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Abstract. We consider the inverse problem of determining a potential
in a semilinear elliptic equation from the knowledge of the Dirichlet-
to-Neumann map. For bounded Euclidean domains we prove that the
potential is uniquely determined by the Dirichlet-to-Neumann map mea-
sured at a single boundary point, or integrated against a fixed measure.
This result is valid even when the Dirichlet data is only given on a
small subset of the boundary. We also give related uniqueness results
on Riemannian manifolds.

1. Introduction

In this article we study inverse problems for semilinear elliptic equations,
with measurements given by the nonlinear Dirichlet-to-Neumann map (DN
map) measured at a single point or integrated against a fixed measure. The
method is based on higher order linearizations of the DN map. This method
was introduced in inverse problems for hyperbolic PDE in [KLU18KLU18] where
a source-to-solution map was used. It was observed in [LLPMT20LLPMT20] that in
the hyperbolic case it may be sufficient to measure a DN map integrated
against a suitable fixed function. The work [Tzo21Tzo21] proved a result showing
that measurements of the source-to-solution map at a single point suffice.

The higher order linearization method in inverse problems for nonlinear
elliptic PDE was introduced independently in [FO20FO20] and [LLLS21LLLS21]. We note
that the first linearization has been used extensively since the work [Isa93Isa93],
and the second linearization had also been used in [Sun96Sun96, SU97SU97, KN02KN02,
CNV19CNV19, AZ21AZ21]. The works [LLLS20LLLS20, KU20bKU20b, KU20cKU20c] studied related inverse
problems for semilinear elliptic equations with partial data, with [LLST22LLST22]
addressing fractional power nonlinearities. In [LZ20LZ20, KU20aKU20a, CF21CF21, KKU20KKU20,
CFK+21CFK+21] the authors study nonlinear conductivity or magnetic Schrödinger
type equations. All these results use the nonlinear DN map with data given
on open subsets of the boundary.

In this note we observe that in some of the elliptic results above it is
enough to measure the DN map at a single point, or integrated against a
fixed measure. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with C∞ boundary,
and let m ≥ 2 be an integer. Consider the semilinear elliptic equation{

∆u+ q(x)um = 0 in Ω,

u = f on ∂Ω,
(1.1)

where q ∈ Cα(Ω) is a potential, and Cα with 0 < α < 1 denotes the space
of α-Hölder continuous functions. Let f ∈ Uδ, where

Uδ := {f ∈ C2,α(∂Ω) : ‖f‖C2,α(∂Ω) < δ}.
1
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If δ > 0 is small enough there is a unique small solution u = uf ∈ C2,α(Ω)
of (1.11.1), see e.g. [LLST22LLST22, Proposition 2.1]. One can then define the corre-
sponding nonlinear DN map Λq by

Λq : Uδ → C1,α(∂Ω), f 7→ ∂νuf |∂Ω ,

where ∂ν denotes the normal derivative on ∂Ω. In [FO20FO20, LLLS21LLLS21] it was
proved that the full DN map Λq uniquely determines q. This was extended
in [KU20cKU20c, LLLS20LLLS20] to the case where one knows Λq(f)|Γ1 for f supported
in Γ2 where Γ1,Γ2 ⊂ ∂Ω are open sets.

We show that it is enough to measure
∫
∂Ω Λq(f) dµ for a fixed measure µ

on ∂Ω. When µ = δx0 this corresponds to measurements at a fixed point.

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 2, be a connected bounded open set with
C∞ boundary, let m ≥ 2 be an integer, and let Γ ⊂ ∂Ω be a nonempty open
set. Suppose that µ 6≡ 0 is a fixed measure on ∂Ω. If q1, q2 ∈ Cα(Ω) for
some 0 < α < 1 satisfy

(1.2)

∫
∂Ω

Λq1(f) dµ =

∫
∂Ω

Λq2(f) dµ

for all f ∈ Uδ with supp(f) ⊂ Γ where δ > 0 is sufficiently small, then

q1 = q2 in Ω.

In particular, choosing µ = δx0 for some fixed x0 ∈ ∂Ω, we see that the
condition

Λq1(f)(x0) = Λq2(f)(x0) for all f ∈ Uδ with supp(f) ⊂ Γ

implies that q1 = q2.

We can give a similar result for semilinear elliptic PDE on manifolds.
Let (M, g) be a compact Riemannian manifold with smooth boundary, let
q ∈ C∞(M), and let m ≥ 2. We consider the Dirichlet problem{

∆gu+ q(x)um = 0 in M,

u = f on ∂M.
(1.3)

Again, if Uδ := {f ∈ C2,α(∂M) : ‖f‖C2,α(∂M) < δ}, then for any f ∈ Uδ
with δ small enough the Dirichlet problem has a unique small solution u ∈
C2,α(M) (see e.g. [LLLS21LLLS21, Proposition 2.1]). We may define the DN map

Λq : Uδ → C1,α(∂M), f 7→ ∂νuf |∂M ,

where ∂ν denotes the normal derivative with respect to the metric g on ∂M .
We have the following result where f can be supported on all of ∂M , but
we only measure the DN map at a single point or integrated against a fixed
measure.

Theorem 1.2. Let (M, g) be a compact Riemannian n-manifold with smooth
boundary, let m ≥ 2 be an integer, and let µ 6≡ 0 be a fixed measure on ∂M .
Assume that one of the following conditions is satisfied:

(1) (M, g) is transversally anisotropic as in [LLLS21LLLS21, Definition 1.1],
and m ≥ 4; or

(2) (M, g) is a complex manifold satisfying the conditions in [GST19GST19,
Theorem 1.4].
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If q1, q2 ∈ C∞(M) are such that q1 = q2 to infinite order on ∂M and

(1.4)

∫
∂Ω

Λq1(f) dµ =

∫
∂Ω

Λq2(f) dµ

for all f ∈ Uδ where δ > 0 is sufficiently small, then q1 = q2 in M .

The proofs of Theorems 1.11.1–1.21.2 are based on the higher order linearization
method in [FO20FO20, LLLS21LLLS21]. From [LLLS21LLLS21, Proposition 2.2] one obtains the
identity

(1.5)

∫
∂M

((DmΛq1)0 − (DmΛq2)0)(f1, . . . , fm)fm+1 dS

= −(m!)

∫
M

(q1 − q2)v1 · · · vm+1 dV

where (DmΛq)0 denotes the mth Fréchet derivative on Λq at 0 considered as
an m-linear form, fj are Dirichlet data, and vj are solutions of the linearized
equation ∆gvj = 0 in M with vj |∂M = fj . The single point measurement
case formally corresponds to choosing fm+1 = δx0 with x0 ∈ ∂M . The
corresponding solution vm+1 is in L1(Ω) but it is not bounded, and this will
require some additional arguments.

If one has equality of the DN maps for q1 and q2 as in Theorems 1.11.1–1.21.2,
the identity (1.51.5) implies that∫

M
fv1v2 dV = 0

where f := (q1−q2)v3 · · · vmvm+1 and vj are as above. We choose v3, . . . , vm
to be smooth nonvanishing solutions, and vm+1 will be the (nonvanishing)
L1(Ω) solution whose Dirichlet data is a measure. It is then enough to show
that f = 0, which will imply q1 = q2. For the partial data result in Theorem
1.11.1, we need the following extension given in [CGU21CGU21, Section 4] of the
fundamental result of [FKSU09FKSU09] on the linearized local Calderón problem
that was originally proved for f ∈ L∞(Ω).

Theorem 1.3. Let Ω ⊂ Rn, n ≥ 2, be a connected bounded open set with C∞

boundary, and let Γ ⊂ ∂Ω be a nonempty open set. Suppose that f ∈ L1(Ω)
is such that ∫

Ω
fv1v2 dx = 0

for all vj ∈ C∞(Ω) solving ∆vj = 0 in Ω with supp(vj |∂Ω) ⊂ Γ. Then f = 0
in Ω.

For Theorem 1.21.2 we will invoke the results in [LLLS21LLLS21, GST19GST19] instead.

Acknowledgments. M.S. was partly supported by the Academy of Fin-
land (Centre of Excellence in Inverse Modelling and Imaging, grant 284715)
and by the European Research Council under Horizon 2020 (ERC CoG
770924). L.T. was partly supported by Australian Research Council Dis-
covery Projects DP190103451 and DP190103302.
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2. Proof of Theorem 1.11.1

For the proof of Theorem 1.11.1, we give a lemma related to solving the
Dirichlet problem when the boundary value is a finite Borel measure µ on
∂Ω. We use the norm given by the total variation,

‖µ‖M(∂Ω) = |µ|(∂Ω) = sup
‖ϕ‖C(∂Ω)=1

∣∣∣∣∫
∂Ω
ϕdµ

∣∣∣∣ .
We need the fact that the solution is in Lr(Ω) for 1 ≤ r < n

n−1 .

Lemma 2.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C∞ boundary,
and let µ be a finite complex Borel measure on ∂Ω. Consider the function

Ψ(x) =

∫
∂Ω
P (x, y) dµ(y), x ∈ Ω,

where P (x, y) is the Poisson kernel for ∆ in Ω. Then Ψ ∈ Lr(Ω) where
1 ≤ r < n

n−1 , and it solves the Dirichlet problem{
∆Ψ = 0 in Ω,

Ψ = µ on ∂Ω
(2.1)

where the boundary value is understood as follows: for any w ∈ C2(Ω) with
w|∂Ω = 0 one has

(2.2)

∫
∂Ω
∂νw dµ =

∫
Ω

(∆w)Ψ dx.

Proof. By applying a partition of unity, boundary flattening transformations
and convolution approximation, we can produce a sequence ψj ∈ C∞(∂Ω)

such that ‖ψj dS − µ‖M(∂Ω) → 0. Let Ψj ∈ C∞(Ω) solve ∆Ψj = 0 in Ω

with Ψj |∂Ω = ψj . If w is as in the statement of the lemma, integration by
parts gives ∫

∂Ω
(∂νw)ψj dS =

∫
Ω

(∆w)Ψj dx.

It is thus sufficient to show that Ψ ∈ Lr(Ω) and Ψj → Ψ in Lr(Ω) for
1 ≤ r < n

n−1 . We apply the Poisson kernel estimate (see e.g. [Kra05Kra05])

P (x, y) ≤ C dist(x, ∂Ω)

|x− y|n
≤ C

|x− y|n−1

for some C > 0. If Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, the Minkowski
inequality in integral form gives

‖Ψ(x)‖Lr(Ωδ) ≤
∫
∂Ω
‖P ( · , y)‖Lr(Ωδ) d|µ|(y)

≤

[
sup
y∈∂Ω

(∫
Ωδ

C

|x− y|(n−1)r
dx

)1/r
]
‖µ‖M(∂Ω) .

The quantity in brackets is finite uniformly over δ > 0 when r < n
n−1 . Thus

we may let δ → 0 to obtain that Ψ ∈ Lr(Ω). Applying the same argument
to

Ψj(x)−Ψ(x) =

∫
∂Ω
P (x, y)(ψj(y) dS(y)− dµ(y))

shows that Ψj → Ψ in Lr(Ω). �
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Proof of Theorem 1.11.1. Let first q ∈ Cα(Ω) be fixed. Consider Dirichlet data
of the form fε = ε1h1+. . .+εmhm where hj ∈ C∞(∂Ω) satisfy supp(hj) ⊂ Γ,
and ε = (ε1, . . . , εm) where εj are sufficiently small. Let uε be the solution
of (1.11.1) with Dirichlet data fε. By [LLST22LLST22, Proposition 2.1] the map
ε 7→ uε is smooth. By uniqueness of small solutions one has u0 = 0, and by
differentiating (1.11.1) with respect to εj one has ∂εjuε|ε=0 = vj where vj is
the solution of {

∆vj = 0 in Ω,

vj = hj on ∂Ω.
(2.3)

Moreover, applying ∂ε1 . . . ∂εm to (1.11.1) and evaluating at ε = 0 implies that
w := ∂ε1 . . . ∂εmuε|ε=0 solves the equation{

∆w = −(m!)qv1 · · · vm in Ω,

w = 0 on ∂Ω.
(2.4)

By elliptic regularity, vj ∈ C∞(Ω) and w ∈ C2,α(Ω). The DN map satisfies

(2.5) ∂ε1 . . . ∂εm(Λq(fε))|ε=0 = ∂ε1 . . . ∂εm(∂νuε)|ε=0 = ∂νw|∂Ω.

Now assume that q1, q2 ∈ Cα(Ω) are such that (1.21.2) holds. Let wj be the
solution of (2.42.4) for q = qj . By (1.21.2) and (2.52.5), one has∫

∂Ω
∂ν(w1 − w2) dµ = 0.

Let Ψ ∈ Lr(Ω) with r < n
n−1 be the solution of ∆Ψ = 0 in Ω with Ψ|∂Ω = µ

in the sense of Lemma 2.12.1. It follows from (2.22.2) that

0 =

∫
Ω

∆(w1 − w2)Ψ dx = −(m!)

∫
Ω

(q1 − q2)v1 . . . vmΨ dx.

Now choose h3, . . . , hm ∈ C∞(∂Ω) so that supp(hj) ⊂ Γ, hj ≥ 0, and hj > 0
somewhere. By the strong maximum principle vj > 0 in Ω for 3 ≤ j ≤ m.
We obtain that

(2.6)

∫
Ω

[(q1 − q2)v3 · · · vmΨ]v1v2 dx = 0

for any h1, h2 ∈ C∞(∂Ω) with supp(hj) ⊂ Γ. Note that the function in
brackets is in Lr(Ω) for r < n

n−1 . Now we invoke Theorem 1.31.3, which implies

that (q1−q2)v3 · · · vmΨ = 0 in Ω. Since v3, . . . , vm are positive we must have
(q1 − q2)Ψ = 0 in Ω. Finally, since µ 6≡ 0, the solution Ψ cannot vanish in
any open subset of Ω by unique continuation (otherwise (2.22.2) would imply
that µ ≡ 0). Thus Ψ is nonzero in a dense set of points in Ω. Since qj are
continuous, this shows that q1 = q2. �

3. Proof of Theorem 1.21.2

We now describe how to prove Theorem 1.21.2. The proof is very similar to
that of Theorem 1.11.1 and we indicate the required modifications. First we
note that Lemma 2.12.1 extends to the case where Ω is replaced by a compact
Riemannian manifold (M, g) with smooth boundary and ∆ is replaced by
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∆g. This relies on estimates for the Poisson kernel P (x, y) on compact
manifolds with boundary:

(3.1) |∇kxP (x, y)| ≤ Ck
dg(x, y)n−1+k

, x ∈M, y ∈ ∂M.

In fact the case k = 0 follows e.g. from [HWY09HWY09, Lemma 2.2]. The general
case follows by writing ε = dg(x, y) and by inserting u( · ) = P ( · , y) into the
elliptic estimate

‖∇ku‖L∞(Bε/4(x)∩M) ≤ Ckε−k ‖u‖L∞(Bε/2(x)∩M) .

The last estimate is valid by standard elliptic regularity after rescaling into
a ball of radius one.

Assuming the conditions in Theorem 1.21.2, the same argument that leads
to (2.62.6) yields the identity

(3.2)

∫
M

(q1 − q2)v1 · · · vmΨ dVg = 0

where vj ∈ C∞(M) are arbitrary solutions of the equation ∆gvj = 0 in M ,
and Ψ ∈ Lr(M) for 1 ≤ r < n

n−1 is the solution of{
∆gΨ = 0 in M,

Ψ = µ on ∂M.

Note that by elliptic regularity, Ψ is smooth in M int and it is also smooth
up to the boundary near points z ∈ ∂M so that µ = 0 near z. To study the
situation near supp(µ), we observe using (3.13.1) that for any x ∈ M int one
has

|Ψ(x)| ≤
∣∣∣∣∫
∂M

P (x, y) dµ(y)

∣∣∣∣ ≤ C ∫
∂M

1

dg(x, y)n−1
d|µ|(y).

Write f := (q1 − q2)Ψ. Using the assumption that q1 = q2 to infinite order
on ∂M , for any N ≥ 0 there is CN > 0 such that

|f(x)| ≤ CNdg(x, ∂M)N
∫
∂M

1

dg(x, y)n−1
d|µ|(y)

≤ CNdg(x, ∂M)N−(n−1)|µ|(∂M).

Choosing N ≥ n gives that f is bounded in M and vanishes on ∂M . Ap-
plying similar estimates to derivatives of f in M int proves that f is actually
C∞ up to the boundary in M and it vanishes to infinite order on ∂M .

We rewrite (3.23.2) in the form∫
M
fv1 . . . vm dVg = 0

where f = (q1 − q2)Ψ and vj ∈ C∞(M) are any solutions of ∆gvj = 0 in
M . It now follows from [LLLS21LLLS21, Proposition 5.1], if (M, g) is transversally
anisotropic and m ≥ 4, or from [GST19GST19, Theorem 1.4], if (M, g) is a complex
manifold satisfying the assumptions of that theorem, that f = 0. Since µ 6≡ 0
and M is connected, Ψ cannot vanish in any open set in M int by the unique
continuation principle. Thus we must also have q1 − q2 = 0 in M , which
concludes the proof of Theorem 1.21.2.
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Remark 3.1. Under assumption (1) in Theorem 1.21.2, the condition that
q1 = q2 to infinite order on ∂M can be weakened. In fact it would be
enough to suppose that q1 = q2 to suitable finite order near supp(µ) on ∂M ,
since in that case the argument above shows that (q1−q2)Ψ is in C1(M) and
hence [LLLS21LLLS21, Proposition 5.1] applies. In a similar vein, under assumption
(1) and in the special case µ = δx0 , it would be enough to assume that
∇kq1(x0) = ∇kq2(x0) for finitely many k.

Appendix A. Proof of Theorem 1.31.3

As mentioned, Theorem 1.31.3 is proved in [CGU21CGU21, Section 4], and the
proof relies on a Runge approximation result given in [KKU20KKU20, Lemma 2.6].
In this appendix we give a slightly shorter proof for f ∈ Lr(Ω) for r > 1,
which is already sufficient for all the results in this article. Later we also
give an alternative argument that works for f ∈ L1(Ω).

We begin with a version of the Runge approximation result given in
[FKSU09FKSU09, Lemma 2.2] where the approximation is in the Lp norm where
p is large. A stronger result for the W 1,p norm is in [KKU20KKU20, Lemma 2.6].

Lemma A.1. Let Ω1 ⊂ Ω2 be bounded open sets with smooth boundary, and
let 1 < p <∞. Let GΩ2(x, y) be the Dirichlet Green’s kernel associated with
Ω2. Then the set

R =

{∫
Ω2

GΩ2(·, y)a(y) dy : a ∈ C∞c (Ω2), supp(a) ⊂ Ω2 \ Ω1

}
is a dense subspace, with respect to the Lp(Ω1) topology, in the space S of
harmonic functions u ∈ C∞(Ω1) with u|∂Ω1∩∂Ω2 = 0.

Proof. Suppose that ` is a bounded linear functional on Lp(Ω1) with `|R = 0.

We need to show that `|S = 0. By duality there is v ∈ Lp′(Ω1), where p′ is
the dual Hölder exponent of p, so that

`(u) = 〈v, u〉Ω1 .

Denote by G the solution operator for ∆ in Ω2 with vanishing Dirichlet data,
and write E0v for the zero extension of v to Ω2. The assumption `|R = 0
ensures that for any a ∈ C∞c (Ω2 \ Ω1) we have

0 = 〈v,Ga|Ω1〉Ω1 = 〈E0v,Ga〉Ω2 .(A.1)

Now, let w = G(E0v) ∈W 2,p′(Ω2) solve ∆w = E0v in Ω2 with w|∂Ω2 = 0.

For any f ∈ W−1,p′(Ω2) and h ∈ W−1,p(Ω2), one can check the duality
statement

〈Gf, h〉Ω2 = 〈f,Gh〉Ω2 .

Using this duality statement in (A.1A.1), we obtain that

(A.2) w|Ω2\Ω1
= 0.

Let now u ∈ S, and let Eu be any function in C∞(Ω2) with Eu|Ω1 = u.
We wish to show that `(u) = 0. We may compute

`(u) = 〈v, u〉Ω1 = 〈E0v,Eu〉Ω2 = 〈∆w,Eu〉Ω2(A.3)

= 〈∂νw,Eu〉∂Ω2 − 〈∇w,∇(Eu)〉Ω2 .
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Here we used that ∇w ∈ W 1,q(Ω2) for q = np′

n−p′ when p′ < n (and for any

q < ∞ if p′ ≥ n), showing that ∂νw is in the Besov space B
1−1/q
q,q (∂Ω2) by

the trace theorem [Tri78Tri78, Section 4.7]. We integrate by parts once more and
use the condition w|∂Ω2 = 0 to obtain that

`(u) = 〈∂νw,Eu〉∂Ω2 + 〈w,∆(Eu)〉Ω2 .

Since u ∈ S, we have Eu|∂Ω1∩∂Ω2 = 0 and ∆(Eu)|Ω1 = 0. On the other
hand, (A.2A.2) implies that ∂νw|∂Ω2\∂Ω1

= 0. It follows that `(u) = 0 as
required. �

Proof of Theorem 1.31.3 for f ∈ Lr(Ω), r > 1. The proof of [FKSU09FKSU09, Theo-
rem 1.1] for f ∈ L∞(Ω) proceeds in three steps:

1. Reduction to a case where Ω is strictly convex near some x0 ∈ Γ.
2. Local result showing that f = 0 near x0.
3. Iteration of the local result to show that f = 0 everywhere.

Step 1 works equally well for f ∈ L1(Ω). We may thus assume that we are
in the setting in [FKSU09FKSU09, Section 3] where x0 = 0, T0(∂Ω) = {x1 = 0},

Ω ⊂ {x ∈ Rn : |x+ e1| < 1}, Γ ⊂ {x ∈ ∂Ω : x1 ≥ −2c},

for some c > 0. (Note that our Γ corresponds to ∂Ω \ Γ in [FKSU09FKSU09].)
Let us indicate the necessary changes in [FKSU09FKSU09, Section 3] in order to

do Step 2 for f ∈ L1(Ω). We consider harmonic functions

u(x, ζ) = e−
ix·ζ
h + w(x, ζ)

where h > 0 is small, ζ ∈ Cn satisfies ζ · ζ = 0, and w solves

∆w = 0 in Ω, w|∂Ω = −e−
ix·ζ
h χ|∂Ω

where χ ∈ C∞(∂Ω) satisfies χ = 1 for x1 ≤ −2c and supp(χ) ⊂ {x1 ≤
−c}. Then supp(u) ⊂ Γ. Now, instead of using a H1 estimate for w as in
[FKSU09FKSU09, formula (3.6)], we use an L∞ estimate (i.e. maximum principle):

‖w‖L∞(Ω) ≤ ‖e
− ix·ζ

h χ‖L∞(∂Ω) ≤ e−
c
h

Im ζ1e
1
h
|Im ζ′| when Im ζ1 ≥ 0.

Here we write ζ = (ζ1, ζ
′) where ζ ′ ∈ Cn−1. Since we have∫

Ω
f(x)u(x, ζ)u(x, η) dx, ζ · ζ = η · η = 0,

we get for Im ζ1, Im η1 ≥ 0 the estimate∣∣∣∣∫
Ω
f(x)e−

ix·(ζ+η)
h dx

∣∣∣∣ ≤ ‖f‖L1 (‖e−
ix·ζ
h ‖L∞ ‖w(x, η)‖L∞

+ ‖e−
ix·η
h ‖L∞ ‖w(x, ζ)‖L∞ + ‖w(x, ζ)‖L∞ ‖w(x, η)‖L∞)

≤ 3 ‖f‖L1 e
− c
h

min(Im ζ1,Im η1)e
1
h

(|Im ζ′|+|Im η′|).

Then, using the same notations as in [FKSU09FKSU09], formula (3.8) in [FKSU09FKSU09]
gets replaced by

(A.4)

∣∣∣∣∫
Ω
f(x)e−

ix·(ζ+η)
h dx

∣∣∣∣ ≤ C ‖f‖L1(Ω) e
− ca

2h e
2Cεa
h .
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We now proceed to Section 4 in [FKSU09FKSU09]. Note that for f ∈ L1(Ω),
equation (4.1) in [FKSU09FKSU09] is replaced by

|Tf(z)| ≤ e
1

2h
|Im z|2 ‖f‖L1(Ω)

for z ∈ Cn. Using the condition supp(f) ⊂ {x1 ≤ 0}, equation (4.2) in
[FKSU09FKSU09] is replaced by

|Tf(z)| ≤ e
1

2h
(|Im z|2−(Re z1)2) ‖f‖L1(Ω)

for Re z1 ≥ 0. Finally, using (A.4A.4), equation (4.7) in [FKSU09FKSU09] is replaced
by

|Tf(z)| ≤ C ‖f‖L1(Ω) e
1

2h
(|Im z|2−|Re z|2− ca

2
).

From the three estimates above we see that the estimate (4.8) in [FKSU09FKSU09]
holds with h−1 ‖f‖L∞(Ω) replaced by ‖f‖L1(Ω). The proof of Step 2 is now

completed as in [FKSU09FKSU09, Section 4].
It remains to explain how to do Step 3 for f ∈ Lr(Ω), r > 1. Inspecting

the arguments in [FKSU09FKSU09, Section 2], it is sufficient to prove that the set
described in [FKSU09FKSU09, formula (2.2)] is dense for the Lp(Ω1) topology, for
any p < ∞, in the subspace of harmonic functions u ∈ C∞(Ω1) such that
u|∂Ω1∩∂Ω2 = 0. This follows from Lemma A.1A.1. �

In the remainder of this section we prove Theorem 1.31.3 for f ∈ L1(Ω). We
have seen in the proof above that Steps 1 and 2 already work for f ∈ L1(Ω),
so it is enough to consider Step 3 and an analogue of the Runge approxima-
tion argument of Lemma A.1A.1 but in the L∞ norm. Such a result was proved
in [KKU20KKU20, Lemma 2.6], but here we give an alternative argument where
Ω2 will have nonsmooth boundary.

Let us briefly explain the rationale behind this. In the Lp approximation
proof above we used (A.3A.3), where w solves ∆w = E0v in Ω2 with w|∂Ω2 = 0,
and Eu is a sufficiently regular extension of u ∈ S. For approximation
in L∞, the quantity v will be in the dual of L∞ (i.e. a finitely additive
measure) and one would require additional work to make sense of the normal
derivative ∂νw|∂Ω2 in (A.3A.3). We will instead construct the extension Eu so
that Eu|∂Ω2 = 0. When Ω2 is a smooth domain such an extension does not
exist in general, but for suitable nonsmooth domains it does.

Let 0 < α < 1. We say that a domain Ω has a C1,α edge singularity along
a subset E ⊂ ∂Ω if for any x0 ∈ E there is a neighborhood U of x0 in Rn
and a diffeomorphism F : U → Ũ ⊂ Rn such that F (x0) = 0 and one has
bijective maps

F : Ω ∩ U → {(x1, x2, x
′) : x2 < ψ(x1)} ∩ Ũ ,

F : E ∩ U → {(0, 0, x′)} ∩ Ũ ,
where ψ : R → R is smooth away from 0 with ψ(t) = 0 for t ≤ 0, and the
function ψ(t)/t1+α is smooth in [0,∞) and nonvanishing at 0. Here we write
x = (x1, x2, x

′) for points x ∈ Rn, where x′ ∈ Rn−2.

Lemma A.2. Let Ω1 ⊂ Ω2 ⊂ Rn be bounded open sets, let Ω1 have smooth
boundary, and assume that Ω2 has smooth boundary except at ∂(∂Ω1 ∩ ∂Ω2)
where it has a C1,α edge singularity. Also assume that if x0 is a point on
the edge and Ω2 is locally near x0 given by {x2 < ψ(x1)} as above, then Ω1
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is locally near x0 given by {x2 < η(x1)} where η ∈ C∞(R) satisfies η(t) = 0
for t ≤ 0 and η(t) < ψ(t) for t > 0.

Let GΩ2(x, y) be the Dirichlet Green’s kernel associated with Ω2. Then
for 1 < p < 1 + 2/α the set

R =

{∫
Ω2

GΩ2(·, y)a(y) dy : a ∈ C∞c (Ω2), supp(a) ⊂ Ω2 \ Ω1

}
is a dense subspace, with respect to the W 1,p(Ω1) topology, in the space S of
harmonic functions u ∈ C∞(Ω1) with u|∂Ω1∩∂Ω2 = 0.

We begin with an extension result in a model case.

Lemma A.3. Let u ∈ C1
c ({x2 ≤ 0}) be such that u|x2=0 is supported in

{x1 ≥ 0}. Given 0 < α < 1 and δ > 0, there is an extension ũ of u to Rn
such that ũ ∈W 1,p(Rn) for 1 ≤ p < 1 + 2/α and

supp(ũ) ⊂ {x2 ≤ 0} ∪ {(x1, x2, x
′) : x1 > 0, x2 ≤ δx1+α

1 }.

Proof. Let Eu be any C1
c (Rn) extension of u, and define

ũ(x) :=


u(x), x2 ≤ 0,

χ(x2/x
1+α
1 )Eu(x), x1 > 0, x2 > 0,

0 elsewhere,

where χ = χδ ∈ C∞c (R) satisfies χ(t) = 1 for |t| ≤ δ/2 and χ(t) = 0 for
|t| ≥ δ. Then ũ is C1 away from {x1 = x2 = 0} and continuous in Rn since
u(0, 0, x′) = 0. If ϕ ∈ C∞c (Rn), we may compute the weak derivatives of ũ
via ∫

Rn
ũ∂jϕdx = lim

ε→0

∫
|(x1,x2)|>ε

ũ∂jϕdx

= lim
ε→0

∫
|(x1,x2)|=ε

ũϕνj dS − lim
ε→0

∫
|(x1,x2)|>ε

∂j ũϕ dx.

The first term on the right vanishes by continuity of ũ, and hence the weak
derivative ∂j ũ is given by

∂j ũ(x) :=


∂ju(x), x2 ≤ 0,

∂j(χ(x2/x
1+α
1 )Eu(x)), x1 > 0, x2 > 0,

0 elsewhere.

It is enough to verify that ∂j(χ(x2/x
1+α
1 )Eu(x)) ∈ Lp({x1, x2 > 0}) for

p < 1 + 2/α. This is clear for j ≥ 3. For j = 2 we compute

∂2(χ(x2/x
1+α
1 )Eu) = χ(x2/x

1+α
1 )∂2Eu+ χ′(x2/x

1+α
1 )x−1−α

1 Eu

The first term is in Lp. For the second term we use that |t| ∼ δ on supp(χ′),
which gives that |x2| ∼ δx1+α

1 on supp(χ′(x2/x
1+α
1 )). Using the fact that

Eu ∈ C1
c (Rn), in {x1, x2 > 0} we have∣∣∣∣χ′(x2/x

1+α
1 )

x1+α
1

Eu(x)

∣∣∣∣ =

∣∣∣∣χ′(x2/x
1+α
1 )

x1+α
1

(Eu(x1, x2, x
′)− Eu(0, 0, x′))

∣∣∣∣
≤ C

∣∣∣∣χ′(x2/x
1+α
1 )

x1+α
1

(|x1|+ |x2|)
∣∣∣∣ ≤ C ∣∣∣∣χ′(x2/x

1+α
1 )

xα1

∣∣∣∣ .
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The last quantity is in Lp({x1, x2 > 0} ∩ B1) when p < 1 + 2/α since
x2 ∼ δx1+α in the integration set. The behaviour of ∂1ũ is even better.
This proves that ũ ∈W 1,p for p < 1 + 2/α. �

Corollary A.4. Let Ω1 ⊂ Ω2 be bounded open sets having the properties
stated in Lemma A.2A.2. Suppose that u ∈ C1(Ω1) has vanishing trace on
∂Ω1 ∩ ∂Ω2. Then for 1 ≤ p < 1 + 2/α, u has an extension ũ ∈ W 1,p(Rn)
supported in Ω2.

Proof. Since u|∂Ω1∩∂Ω2 = 0, by using smooth cutoff functions it suffices to
construct the extension near any point of the submanifold ∂(∂Ω1 ∩ ∂Ω2).
By the assumptions on Ω1 and Ω2, we can use a diffeomorphism to map
a neighbourhood of any x0 ∈ ∂(∂Ω1 ∩ ∂Ω2) into Rn = {(x1, x2, x

′)} where
locally Ω1 = {x2 < η(x1)} and Ω2 = {x2 < ψ(x1)} with ψ and η having
the properties stated above. Choose new coordinates so that y1 = x1, y2 =
x2−η(x1), and y′ = x′. Then locally Ω1 = {y2 < 0} and Ω2 = {y2 < ψ1(y1)}
where ψ1(t) = ψ(t) − η(t) is such that ψ1(t)/t1+α is smooth in [0,∞) and
positive at 0, using that η vanishes to infinite order at 0. Now apply the
previous lemma in the y coordinates. �

Proof of Lemma A.2A.2. We only indicate the modifications required in the
proof of Lemma A.1A.1. Now ` is a bounded linear functional on W 1,p(Ω1),

and hence it is represented by v ∈W−1,p′(Rn) with supp(v) ⊂ Ω1. We now
wish to solve the Dirichlet problem

∆w = v|Ω2 in Ω2, w|∂Ω2 = 0.

Since Ω2 is a C1,α domain and v|Ω2 ∈ W−1,p′(Ω2), by [JK95JK95, Theorem 1.1]

there is a solution w ∈ W 1,p′

0 (Ω2) whenever 1 < p < ∞. As in (A.2A.2) we
obtain w|Ω2\Ω1

= 0.

Now for any u ∈ S one has

`(u) = 〈v, ũ〉Rn

where ũ is any function in W 1,p(Rn) with ũ|Ω1 = u. If p < 1 + 2/α and we
choose ũ to be the extension given in Corollary A.4A.4, we have supp(ũ) ⊂ Ω2

and hence we may consider ũ as an element of W 1,p
0 (Ω2). On the other hand,

the facts that w ∈W 1,p′

0 (Ω2) and w|Ω2\Ω1
= 0 imply that there is a sequence

wj ∈ C∞c (Ω1) with wj → w in W 1,p′(Ω2). It follows that

`(u) = 〈v|Ω2 , ũ〉Ω2 = 〈∆w, ũ〉Ω2 = lim 〈∆wj , ũ〉Ω2 = lim 〈wj ,∆ũ〉Ω2 .

Since u ∈ S we have ∆ũ = 0 in Ω1, and thus the last expression vanishes
using that wj ∈ C∞c (Ω1). We have shown that `|S = 0, which concludes the
proof. �

It now remains to complete Step 3 in the proof of Theorem 1.31.3 for
f ∈ L1(Ω). We follow the argument of [FKSU09FKSU09, Section 2] with minor
modifications. Let x1 ∈ Ω and let θ : [0, 1] → Ω be a smooth curve so that
θ(0) is the only point of θ([0, 1]) on ∂Ω and θ′(0) is normal to ∂Ω. Define

Θε(t) := {x ∈ Ω : d(x, θ([0, t])) < ε}.
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Thanks to Step 2, there exists ε > 0 such that f = 0 in Θε(0)∩Ω. We may
further decrease ε so that U := Θε(1)∩ ∂Ω is a connected small open neigh-
bourhood on ∂Ω containing x0. Locally near x0 we may work in coordinates
so that x0 = 0, Ω = {xn < 0} near x0, and Bδ(0) ∩ {xn = 0} ⊂ U . We also
ask that δ > 0 is small enough such that ∂Ω \ Γ ⊂⊂ ∂Ω \ Bδ(0). Choose
α < 2

n−1 , so that 1 + 2/α > n, and in the previous coordinates choose

Ω2 := Ω ∪ Cα

where Cα is a set in {xn ≥ 0} so that Ω2 will have a C1,α edge singularity
along ∂Bδ(0) ∩ {xn = 0}.

For ε > 0 fixed above, define

I := {t ∈ [0, 1] : f = 0 a.e. in Θε(t) ∩ Ω}.

This is clearly a nonempty set which is closed. We now need to show that
it is open.

To this end, suppose t0 ∈ I ∩ (0, 1). By our choice of θ(·) and ε, there is
an open set Ω1 ⊂ Ω with smooth boundary so that ∂Ω \Bδ(0) = ∂Ω∩ ∂Ω1,
∂(∂Ω ∩ ∂Ω1) = ∂Bδ(0) ∩ {xn = 0}, and so that near any point of the edge
∂(∂Ω1∩∂Ω2) = ∂Bδ(0)∩{xn = 0} the sets Ω1 and Ω2 satisfy the conditions
in Lemma A.2A.2. We also ask that Ω\Θε(t0) ⊂ Ω1 ⊂ Ω\θ([0, t0]), that Ω\Ω1

is connected, and that ∂Bε(θ(t0)) ∩ ∂Θε(t0) ⊂ ∂Ω1.
Let G(x, y) be the Dirichlet Green’s function associated to the domain

Ω2. Consider the expression∫
Ω1

f(y)G(x, y)G(t, y) dy

as a function of both x, t ∈ Ω2 \ Ω1. Since f = 0 in Ω \ Ω1, we have that∫
Ω1

f(y)G(x, y)G(t, y) dy =

∫
Ω
f(y)G(x, y)G(t, y) dy.

For x, t ∈ Ω2 \ Ω, y 7→ G(x, y) and y 7→ G(t, y) are harmonic functions in
Ω which vanish on ∂Ω1 ∩ ∂Ω2 ⊃ ∂Ω \ Γ. So by our assumption that f is
orthogonal to products of such harmonic functions, we have

0 =

∫
Ω1

f(y)G(x, y)G(t, y) dy

for x, t ∈ Ω2 \ Ω. By unique continuation,

0 =

∫
Ω1

f(y)G(x, y)G(t, y) dy

for x, t ∈ Ω2 \ Ω1. By integrating in x and t against smooth functions
supported in Ω2 \ Ω1 we have that

0 =

∫
Ω1

fuv

for all u and v harmonic in Ω1 of the form
∫

Ω2
G(·, y)a(y) dy with supp(a) ⊂

Ω2 \ Ω1. By the density result of Lemma A.2A.2 (since 1 + 2/α > n, we have
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density in W 1,p for some p > n and hence in L∞), this means that

0 =

∫
Ω1

fuv

for all u and v harmonic in Ω1 and vanishing on ∂Ω1 ∩ ∂Ω2. By applying
the local result in Step 2, we can conclude that f vanishes in an open subset
containing ∂Bε(θ(t0)) ∩ ∂Θε(t0). This shows that t0 is an interior point of
I, showing that I is open and concluding the proof.
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