Ff = f̂ : Rn → C defined by

f̂(ξ) :=

∫
Rn

e−ix·ξf(x) dx, ξ ∈ Rn.

The importance of Schwartz space is based on the fact that it is invariant

under the Fourier transform.

Theorem. (Fourier inversion formula) The Fourier transform is an iso-

morphism from S (Rn) onto S (Rn). A Schwartz function f may be recov-

ered from its Fourier transform by the inversion formula

f(x) = F−1f̂(x) = (2π)−n
∫
Rn

eix·ξ f̂(ξ) dξ, x ∈ Rn.
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After introducing the Fourier transform on nicely behaving functions, it

is possible to define it in a very general setting by duality.

Definition. Let S ′(Rn) be the set of continuous linear functionals S (Rn)→
C. The elements of S ′ are called tempered distributions, and their action

on test functions is written as

〈u, ϕ〉 := u(ϕ), u ∈ S ′, ϕ ∈ S .

Since the embedding C∞c (Rn) ⊂ S (Rn) is continuous, it follows that

S ′(Rn) ⊂ D′(Rn), that is, tempered distributions are distributions. The

elements in S ′ are somewhat loosely also called distributions of polynomial

growth. The following examples are similar to the case of D′(Rn) above.

Examples. 1. Let f : Rn → C be a measurable function, such that for

some C,N > 0 one has

|f(x)| ≤ C〈x〉N , for a.e. x ∈ Rn.

Then the corresponding distribution uf is in S ′(Rn). The function f is

usually identified with the tempered distribution uf .

2. In a similar way, any function f ∈ Lp(Rn) with 1 ≤ p ≤ ∞ is a tempered

distribution (with the identification f = uf ).

3. Let µ be a positive Borel measure in Rn such that∫
Rn

〈x〉−N dµ(x) <∞

for some N > 0. Then the corresponding distribution uµ is tempered. In

particular, the Dirac mass δx0 at x0 ∈ Rn is in S ′.

4. The function eγx is in D′(R) but not in S ′(R) if γ 6= 0, since it is not

possible to define
∫
R e

γxϕ(x) dx for all Schwartz functions ϕ. However,

eγx cos(eγx) belongs to S ′ since it is the distributional derivative (see

below) of the bounded function sin(eγx) ∈ S ′.

Operations on tempered distributions. The operations defined above

for D′(Rn) have natural analogues for tempered distributions. For instance,

if a ∈ OM (Rn) and u ∈ S ′(Rn) then au is a tempered distribution where

〈au, ϕ〉 = 〈u, aϕ〉.

Similarly, if u ∈ S ′(Rn) then the distributional derivative ∂βu is also a

tempered distribution.

Finally, we can define the Fourier transform of any u ∈ S ′ as the tempered

distribution Fu = û with

〈û, ϕ〉 := 〈u, ϕ̂〉, ϕ ∈ S .

In fact, this identity is true if u, ϕ ∈ S and it then extends the Fourier

transform on Schwartz space to the case of tempered distributions.
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Example. The Fourier transform of δ0 is the constant 1, since

〈δ̂0, ϕ〉 = 〈δ0, ϕ̂〉 = ϕ̂(0) =

∫ ∞
−∞

ϕ(x) dx

= 〈1, ϕ〉.

If u ∈ L2(Rn) then u is a tempered distribution, and the Fourier transform

û is another element of S ′. The Plancherel theorem (which is the exact

analog of Parseval’s theorem for Fourier series) states that in fact û ∈ L2,

and that the Fourier transform is an isometry on L2 up to a constant. We

state the basic properties of the Fourier transform as a theorem.

Theorem. The Fourier transform u 7→ û is a bijective map from S ′ onto

S ′, and one has the inversion formula

〈u, ϕ〉 = (2π)−n〈û, ϕ̂(− · )〉, ϕ ∈ S .

The Fourier transform is also an isomorphism from L2(Rn) onto L2(Rn),

and

‖û‖L2 = (2π)n/2‖u‖L2 .

It is remarkable that any tempered distribution has a Fourier transform

(thus, also any Lp function or measurable polynomially bounded function),

and there is a Fourier inversion formula for recovering the original distribu-

tion from its Fourier transform.

We end this section by noting the identities

(∂αu)̂ = (iξ)αû,

(xαu)̂ = (i∂ξ)
αû,

where xα = xα1
1 · · ·xαn

n . These hold for Schwartz functions u by a direct

computation, and remain true for tempered distributions u by duality. Thus

the Fourier transform converts derivatives into multiplication by polynomi-

als, and vice versa. This explains why the Fourier transform is useful in

the study of partial differential equations, since it can be used to convert

constant coefficient differential equations into algebraic equations.
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