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Abstract. In this article we consider the anisotropic Calderón
problem and related inverse problems. The approach is based on
limiting Carleman weights, introduced in [13] in the Euclidean case.
We characterize those Riemannian manifolds which admit limiting
Carleman weights, and give a complex geometrical optics construc-
tion for a class of such manifolds. This is used to prove uniqueness
results for anisotropic inverse problems, via the attenuated geo-
desic X-ray transform. Earlier results in dimension n ≥ 3 were
restricted to real-analytic metrics.
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1. Introduction and main results

1.1. Introduction. In this paper we consider the Calderón problem
in the anisotropic case. This inverse method, also called Electrical
Impedance Tomography (EIT), consists in determining the conductiv-
ity of a medium by making voltage and current measurements at the
boundary. Applications range from geophysical prospection to medical
imaging.
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2 LIMITING CARLEMAN WEIGHTS

Anisotropic conductivities depend on direction. Muscle tissue in the
human body is an important example of an anisotropic conductor. For
instance cardiac muscle has a conductivity of 2.3 mho in the transverse
direction and 6.3 mho in the longitudinal direction [4]. The conductiv-
ity in this case is represented by a positive definite, smooth, symmetric
matrix γ = (γjk(x)) in a domain Ω in Euclidean space.

If there are no sources or sinks of current in Ω, the potential u in Ω,
given a voltage potential f on ∂Ω, solves the Dirichlet problem

∂

∂xj

(
γjk

∂u

∂xk

)
= 0 in Ω,

u = f on ∂Ω.

Here and throughout this article we are using Einstein’s summation
convention: repeated indices in lower and upper position are summed.
The boundary measurements are given by the Dirichlet-to-Neumann
map (DN map), defined by

Λγf = γjk
∂u

∂xj
νk

∣∣∣
∂Ω

where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂Ω and u is
the solution of the Dirichlet problem. The inverse problem is whether
one can determine γ by knowing Λγ.

Unfortunately, Λγ doesn’t determine γ uniquely. This observation is
due to L. Tartar (see [15] for an account). Let ψ : Ω → Ω be a C∞

diffeomorphism with ψ|∂Ω = Id where Id is the identity map. Then

Λγ̃ = Λγ

where

γ̃ =

(
tψ′ · γ · ψ′

| detψ′|

)
◦ ψ−1.

Here ψ′ denotes the (matrix) differential of ψ, tψ′ its transpose, and
the dot · represents multiplication of matrices.

We have then a large number of conductivities with the same DN
map: any change of variables of Ω that leaves the boundary fixed gives
rise to a new conductivity with the same boundary measurements. The
question is whether this is the only obstruction to unique identifiability
of the conductivity. It is known that this is the case in two dimensions.
The anisotropic problem can be reduced to the isotropic one by using
isothermal coordinates (Sylvester [31]), and combining this with the
result of Nachman [21] for isotropic conductivities gives the result for
anisotropic conductivities with two derivatives. The regularity was
improved by Sun and Uhlmann [30] to Lipschitz conductivities using
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the techniques of Brown and Uhlmann [5], and to L∞ conductivities by
Astala-Lassas-Päivärinta [2] using the work of Astala-Päivärinta [3].

In the case of dimension n ≥ 3, as was pointed out in [18], this is
a problem of geometrical nature. In this article we will focus on the
geometric problem.

Let (M, g) be a compact Riemannian manifold with boundary. All
manifolds will be assumed smooth (which means C∞) and oriented.
The Laplace-Beltrami operator associated to the metric g is given in
local coordinates by

∆gu = |g|−1/2 ∂

∂xj

(
|g|1/2 gjk ∂u

∂xk

)
where as usual (gjk) is the matrix inverse of (gjk), and |g| = det(gjk).
Let us consider the Dirichlet problem

∆gu = 0 in M, u|∂M = f.

The DN map in this case is defined as the normal derivative

Λgf = ∂νu|∂M = gjk
∂u

∂xj
νk

∣∣∣
∂M

where ν = νl∂xl denotes the unit outer normal to ∂M , and νk = gklν
l

is the conormal. The inverse problem is to recover g from Λg.
There is a similar obstruction to uniqueness as for the conductivity.

We have

(1.1) Λψ∗g = Λg

where ψ is a C∞ diffeomorphism of M which is the identity on the
boundary. As usual ψ∗g denotes the pull back of the metric g by the
diffeomorphism ψ.

In the two dimensional case there is an additional obstruction since
the Laplace-Beltrami operator is conformally invariant. More precisely

∆cg =
1

c
∆g

for any function c, c 6= 0. Therefore we have that for n = 2

(1.2) Λc(ψ∗g) = Λg

for any smooth function c 6= 0 so that c|∂M = 1.
Lassas and Uhlmann [17] proved that (1.1) is the only obstruction

to unique identifiability of the metric for real-analytic manifolds in
dimension n ≥ 3. In the two dimensional case they showed that (1.2)
is the only obstruction to unique identifiability for smooth Riemannian
surfaces. Moreover these results assume that Λg is measured only on
an open subset of the boundary.
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Notice that these two results don’t assume any condition on the
topology of the manifold except for connectedness. An earlier result of
Lee-Uhlmann [18] assumed that (M, g) was strongly convex and sim-
ply connected. The result of [17] in dimension n ≥ 3 was extended by
Lassas-Taylor-Uhlmann [16] to non-compact, connected real-analytic
manifolds with boundary. Einstein manifolds are real-analytic in the
interior and it was conjectured in [17] that Einstein manifolds are de-
termined, up to isometry, from the DN map. This was recently proven
by Guillarmou-Sa Barreto [9].

These results on the anisotropic Calderón problem for n ≥ 3 are
based on the analyticity of the metric. The recovery of the metric in the
interior of M proceeds by analytic continuation, using the knowledge
of Taylor series of g at the boundary. Thus, these results do not give
information from the interior of the manifold.

On the other hand, in the isotropic case where g is a conformal
multiple of the Euclidean metric, many results are available even for
nonsmooth coefficients. These results are based on special complex
geometrical optics solutions to elliptic equations, introduced in [32].
These have the form

u = e−
1
h
〈ζ,x〉(1 + r0),

where ζ ∈ Cn is a complex vector satisfying ζ · ζ = 0, and r0 is small as
h tends to 0. However, complex geometrical optics solutions have not
been available in the anisotropic case, which has been a major difficulty
in the study of that problem.

One of the main contributions of this paper is a complex geomet-
rical optics construction for a class of Riemannian manifolds. This
is based on the work of Kenig-Sjöstrand-Uhlmann [13], where more
general complex geometrical optics solutions, of the form

u = e−
1
h

(ϕ+iψ)(a+ r0),

were constructed in Euclidean space. Here ϕ is a limiting Carleman
weight.

In this paper we characterize those Riemannian manifolds which ad-
mit limiting Carleman weights, and also characterize all such weights
in Euclidean space. We give a construction of complex geometrical
optics solutions on a class of Riemannian manifolds, and we use these
solutions to prove uniqueness results in inverse problems. The inverse
problems considered are the recovery of an electric potential and a mag-
netic field from boundary measurements on an admissible Riemannian
manifold, and the determination of an admissible metric within a con-
formal class from the DN map. Let us now state the precise results of
this article.
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1.2. Statement of results. We first recall the definition of limiting
Carleman weights. Let h > 0 be a small parameter, and consider the
semiclassical Laplace-Beltrami operator P0 = −h2∆g. If ϕ is a smooth
real-valued function on M , consider the conjugated operator

P0,ϕ = eϕ/hP0e
−ϕ/h.(1.3)

Here it is natural to work with open manifolds (i.e. manifolds without
boundary such that no component is compact).

Definition 1.1. A real-valued smooth function ϕ in an open manifold
(M, g) is said to be a limiting Carleman weight if it has non-vanishing
differential, and if it satisfies on T ∗M the Poisson bracket condition

{pϕ, pϕ} = 0 when pϕ = 0,(1.4)

where pϕ is the principal symbol, in semiclassical Weyl quantization, of
the conjugated Laplace-Beltrami operator (1.3).

Our first result is a characterization of those Riemannian manifolds
which admit limiting Carleman weights.

Theorem 1. If (M, g) is an open manifold having a limiting Carleman
weight, then some conformal multiple of the metric g admits a parallel
unit vector field. For simply connected manifolds, the converse is also
true.

Locally, a manifold admits a parallel unit vector field if and only if
it is isometric to the product of an Euclidean interval and another Rie-
mannian manifold. This is an instance of the de Rham decomposition
[24], or is easy to prove directly (see Lemma A.4). Thus, if (M, g) has a
limiting weight ϕ, one can choose local coordinates in such a way that
ϕ(x) = x1 and

g(x1, x
′) = c(x)

(
1 0
0 g0(x′)

)
,

where c is a positive conformal factor. Conversely, any metric of this
form admits ϕ(x) = x1 as a limiting weight.

In the case n = 2, limiting Carleman weights in (M, g) are exactly
the harmonic functions with non-vanishing differential (see Section 2).
The case n ≥ 3 is more complicated. However, for the Euclidean metric
it is possible to determine all the limiting Carleman weights.

Theorem 2. Let Ω be an open subset of Rn, n ≥ 3, and let e be the
Euclidean metric. The limiting Carleman weights in (Ω, e) are locally
of the form

ϕ(x) = aϕ0(x− x0) + b
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where a ∈ R \ {0} and ϕ0 is one of the following functions:

〈x, ξ〉, arg〈x, ω1 + iω2〉,

log |x|, 〈x, ξ〉
|x|2

, arg
(
eiθ(x+ iξ)2

)
, log

|x+ ξ|2

|x− ξ|2

with ω1, ω2 orthogonal unit vectors, θ ∈ [0, 2π) and ξ ∈ Rn \ {0}.
We use the following definition for the argument function

arg z = 2 arctan
Im z

|z|+ Re z
, z ∈ C \R−.

Remark 1.2. The possible weights are all real analytic functions.
Some comments are made at the end of section 3 about the global
aspect of Theorem 2.

Let us now introduce the class of manifolds which admit limiting
Carleman weights and for which we can prove uniqueness results in
inverse problems. For this we need the notion of simple manifolds [27].

Definition 1.3. A manifold (M, g) with boundary is simple if ∂M is
strictly convex1 , and for any point x ∈M the exponential map expx is
a diffeomorphism from some closed neighborhood of 0 in TxM onto M .

Definition 1.4. A compact manifold with boundary (M, g), of dimen-
sion n ≥ 3, is admissible if it is conformal to a submanifold with
boundary of R× (M0, g0) where (M0, g0) is a compact simple (n− 1)-
dimensional manifold.

Examples of admissible manifolds include the following:

1. Bounded domains in Euclidean space, in the sphere minus a
point, or in hyperbolic space. In the last two cases, the manifold
is conformal to a domain in Euclidean space via stereographic
projection.

2. More generally, any domain in a locally conformally flat man-
ifold is admissible, provided that the domain is appropriately
small. Such manifolds include locally symmetric 3-dimensional
spaces, which have parallel curvature tensor so their Cotton
tensor vanishes (see the Appendix).

3. Any bounded domain M in Rn, endowed with a metric which
in some coordinates has the form

g(x1, x
′) = c(x)

(
1 0
0 g0(x′)

)
,

with c > 0 and g0 simple, is admissible.

1cf. Definition A.7.
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4. The class of admissible metrics is stable under C2-small pertur-
bations of g0.

The first inverse problem involves the Schrödinger operator

Lg,q = −∆g + q,

where q is a smooth complex valued function on (M, g). We make the
standing assumption that 0 is not a Dirichlet eigenvalue of Lg,q in M .
Then the Dirichlet problem{Lg,qu = 0 in M,

u = f on ∂M

has a unique solution for any f ∈ H1/2(∂M), and we may define the
DN map

Λg,q : f 7→ ∂νu|∂M .
Given a fixed admissible metric, one can determine the potential q from
boundary measurements.

Theorem 3. Let (M, g) be admissible, and let q1 and q2 be two smooth
functions on M . If Λg,q1 = Λg,q2, then q1 = q2.

This result was known previously in dimensions n ≥ 3 for the Eu-
clidean metric [32] and for the hyperbolic metric [11]. We remark that
in the two dimensional case global uniqueness is not known even for the
Euclidean metric. It is known for potentials coming from conductivities
[21] or for a generic class of potentials [29].

We obtain similar uniqueness results for the Schrödinger operator in
the presence of a magnetic field. Let A be a smooth complex valued
1-form on M (the magnetic potential), and denote

Lg,A,q = dĀ
∗dA + q,

where dA = d+ iA∧ : C∞(M)→ Ω1(M) and dA
∗ is the formal adjoint

of dA (for the sesquilinear inner product induced by the Hodge dual on
the exterior form algebra). This reads in local coordinates

Lg,A,qu = −|g|−1/2
(
∂xj + iAj

)(
|g|1/2gjk

(
∂xk + iAk

)
u
)

if A = Aj dx
j.

As before, we assume throughout that 0 is not a Dirichlet eigenvalue
of Lg,A,q in M , and consider the Dirichlet problem{Lg,A,qu = 0 in M,

u = f on ∂M.

We can define the DN map as the magnetic normal derivative

Λg,A,q : f 7→ dAu(ν)|∂M .
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This map is invariant under gauge transformations of the magnetic
potential: we have

Λg,A+dψ,q = Λg,A,q

for any smooth function ψ which vanishes on the boundary. Thus, it is
natural that one recovers the magnetic field dA and electric potential
q from the map Λg,A,q.

Theorem 4. Let (M, g) be admissible, let A1, A2 be two smooth 1-forms
on M and let q1, q2 be two smooth functions on M . If Λg,A1,q1 = Λg,A2,q2,
then dA1 = dA2 and q1 = q2.

This result was proved in [22] for the Euclidean metric. Our proof
is closer to [7] which considers partial boundary measurements. See
[25] for further references on the inverse problem for the magnetic
Schrödinger operator in the Euclidean case.

The next result considers the anisotropic Calderón problem. Under
the additional condition that the metrics are in the same conformal
class, one expects uniqueness since the only diffeomorphism that leaves
a conformal class invariant is the identity. In dimensions n ≥ 3 this
was known earlier for metrics conformal to the Euclidean metric [32],
conformal to the hyperbolic metric [11], and analytic metrics in the
same conformal class [19] (based on [18]).

Theorem 5. Let (M, g1) and (M, g2) be two admissible Riemannian
manifolds in the same conformal class. If Λg1 = Λg2, then g1 = g2.

This article is organized as follows. In the next two sections, we study
limiting Carleman weights and prove in particular Theorems 1 and 2.
In Sections 4 and 5, we prove Carleman estimates and construct com-
plex geometrical optics solutions to the Schrödinger equation. Section
6 deals with the proofs of Theorems 3, 4, and 5. The last two sections
are devoted to two results needed in the resolution of the anisotropic
inverse problems. The first is the injectivity of an attenuated geodesic
X-ray transform on simple manifolds, and the second states that the
DN map determines the Taylor expansion of the different quantities in-
volved at the boundary. Finally, there is an appendix containing basic
definitions and facts in Riemannian geometry which are used in this
article.

Acknowledgements. C.E.K. is partly supported by NSF grant DMS-
0456583. M.S. is supported in part by the Academy of Finland. G.U.
would like to acknowledge partial support of NSF and a Walker Family
Endowed Professorship. We would like to express our deepest thanks to
Johannes Sjöstrand who made substantial contributions to this paper.
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His unpublished notes on characterizing limiting Carleman weights in
the Euclidean case are the basis for sections 2 and 3. In particular he
proved that the level sets of limiting Carleman weights in the Euclidean
case are either hyperspheres or hyperplanes (see section 3). We would
also like to thank David Jerison for helpful discussions on limiting Car-
leman weights, and Robin Graham for useful suggestions on conformal
geometry.

2. Limiting Carleman weights

We refer the reader to the appendix for a short overview on Rie-
mannian geometry. We use 〈·, ·〉 and | · | to denote the Riemannian
inner product and norm both on the tangent and the cotangent space
and D to denote the Levi-Civita connection. Throughout this paper
semiclassical conventions are used; we refer to [6] for an exposition
of this theory. The principal symbol of the conjugated semiclassical
Laplace-Beltrami operator (1.3) is given by

pϕ = |ξ|2 − |dϕ|2 + 2i〈ξ, dϕ〉.(2.1)

There are two reasons to use limiting Carleman weights in the con-
struction of complex geometrical optics solutions

u = e−
1
h

(ϕ+iψ)(a+ r0)

of the Schrödinger equation (−∆g + q)u = 0. Given a function ϕ,
the construction amounts to looking for solutions of the conjugated
equation

P0,ϕv + h2qv = 0

of the form v = e−
i
h
ψ(a+r0) and then applying the usual WKB method.

This includes solving the eikonal equation

pϕ(x, dψ) = 0

and a transport equation on a. Note that P0,ϕ is not a self-adjoint
operator and that the symbol pϕ is complex valued. The existence of
a solution ψ to the eikonal equation implies

{pϕ, pϕ}(x, dψ) = 0.

Hence using limiting Carleman weights is a way to ensure that the
former (necessary) equality is fulfilled. The other reason lies in the
fact that one wants the conjugated operator P0,ϕ to be locally solvable
in the semiclassical sense, in order to find the remainder term r0 and
go from an approximate solution to an exact solution. This means
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the principal symbol pϕ of the conjugated operator needs to satisfy
Hörmander’s local solvability condition

{pϕ, pϕ} ≤ 0 when pϕ = 0.

Since applications of the complex geometrical optics construction to
inverse problems require to construct solutions with both exponential
weights eϕ/h and e−ϕ/h (in order to cancel possible exponential be-
haviour in the product of two solutions — see section 6) and since
p−ϕ = pϕ, it seems natural to impose the bracket condition (1.4).

We now proceed to the analysis of limiting Carleman weights on
open manifolds. We first observe that the notion of limiting Carleman
weight relates to a conformal class of Riemannian manifolds.

Lemma 2.1. Let (M, g) be an open Riemannian manifold, and ϕ a
limiting Carleman weight. If c is a smooth positive function, then ϕ is
a limiting Carleman weight in (M, cg). In particular, if f : (M̃, g̃) →
(M, g) is a conformal transformation, then f ∗ϕ is a limiting Carleman
weight in (M̃, g̃).

Proof. The claim follows from the fact that the principal symbol of the
conjugated Laplace-Beltrami operator eϕ/h∆cge

−ϕ/h is p̃ϕ = c−1pϕ and
that

1

2i
{p̃ϕ, p̃ϕ} =

c−2

2i
{pϕ, pϕ}+ c−1 Im

(
pϕ{pϕ, c−1}

)
.

Both term in the right-hand side vanish when pϕ = 0. �

Remark 2.2. This lemma gives a way to construct limiting Carleman
weights. If we already know a limiting Carleman weight ϕ, then any
function of the form ϕ ◦ f , where f is a conformal transformation on
(M, g), is a limiting Carleman weight.

In particular, from the linear Carleman weight 〈x, ξ〉, using the in-
version x → x/|x|2 which is a conformal transformation on Rn \ {0}
(endowed with the Euclidean metric e), we obtain another limiting
Carleman weight 〈x, ξ〉/|x|2 on M = Rn \ {0}.

Now we know that the existence of limiting Carleman weights only
depends on a conformal class of geometries. Let a and b denote re-
spectively the real and imaginary parts of the principal symbol of the
conjugated operator (1.3), so

pϕ = a+ ib.
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They are given by the following expressions2

a = |ξ|2 − |dϕ|2 = |ξ]|2 − |∇ϕ|2,(2.2)

b = 2〈dϕ, ξ〉 = 2〈∇ϕ, ξ]〉.
Note that {pϕ, pϕ}/2i = {a, b} so that the condition (1.4) also reads

{a, b} = 0 when a = b = 0.(2.3)

We start with the computation of this Poisson bracket in terms of
the Hessian D2ϕ.

Lemma 2.3. The Poisson bracket may be expressed as

{a, b}(x, ξ) = 4D2ϕ(ξ], ξ]) + 4D2ϕ(∇ϕ,∇ϕ).

Proof. Consider a1 = |ξ|2 and a2 = |dϕ|2, so that a = a1 − a2, the
Poisson bracket is given by

{a, b} = {a1, b}+ {b, a2} = Ha1b+Hba2.

Since a2 is a function only depending on x, and b is linear in ξ, the
second bracket is easily calculated and by (A.1) we obtain

Hba2 = 2L∇ϕ
(
|∇ϕ|2

)
= 4D2ϕ(∇ϕ,∇ϕ).

It remains to compute the first Poisson bracket. The Hamiltonian flow
generated by 1

2
a1 is the cogeodesic flow,

t→ (x(t), ξ(t)), x(t) a geodesic, ξ(t) = ẋ[(t),

therefore using (A.2) one has

Ha1b = 2
∂

∂t
b
(
x(t), ξ(t)

)∣∣
t=0

= 4
∂

∂t
dϕ(x(t))

(
ẋ(t)

)∣∣
t=0

= 4
∂2

∂t2
ϕ(x(t))

∣∣
t=0

= 4D2ϕ(ẋ(0), ẋ(0)).

This finishes the proof of the equality since ẋ(0) = ξ]. �

The bracket condition (2.3) now reads

(2.4) D2ϕ(X,X) +D2ϕ(∇ϕ,∇ϕ) = 0

for all X ∈ T (M) such that |X|2 = |∇ϕ|2, 〈X,∇ϕ〉 = 0.

The situation in dimension 2 is particularly simple.

Lemma 2.4. In the case of a 2-dimensional Riemannian manifold
(M, g), limiting Carleman weights are exactly the harmonic functions
with non-vanishing differential.

2The musical notation is recalled in the appendix.
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Proof. This comes from the fact that when M has dimension 2, we
have

D2ϕ(X,X) +D2ϕ(∇ϕ,∇ϕ) = |∇ϕ|2 Tr D2ϕ = |∇ϕ|2 ∆ϕ

if |X|2 = |∇ϕ|2 and 〈∇ϕ,X〉 = 0. �

We will therefore continue our investigation in dimension n ≥ 3. The
expression of the Poisson bracket {a, b} suggests that it is convenient
to work with Carleman weights which are also distance functions, in
the sense that |∇ϕ| = 1, since in that case D2ϕ(∇ϕ,∇ϕ) = 0. One
can always reduce to this case by using the conformal metric

g̃ = |∇ϕ|2g(2.5)

since the notion of limiting Carleman weights only depends on a con-
formal class of metrics.

Lemma 2.5. Among distance functions on an open Riemannian man-
ifold (M, g), limiting Carleman weights can be characterized by the fol-
lowing equivalent properties.

(1) The Hessian of ϕ vanishes identically.
(2) The gradient of ϕ is a Killing field.
(3) The gradient of ϕ is a parallel field.
(4) If x ∈M and v is in the domain of expx then

ϕ(expx v) = ϕ(x) + 〈∇ϕ(x), v〉.
Proof. If we assume |∇ϕ| = 1, then 〈DZ∇ϕ,∇ϕ〉 = 0 for any vector
field Z and the bracket condition (2.4) is equivalent to

D2ϕ(X,X) = 〈DX∇ϕ,X〉 = 0 when 〈X,∇ϕ〉 = 0.

By bilinearity and by the fact that D2ϕ(∇ϕ,Z) = 〈DZ∇ϕ,∇ϕ〉 = 0
one can actually drop the orthogonality condition, and after polariza-
tion (2.4) is furthermore equivalent to D2ϕ = 0. The equivalence of (1)
and (2) comes from the first equality in (A.1). The equivalence of (1)
and (3) follows from the second equality in (A.1). Finally, properties
(1) and (4) are equivalent because of the identities

∂

∂t
ϕ
(

expx(tv)
)∣∣
t=0

= dϕ(v) = 〈∇ϕ, v〉,

∂2

∂t2
ϕ
(

expx(tv)
)∣∣
t=0

= D2ϕ(v, v)

and of Taylor’s expansion. �

Remark 2.6. According to (4), in Riemannian manifolds, functions
with null Hessian are the analogue of linear Carleman weights in the
Euclidean setting.
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Remark 2.7. According to Lemmas 2.3 and 2.5, when ϕ is both a
limiting Carleman weight and a distance function, the bracket {a, b} in
(2.3) vanishes everywhere instead of just on the characteristic variety
a = b = 0.

Proof of Theorem 1. Suppose that the manifold (M, g) has a limiting
Carleman weight ϕ, then ϕ is both a distance function and a limiting
Carleman weight in (M, g̃) where g̃ is the metric (2.5) conformal to g.
According to Lemma 2.5, this means that ∇g̃ϕ is a unit parallel field.

Conversely, if (M, g) is a simply connected Riemannian manifold
such that (M, cg) has a unit parallel field X, then according to Lemma
A.3, X is both a gradient field X = ∇cgϕ and a Killing field. Thanks to
Lemmas 2.5 and 2.1, this implies that ϕ is a limiting Carleman weight
in (M, cg) and in (M, g). �

Remark 2.8. It is now easy to justify the local coordinate expression
in the introduction for metrics which admit limiting Carleman weights.
If (M, g) admits a limiting weight ϕ, the proof of Theorem 1 shows that
∇g̃ϕ is a unit parallel field for the conformal metric g̃ = c−1g where
c = |∇ϕ|−2. Lemma A.4 implies that near any point of M there exist
local coordinates such that

g̃(x1, x
′) =

(
1 0
0 g0(x′)

)
and ∇g̃ϕ = ∂/∂x1 = ∇g̃(x1).

One obtains, after a translation of coordinates if necessary, that ϕ(x) =
x1 and

g(x1, x
′) = c(x)

(
1 0
0 g0(x′)

)
.

Conversely, if g is of this form and g̃ = c−1g, then ∂/∂x1 = ∇g̃(x1)
is a unit parallel field by Lemma A.4. Thus ϕ(x) = x1 is a limiting
Carleman weight.

The purpose of the next lemma is to give several properties of limiting
Carleman weights, in particular the fact that their level sets are totally
umbilical hypersurfaces3.

Lemma 2.9. A function ϕ with non-vanishing differential is a limiting
Carleman weight if and only if |∇ϕ|−2∇ϕ is a conformal Killing field.
In particular, if ϕ is a limiting Carleman weight then

(1) the Hessian of ϕ is determined by the knowledge of ∇ϕ and
D∇ϕ∇ϕ, that is

D2ϕ = λg + |∇ϕ|−2
(
dϕ⊗ (D∇ϕ∇ϕ)[ + (D∇ϕ∇ϕ)[ ⊗ dϕ

)
3cf. Definition A.6.
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where λ = −|∇ϕ|−2D2ϕ(∇ϕ,∇ϕ),
(2) the trace of the Hessian is given by

∆ϕ = TrD2ϕ = (n− 2)λ,

(3) the level sets of ϕ in (M, g) are totally umbilical submanifolds
with normal |∇ϕ|−1∇ϕ, with principal curvatures equal to

µ = −|∇ϕ|−3D2ϕ(∇ϕ,∇ϕ),

(4) the eigenvalues of the Hessian are λ, κ and −κ with

κ =
|D∇ϕ∇ϕ|
|∇ϕ|

.

Proof. Let g̃ denote the metric (2.5) conformal to g. Suppose that ϕ is
a limiting Carleman weight in (M, g) then according to Lemma 2.5

∇g̃ϕ = |∇gϕ|−2∇gϕ

is a Killing field in (M, g̃). This implies that it is a conformal Killing
field in (M, g). Conversely, if ∇g̃ϕ is a conformal Killing field in (M, g),
it is both a conformal Killing field and a unit gradient in (M, g̃). Evalu-
ating the equality L∇g̃ϕg̃ = γg̃ at (∇g̃ϕ,∇g̃ϕ) gives γ = 0 since by (A.1)

L∇g̃ϕg̃(∇g̃ϕ,∇g̃ϕ) = 2〈D̃∇g̃ϕ∇g̃ϕ,∇g̃ϕ〉 = L∇g̃ϕ|∇g̃ϕ|2 = 0.

This implies that ∇g̃ϕ is a Killing field in (M, g̃) hence that ϕ is a
limiting Carleman weight in (M, g̃) thanks to Lemma 2.5, and in (M, g)
thanks to Lemma 2.1.

Formulas (A.3) and (A.1) give

L|∇ϕ|−2∇ϕg = 2|∇ϕ|−2
(
D2ϕ− dϕ⊗ (D∇ϕ∇ϕ)[

|∇ϕ|2
− (D∇ϕ∇ϕ)[

|∇ϕ|2
⊗ dϕ

)
.

If ϕ is a limiting Carleman weight, then |∇ϕ|−2∇ϕ is a conformal
Killing field, and the former expression equals to γg. It is easy to
compute γ by evaluating the former expression at (X,X) such that
〈∇ϕ,X〉 = 0 and |X|2 = 1, and by using (2.4)

γ = 2|∇ϕ|−2D2ϕ(X,X) = −2|∇ϕ|−4D2ϕ(∇ϕ,∇ϕ).

The combination of L|∇ϕ|−2∇ϕg = γg and those two relations gives (1).
Besides, one also has

γ =
2

n
div
(
|∇ϕ|−2∇ϕ

)
=

2

n

(
|∇ϕ|−2∆ϕ− 2|∇ϕ|−4D2ϕ(∇ϕ,∇ϕ)

)
and the two expressions of γ yield the trace of the Hessian as in (2).
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The level sets of ϕ are submanifolds of M , with unit normal given
by ν = |∇ϕ|−1∇ϕ. The tangent vectors of ϕ−1(t) are orthogonal to
∇ϕ and the second fundamental form is given by

`(X, Y ) = 〈DXν, Y 〉 = |∇ϕ|−1D2ϕ(X, Y ) = µ〈X, Y 〉

for X and Y satisfying 〈X,∇ϕ〉 = 〈Y,∇ϕ〉 = 0. Thus the principal
curvatures of ϕ−1(t) are all equal to µ.

A consequence of the expression of the Hessian in (1) is

DZ∇ϕ = λZ + |∇ϕ|−2
(
〈D∇ϕ∇ϕ,Z〉∇ϕ+ 〈∇ϕ,Z〉D∇ϕ∇ϕ

)
.(2.6)

Since D2ϕ = λg on ker dϕ ∩ ker(D∇ϕ∇ϕ)[, λ is an eigenvalue of the
Hessian of multiplicity at least n − 2. Because of the trace, the two
remaining eigenvalues are opposite. Considering the orthogonal vectors

u =
∇ϕ
|∇ϕ|

+
D∇ϕ∇ϕ
|D∇ϕ∇ϕ|

v =
∇ϕ
|∇ϕ|

− D∇ϕ∇ϕ
|D∇ϕ∇ϕ|

and using (2.6), one has :

Du∇ϕ = κu, Dv∇ϕ = −κv.

One of the two vectors u, v is nonzero, therefore κ and −κ are the two
remaining eigenvalues. Note that when ∇ϕ and D∇ϕ∇ϕ are dependent
then κ = |λ|. In this case the eigenvalues are λ (with multiplicity n−1)
and −λ. �

Remark 2.10. It is an accepted fact in geometry that generic mani-
folds in dimension n ≥ 3 should not admit nontrivial conformal Killing
fields, thus would not admit limiting Carleman weights. This would be
in striking contrast with the 2D case, where every metric is locally con-
formally flat and admits infinitely many limiting weights (the harmonic
functions).

In the Euclidean case, the log weight ϕ = log |x| plays an interesting
role (cf. [13], [7] and [14]). The former computation allows us to give
a partial answer to the question: if ρ > 0 is a distance function (in the
sense that |∇ρ| = 1), when is ϕ = log ρ a limiting Carleman weight?
Indeed, one has

D2ϕ =
D2ρ

ρ
− dρ⊗ dρ

ρ2
, D∇ϕ∇ϕ = −∇ρ

ρ3
, and λ =

1

ρ2
,

thus ϕ = log ρ is a limiting Carleman weight if and only if the metric
g has the form

g = ρD2ρ+ dρ⊗ dρ.
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If ϕ = log ρ is a limiting Carleman weight, then by Remark 2.8 there
are coordinates near any point of M so that log ρ = x1, |∇ϕ|−2 = e2x1 ,
and

g(x) = e2x1

(
1 0
0 g0(x′)

)
= e2x1 g̃(x′).

Conversely, any metric of this form admits a logarithmic Carleman
weight ϕ(x) = x1 = log ρ with ρ = ex1 . Therefore if log ρ is a lim-
iting Carleman weight, one computes the Christoffel symbols in the
coordinates (x1, x

′) to be

Γ1
11 = 1 and Γ1

ij = −g̃ij(x′) if i 6= 1 or j 6= 1.

Thus if we denote Db = D∂b , the curvature tensor for b 6= 1 and c 6= 1
satisfies

R1bc1 = 〈D1Db∂c −DbD1∂c, ∂1〉
= 〈D1(Γdbc∂d)−Db(Γ

d
1c∂d), ∂1〉

= (∂1Γ1
bc − ∂bΓ1

1c + ΓdbcΓ
1
1d − Γd1cΓ

1
bd)g11

= (Γ1
bc − Γd1cΓ

1
bd)g11.

A direct computation using the special form of g shows that the last
expression vanishes. Then the sectional curvature

K(X, Y ) =
R(X, Y, Y,X)

|X|2|Y |2 − 〈X, Y 〉2

vanishes whenever X = ∂1. This implies that any manifold with non-
vanishing sectional curvature at a point p cannot admit a limiting Car-
leman weight of the form log ρ near p. In particular, the sphere or
hyperbolic space do not admit limiting Carleman weights of this form.

3. The Euclidean case

So far, we know at least three examples of limiting Carleman weights
defined on open subsets of the Euclidean space: the linear weight, the
logarithmic weight, and the hyperbolic weight

〈x, ξ〉, log |x|, 〈x, ξ〉
|x|2

.

Note that the first is defined on Rn while the two others are on Rn \
{0}. The purpose of this section is to determine all possible limiting
Carleman weights for open subsets of the Euclidean space.

The following result is well known.
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Lemma 3.1. The only connected totally umbilical hypersurfaces in the
Euclidean space of dimension n ≥ 3 are parts of either hyperplanes or
hyperspheres.

Proof. Let Σ be a connected totally umbilical hypersurface in an open
subset Ω ⊂ Rn, let ν denote its unit exterior normal, and let λ be the
common value of the principal curvatures. First, let us prove that λ is
constant along Σ. We have

DXν = λX

for all vector fields X tangent to Σ. Therefore we deduce

DXDY ν −DYDXν = (LXλ)Y − (LY λ)X + λ[X, Y ]︸ ︷︷ ︸
=D[X,Y ]ν

.

Since the Euclidean space is flat, we have

DXDY ν −DYDXν −D[X,Y ]ν = R(X, Y )ν = 0

therefore we deduce (LXλ)Y − (LY λ)X = 0 for all vectors tangent to
Σ, which means that λ is constant along Σ.

We now consider the vector field V =
∑n

j=1 xj∂xj and we have

DX(ν − λV ) = λX − λDXV = 0

for all vector fields X tangent to Σ. This means that ν−λx is constant
along the hypersurface. If λ = 0, the normal is constant along the
hypersurface and Σ is part of a hyperplane, and if λ 6= 0 then α =
λ−1(λx− ν) is constant along the hypersurface, and Σ is a part of the
hypersphere |x− α| = 1/|λ|. �

This provides the additional information that the level sets of a lim-
iting Carleman weight are parts of either hyperspheres or hyperplanes.
Let Ω be a bounded open connected subset of Rn, n ≥ 3, let ϕ be a
limiting Carleman weight on Ω, and consider J = ϕ(Ω) which is an
open interval. The curvature

µ(t) = −|∇ϕ|−3〈ϕ′′∇ϕ,∇ϕ〉
∣∣
ϕ−1(t)

of the level sets, is a smooth function of t ∈ J .
We will begin by proving that ϕ is locally of one of the forms in

Theorem 2, thus we will suppose that Ω is a small open neighborhood
of a point x0 and J is a small interval. First suppose that µ is identically
0, i.e. that all level sets of ϕ are hyperplanes. Possibly after doing a
rotation, we may suppose that

∇ϕ(x0) = (∂x1ϕ(x0), 0, . . . , 0) 6= 0.(3.1)
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If Ω is small enough, this implies that we can take (t, x′) as coordinates
on Ω, and that the level sets of ϕ are of the form

x1 = 〈ω′(t), x′〉+ s(t)

where as usual the prime notation stands for x′ = (x2, . . . , xn). We will
begin with the relation

ϕ
(
〈ω′(t), x′〉+ s(t), x′

)
= t.(3.2)

Differentiation with respect to x′ gives

ω′∂x1ϕ+ ∂x′ϕ = 0 on ϕ−1(t)(3.3)

which expresses the fact that ∇ϕ is normal to the hyperplane ϕ−1(t).
Differentiating with respect to t the relation (3.2) we get the following

equations (
〈ω̇′, x′〉+ ṡ

)
∂x1ϕ = 1,(3.4)

and
(
〈ω̇′, x′〉+ ṡ

)2
∂2
x1
ϕ+

(
〈ω̈′, x′〉+ s̈

)
∂x1ϕ = 0.(3.5)

It remains to compute ∂2
x1
ϕ in order to obtain ordinary differential

equations for ω′ and s.
Differentiating (3.3) with respect to x′ gives

ω2
j∂

2
x1
ϕ+ 2ωj∂

2
x1xj

ϕ+ ∂2
xj
ϕ = 0, 2 ≤ j ≤ n.

Remember that we have supposed µ = 0, this implies that ϕ is har-
monic because of (2) in Lemma 2.9. Summing up the relations above
and using the fact that ∆ϕ = 0, we get

(ω′
2 − 1)∂2

x1
ϕ+ 2〈ω′, ∂2

x1x′ϕ〉 = 0.(3.6)

Differentiating (3.3) with respect to t we also get(
ωj∂

2
x1
ϕ+ ∂2

x1xj
ϕ
)(
〈ω̇′, x′〉+ ṡ

)
+ ω̇j∂x1ϕ = 0, 2 ≤ j ≤ n.

Multiplying the former relations by ωj and summing up yields(
ω′

2
∂2
x1
ϕ+ 〈ω′, ∂2

x1x′ϕ〉
)(
〈ω̇′, x′〉+ ṡ

)
+ 〈ω̇′, ω′〉∂x1ϕ = 0.(3.7)

The combination of (3.6) and (3.7) gives(
〈ω̇′, x′〉+ ṡ

)
∂2
x1
ϕ = −2〈ω̇′, ω′〉

1 + ω′2
∂x1ϕ.(3.8)

Finally using (3.4), (3.5) and (3.8), we have

−2〈ω̇′, ω′〉
1 + ω′2

(
〈ω̇′, x′〉+ ṡ

)
+
(
〈ω̈′, x′〉+ s̈

)
= 0.

for all t ∈ J and all x′ in a neighborhood of x′0.
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We end up with the following system of equations
ω̈′ − 2

〈ω̇′, ω′〉
1 + ω′2

ω̇′ = 0

s̈− 2
〈ω̇′, ω′〉
1 + ω′2

ṡ = 0

on J.(3.9)

Solving the first ordinary differential equation yields

ω̇j = aj(1 + ω′
2
)

for some constant aj. After a rotation in the x′ variable, we may
suppose that aj = 0 for j ≥ 3. Because of the form (3.1) of the
gradient of ϕ at x0, we have

ω2(t) = tan(at+ b), ωj = 0, 3 ≤ j ≤ n.

Injecting the former solution into the equation in s leads to the follow-
ing differential equation

s̈− 2a tan(at+ b)ṡ = 0

which can be integrated: if a = 0 then s(t) = ct+ d and if a 6= 0 then

s(t) = c tan(at+ b) + d.

Finally, this gives two possible types of limiting Carleman weights

1. a〈x− x̃0, ξ〉+ b

2. a arg〈x− x̃0, ω1 + iω2〉+ b

with ω1, ω2 unit orthogonal vectors.

Remark 3.2. The use of complex variables simplified computations
in [7]. Note that the second weight can be written as

a arg z + b,

with z = 〈x− x̃0, ω1〉+ i〈x− x̃0, ω2〉 and a, b real numbers.

Now we assume that µ does not vanish identically on J , and con-
sider a subinterval I ⊂ µ−1(R∗+) (the study on µ−1(R∗−) can be done
by considering −ϕ). When t ∈ I, the level sets ϕ−1(t) are therefore
hyperspheres of radii r(t) = 1/µ(t), whose centers we denote by α(t).
Both functions r and α are smooth on I, and we have

ϕ
(
α(t) + r(t)ω

)
= t, ∀(t, ω) ∈ I × Γ(3.10)

for some open subset Γ of the unit hypersphere. The normal to the
hypersphere ϕ−1(t) is

ω = |∇ϕ|−1∇ϕ
(
α(t) + r(t)ω

)
.(3.11)
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Differentiating the identity (3.10) with respect to t, we obtain

〈∇ϕ
(
α(t) + r(t)ω

)
, α̇ + ṙω〉 = 1

which together with (3.11) gives

〈∇ϕ, ω〉
(
〈α̇, ω〉+ ṙ

)
= 1.(3.12)

Then taking ω = y/|y| in the former equality, multiplying it by |y|2
and differentiating with respect to y gives(
〈α̇, ω〉+ ṙ

)(
∇ϕ+ rϕ′′ω − r〈ϕ′′ω, ω〉ω︸ ︷︷ ︸

=−∇ϕ

)
+ 〈∇ϕ, ω〉

(
α̇ + ṙω

)
= 2ω

and thus

ϕ′′ω = −|∇ϕ|
2

r
(α̇ + ṙω).(3.13)

We go back to (3.12) and differentiate it with respect to t

〈ϕ′′ω, α̇ + ṙω〉
(
〈α̇, ω〉+ ṙ

)
+ 〈∇ϕ, α̈ + r̈ω〉 = 0.

Using (3.13) and (3.11), this gives

−1

r
|∇ϕ|

(
〈α̇, ω〉+ ṙ

)︸ ︷︷ ︸
=1

|α̇ + ṙω|2 + 〈α̈, ω〉+ r̈ = 0

which leads to the following system of equations
α̈− 2

ṙ

r
α̇ = 0

r̈ − 1

r

(
|α̇|2 + ṙ2

)
= 0

on I.(3.14)

The first equation implies that the centers of the hyperspheres ϕ−1(t)
are moving along a line with fixed direction k ∈ Rn

α(t) = α0 + k

∫ t

r2(s) ds(3.15)

(the indefinite integral denotes a primitive on I). Thus we have |α̇|2 =
|k|2r4 and the second equation reads

rr̈ − r4|k|2 − ṙ2 = 0.

It is convenient to rewrite the former equation in terms of the curvature
µ = 1/r:

µµ̈+ |k|2 − µ̇2 = 0

which is equivalent to

det

(
µ̇ µ
µ̈ µ̇

)
= |k|2.(3.16)
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Before proceeding to the resolution of this differential equation, let
us first notice that it actually holds on J . Indeed, if we differentiate it
with respect to t, then we obtain an equation on µ

det

(
µ̈ µ
µ(3) µ̇

)
= 0(3.17)

which holds on any subinterval I of µ−1(R∗), but also evidently on the
interior of µ−1(0). This implies that the equation (3.17) holds on J by
continuity, hence that the equation (3.16) holds on J by integration.

To solve the equation (3.16) there are two cases to consider.

Case k = 0. This is the case where the hyperspheres ϕ−1(t) are concen-
tric. The vectors (µ, µ̇) and its derivative are linearly dependent, thus
(3.16) is equivalent to the first order differential equation µ̇ = cµ, with
c constant. To be more precise, either µ vanishes identically or one can
pick t0 ∈ J such that µ(t0) 6= 0, and consider the maximal interval I
on which µ doesn’t vanish. By (3.16) the derivative of µ̇/µ on I is zero,
therefore µ solves the equation µ̇ = cµ on I, with c constant. Then
the curvature is an exponential function of t which never vanishes, thus
I = J . The function ϕ is easily determined to be a logarithmic weight:

ϕ(x) = a log |x− x̃0|+ b.

Remark 3.3. Note that the logarithmic weight can be written as

ϕ = aRe(log z) + b

with z = y1 + i|y′|, y = x− x0 = (y1, y
′).

Case k 6= 0. The equation (3.17) shows that the vectors (µ, µ̇) and its
second derivative are linearly dependent, this implies that µ solves a
second order differential equation of the form µ̈ = cµ with c a constant.
To see this, consider the function

σ =
µ̈

µ

which is a priori only defined outside the set of zeros of µ. Note that
if µ(τ) = 0 then by (3.16) one has µ̇(τ) 6= 0 and therefore the zeros of
µ are isolated. Moreover, by (3.17) one has µ̈(τ) = 0. We can extend
σ as a continuous function on all of J , because as t tends to τ we have

σ(t) =
µ̈(t)− µ̈(τ)

t− τ
t− τ

µ(t)− µ(τ)
−→ µ(3)(τ)

µ̇(τ)
.
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The Taylor expansion at higher orders actually shows that σ is of class
C1. Differentiating the function σ on J \ µ−1(0) gives

σ̇ =
µ(3)µ− µ̈µ̇

µ2
= 0

and σ̇ = 0 on J by continuity.
Hence the function σ is constant and this implies that µ satisfies the

equation µ̈− cµ = 0 with c constant. Depending on whether c is zero,
negative or positive, the curvature is one of the following functions

±|k|(t+ b),
|k|
a

sin(at+ b), ±|k|
a

sinh(at+ b).(3.18)

If t0 = ϕ(x0) and µ(t0) 6= 0, we may choose J so small that µ doesn’t
vanish on J . If µ(t0) = 0, then either µ vanishes identically near 0,
and that case was covered first, or t0 is an isolated zero of µ by (3.16)
with k 6= 0, and we may choose J so small that µ doesn’t vanish on
J \{t0}. In conclusion, one may assume that the curvature vanishes at
most once on J . The corresponding expressions for the centers of the
spheres α are

α0 −
k

|k|2
1

t+ b
, α0 −

k

|k|2
a

tan(at+ b)
,

α0 −
k

|k|2
a

tanh(at+ b)
.

If µ(t0) = 0 then these expressions depend a priori on the connected
component I± of J \ {t0} on which µ is positive or negative. The norm
of the vector k however is determined by the equation (3.16) which
holds on J and its direction k/|k| by the normal to the hyperplane
ϕ−1(t0). This may be seen in the following way: consider the family of
hyperspheres∣∣∣x− α± +

k±
|k|2

a

tanh(at+ b)

∣∣∣2 =
a2

|k|2 sinh2(at+ b)

when t ∈ I±. After expansion, we obtain

(3.19) 2〈x− α±, k±〉 =
|k|2 tanh(at+ b)

a

(
− a2

|k|2
− |x− α±|2

)
and letting t tend to t0 = −b/a, we get the equation of the hyperplane
ϕ−1(t0)

〈x− α±, k±〉 = 0.

This implies that either k+ = k− or k+ = −k−. Besides, by (3.11) and
(3.12), we have 〈α̇, ω〉+ ṙ = |∇ϕ|−1 on I+, thus 〈k+,∇ϕ〉− µ̇|∇ϕ| = µ2
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and by letting x tend to x0, this gives

〈∇ϕ(x0), k+〉 = µ̇(t0)|∇ϕ(x0)|.

Considering I−, we obtain the same identity with k+ replaced by k−.
This additional information removes the uncertainty on the sign and
we have k+ = k−. Moreover the components of α+ and α− along k are
also equal. The computations are similar in the two other cases.

To determine explicitly the function ϕ, let us deal with the case
where the curvature is |k| sin(at + b)/a: to fix the ideas, suppose that
aJ + b ⊂ (−θ,−θ + 2π) with θ ∈ R and that µ vanishes at t0 = ϕ(x0)
(the non-vanishing case is simpler). Then we have J \ {t0} = I− ∪ I+

and

x = α± −
a

|k|2 tan(aϕ(x) + b)
k +

a

|k| sin(aϕ(x) + b)
ω

for all x ∈ ϕ−1(I±). Thus, if we take ξ = −ak/|k|2, we have

eiθ(x− α± + iξ)2 =
2|ξ|2

sin2(aϕ+ b)

(
cos(aϕ+ b)− 〈ω, k〉

|k|

)
ei(aϕ+b+θ)

= 2|a|−1|ξ|
(
〈α̇, ω〉+ ṙ

)
ei(aϕ+b+θ−π)

and since aϕ + b + θ − π ∈ (−π, π), and 〈α̇, ω〉 + ṙ > 0 by (3.11) we
have

aϕ(x) + b = arg
(
eiθ(x− α± + iξ)2

)
+ π − θ

on ϕ−1(I±). With the former expression of ϕ we have

|a∇ϕ(x)| = 2|ξ|
|x− α±|2 − |ξ|2

on 〈x− α±, ξ〉 = 0

this shows that |x − α+|2 = |x − α−|2 in a neighborhood of x0 in the
hyperplane ϕ−1(t0), hence that α+ = α−. The former expression of ϕ
therefore holds on Ω.

The two other cases are similar. This finally gives three possible
types of limiting Carleman weights

1. a
〈x− x̃0, ξ〉
|x− x̃0|2

+ b

2. a arg
(
eiθ(x− x̃0 + iξ)2

)
+ b

3. a arctanh
2〈x− x̃0, ξ〉
|x− x̃0|2 + |ξ|2

+ b = a log
|x− x̃0 + ξ|2

|x− x̃0 − ξ|2
+ b.

Remark 3.4. As in Remark 3.3, these functions take a simple form
with respect to some complex variable. Take y = x − x̃0, and (y1, y

′)
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such that y = y1 ξ/|ξ| + y′ where y′ is orthogonal to ξ. Denote z =
y1 + i|y′|, the Carleman weights take the form

1. aRe
1

z
+ b,

2. a Im log
eiθ(z + ic)

z − ic
+ b,

3. aRe log
z + c

z − c
+ b,

with a, b, c real numbers.

This proves Theorem 2. Note that this result allows to determine
limiting Carleman weights locally on the sphere or on the hyperbolic
space by conformal transformation.

Remark 3.5. While the linear weight is smooth on Rn, the weights
log |x| and 〈x, ξ〉/|x|2 are only well defined and smooth on Rn \ {0},
and the function log |x + ξ|2/|x − ξ|2 on Rn \ {ξ,−ξ}. The weight
arg〈x, ω1 + iω2〉 is defined on Rn \ {〈x, ω2〉 = 0, 〈x, ω1〉 ≤ 0} and the
function arg

(
eiθ(x+ iξ)2

)
on

Rn \
{
|x+ cotan θ ξ|2 =

|ξ|2

sin2 θ
, 〈x, ξ〉 Q 0

}
if θ ∈ (0, π) (with the ≥ inequality) or θ ∈ (π, 2π) (with the ≤ inequal-
ity) and on

Rn \
{
〈x, ξ〉 = 0, |x| Q |ξ|

}
if θ = 0 (with the ≤ inequality) or θ = π (with the ≥ inequality).

Let us end this section with some comments about the global aspect
of Theorem 2 when Ω is an open connected set. Let ϕ be a limiting
Carleman weight on (Ω, e). The function ϕ is real analytic on Ω: indeed
if x0 ∈ Ω, the function ϕ is one of the limiting Carleman weights
calculated above in the neighourhood of x0, hence real analytic. This
ensures that if ϕ is locally equal to one of the functions

a〈x− x̃0, ξ〉+ b, a log |x− x̃0|+ b,

a
〈x− x̃0, ξ〉
|x|2

+ b, a log
|x− x̃0 + ξ|2

|x− x̃0 − ξ|2
+ b

then ϕ is equal to this function on the whole set Ω. Indeed if ϕ is equal
to a linear weight near some point x0 ∈ Ω then ϕ is equal to this weight
on the whole set Ω by analytic continuation. If ϕ is equal to the function
a log |x − x̃0| + b near x0 ∈ Ω then Ω cannot contain the singularity
x̃0 of this function. Otherwise, ϕ would be equal to this function on
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Ω\{x̃0} by analytic continuation and would not blow up at x̃0. Thus ϕ
is equal to a log |x− x̃0|+ b on Ω. The proof is similar if ϕ is one of the
functions a〈x− x̃0, ξ〉/|x−x0|2 +b or a log(x− x̃0 +ξ)2/(x− x̃0−ξ)2 +b.

For the two argument forms, we need some additional assumptions
on Ω. Suppose that ϕ is equal to a arg

(
eiθ(x− x̃0 + iξ)2

)
+ b near x0,

and that the image of the set Ω by x 7→ (x − x̃0 + iξ)2 is contained
in a simply connected set U ⊂ C∗, then by analytic continuation, ϕ is
equal to

a argU(x− x̃0 + iξ)2 + b

where argU is the determination of the argument on U which coincides
with arg(eiθz) at z0 = (x0 − x̃0 + iξ)2. The point is similar for the
function a arg〈x− x̃0, ω1 + iω2〉. In particular, if Ω is contained in one
of the domains of existence computed in Remark 3.5 and ϕ is locally
of the corresponding argument form, then this is still true globally on
Ω.

4. Carleman estimates

Let (M, g) be a compact Riemannian manifold with boundary. By
dV we denote the volume form on (M, g), and by dS = νy dV the
induced volume form on ∂M . The L2 norm of a function is then given
by

‖u‖L2(M) =
(∫

M

|u|2 dV
) 1

2

and the corresponding scalar product by

(u|v) =

∫
M

u v dV.

Similarly on the boundary, the norm and scalar products are given by

‖f‖L2(∂M) =
(∫

∂M

|f |2 dS
) 1

2
(f |h)∂M =

∫
∂M

f h dS.

We write for short

‖∇u‖L2(M) =
∥∥|∇u|∥∥

L2(M)
=
(∫

M

|∇u|2 dV
) 1

2

and we denote by H1
scl(M) the semiclassical Sobolev space associated

to the norm

‖u‖H1
scl(M) =

(
‖u‖2

L2(M) + ‖h∇u‖2
L2(M)

) 1
2 .

We assume that (M, g) is embedded in a compact manifold (N, g) with-
out boundary, and that ϕ is a limiting Carleman weight on (U, g) where
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U is open in N and M b U . The goal of this section is to prove the
following Carleman estimate.

Theorem 4.1. Let (U, g) be an open Riemannian manifold and (M, g)
a compact Riemannian submanifold with boundary such that M b U .
Suppose that ϕ is a limiting Carleman weight on (U, g). Let X be
a smooth vector field on M and q a smooth function on M . There
exist two constants C > 0 and 0 < h0 ≤ 1 such that for all functions
u ∈ C∞0 (M◦) and all 0 < h ≤ h0, one has the inequality

‖e
ϕ
hu‖H1

scl(M) ≤ Ch‖e
ϕ
h (∆ +X + q)u‖L2(M).(4.1)

To lighten the notations we will forget the subscript L2(M) whenever
it is not needed.

Proof. We first observe that the result is invariant under conformal
change of metrics since we have

c
n+2

4

(
∆g +X + q

)
u = (∆c−1g + cX + qc)

(
c
n−2

4 u
)

with qc = cq − n−2
4
Xc + c

n+2
4 ∆g

(
c−

n−2
4

)
. Therefore if needed, we can

assume the limiting Carleman weight to be a distance function by re-
placing g by the conformal metric (2.5).

Our next observation is that the estimate may be perturbed by zero
order terms since this gives rise to an error of the form O(h)‖eϕ/hu‖,
which may be absorbed in the left-hand side if h is assumed small
enough. Therefore we can neglect the potential q, and assume that
q = 0 from the start. Let us first assume that we also have X = 0.
Then the Carleman estimate (4.1) is equivalent to the following a priori
estimate

‖v‖H1
scl(M) ≤ C1h

−1‖P0,ϕv‖.(4.2)

One goes from one inequality to another by taking v = eϕ/hu. The
conjugated operator is given by

P0,ϕ = −h2∆− |∇ϕ|2 + 2〈∇ϕ, h∇〉+ h∆ϕ.

Then we have in particular

‖h∇v‖2 = (P0,ϕv|v) +
∥∥|∇ϕ| v∥∥2 − 2

(
〈∇ϕ, h∇v〉

∣∣v)− h(∆ϕv|v)

therefore using Cauchy-Schwarz inequality one sees that

‖h∇v‖2 ≤ ‖P0,ϕv‖2 + C1‖v‖2.(4.3)

This means that the gradient of v may be controlled and that it suffices
to prove the a priori estimate

‖v‖ ≤ C2h
−1‖P0,ϕv‖
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to obtain (4.2).
We decompose P0,ϕ into its self-adjoint and skew-adjoint parts

P0,ϕ = A+ iB, A = −h2∆− |∇ϕ|2, B = 2〈∇ϕ, h∇〉+ h∆ϕ

and we have by integration by parts

‖P0,ϕv‖2 = ‖Av‖2 + ‖Bv‖2 + i([A,B]v|v).(4.4)

A direct application of the commutator method will not be enough
to get an a priori estimate assuming the bracket condition (2.3), one
needs to use convexification. This classical argument consists in taking
a modified weight f ◦ ϕ where f is a convex function chosen so that
the bracket in (2.3) becomes positive. We decompose the operator
P0,f◦ϕ = Ã+ iB̃ into its self-adjoint and skew-adjoint parts, and denote

by ã and b̃ the corresponding principal symbols. We now suppose, as
we may according to our first observation, that ϕ is both a limiting
Carleman weight and a distance function. We have

∇(f ◦ ϕ) = (f ′ ◦ ϕ)∇ϕ
D2(f ◦ ϕ) = (f ′′ ◦ ϕ) dϕ⊗ dϕ+ (f ′ ◦ ϕ)D2ϕ︸ ︷︷ ︸

=0

therefore using Lemma 2.3{
ã, b̃}(x, ξ) = 4(f ′′ ◦ ϕ) (f ′ ◦ ϕ)2|∇ϕ|4 + 4(f ′′ ◦ ϕ) 〈∇ϕ, ξ]〉2

= 4(f ′′ ◦ ϕ) (f ′ ◦ ϕ)2 + (f ′′ ◦ ϕ)(f ′ ◦ ϕ)−2︸ ︷︷ ︸
=β

b̃2.

At the operator level, this gives

i[Ã, B̃] = 4h(f ′′ ◦ ϕ) (f ′ ◦ ϕ)2 + hB̃βB̃ + h2R

where R is a first order semiclassical differential operator. For the
function f , we choose the following convex polynomial

f(s) = s+
h

2ε
s2, f ′(s) = 1 +

h

ε
s, f ′′(s) =

h

ε
.

We choose h/ε ≤ ε0 < 1 with ε0 small enough so that f ′ > 1
2

on ϕ(M)
and denote ϕε = f ◦ ϕ. Note that the coefficients of R, as well as β,
are uniformly bounded with respect to h and ε.

We finally obtain

i
(
[Ã, B̃]v

∣∣v) ≥ h2

ε
‖v‖2 − C3h‖B̃v‖2 − C3h

2‖v‖H1
scl
‖v‖
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and using (4.3)

i
(
[Ã, B̃]v

∣∣v) ≥ h2

ε
(1− C4ε)‖v‖2 − C3h‖B̃v‖2 − C3‖P0,ϕεv‖2.

Going back to (4.4), this gives

(1 + C3)‖P0,ϕεv‖2 ≥ ‖Ãv‖2 + (1− C3h)‖B̃v‖2(4.5)

+
h2

ε
(1− C4ε)‖v‖2.

If we don’t assume X = 0, the conjugated operator P0,ϕε has to be
perturbed by an additional term of the form

h2Xϕε = h2eϕε/hXe−ϕε/h = h2X − hf ′ ◦ ϕXϕ.

By (4.3) and the estimate ‖h2Xϕεv‖ ≤ C5h‖v‖H1
scl

, the inequality (4.5)
may easily be perturbed into

2(1 + C3)‖P0,ϕεv + h2Xϕεv‖2 ≥ h2

ε
(1− C6ε)‖v‖2

if h is small enough. Taking ε small enough, we obtain

C7‖P0,ϕεv + h2Xϕεv‖2 ≥ h2

ε
‖v‖2(4.6)

which implies with the choice of f = s+ hs2/2ε that

Cε‖e
ϕ2

2ε e
ϕ
h (∆ +X)u‖2 ≥ h2‖e

ϕ2

2ε e
ϕ
hu‖2

therefore we obtain the desired estimate since 1 ≤ e
ϕ2

2ε ≤ C ′ε. �

Remark 4.2. The use of G̊arding’s inequality could give a stronger
Carleman estimate, as in [26]. The present proof makes it possible to
include boundary terms, which is useful in the study of inverse problems
with partial data (see [13], [7] and [14]).

In order to prove suitable solvability results, we need to shift the
indices of the Sobolev spaces in the Carleman estimate by using pseu-
dodifferential calculus. Recall that we assume that (M, g) is embedded
in a compact manifold (N, g) without boundary, and that ϕ is a limiting
Carleman weight near (Ū , g) where U is open in N and M b U . The
Laplace-Beltrami operator −∆ on N , with domain C∞(N) ⊂ L2(N),
is essentially self-adjoint with spectrum in [0,∞). By the spectral the-
orem we may define for s ∈ R the semiclassical Bessel potentials

Js = (1− h2∆)s/2.
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One has JsJ t = Js+t, and Js commutes with any function of −∆.
Define for s ∈ R the semiclassical Sobolev spaces via

‖u‖Hs
scl(N) = ‖Jsu‖L2(N),

so Hs
scl(N) is the completion of C∞(N) in this norm. It is easy to see

that the dual of Hs
scl(N) may be isometrically identified with H−sscl (N).

It is a basic fact that Js is a semiclassical pseudodifferential operator
of order s in N (see [34] and [6]). This implies pseudolocal estimates: if
ψ, χ ∈ C∞0 (N) with χ = 1 near suppψ, and if s, α, β ∈ R and K ∈ N,
then

(4.7) ‖(1− χ)Jsψu‖Hα
scl(N) ≤ CKh

K‖u‖Hβ
scl(N).

We will also use commutator estimates in the form

(4.8) ‖[A, Js]u‖L2(N) ≤ Ch‖u‖Hs
scl(N)

whenever A is a first order semiclassical differential operator in N .

Lemma 4.3. Under the above assumptions on M,N,U and under the
assumptions of Theorem 4.1, given s ∈ R there are two constants Cs >
0 and 0 < hs ≤ 1 such that for all functions u ∈ C∞0 (M◦) and all
0 < h ≤ hs one has the inequality

‖e
ϕ
hu‖Hs+1

scl (N) ≤ Csh‖e
ϕ
h (∆g +X + q)u‖Hs(N).(4.9)

Proof. We consider the conjugated operator

Pϕε = e
ϕε
h h2(∆g +X + q)e−

ϕε
h

where ϕε is the weight defined in the proof of Theorem 4.1. Let χ ∈
C∞0 (U) with χ = 1 near M . Then the estimates (4.6), (4.7) imply

h‖u‖Hs+1
scl
≤ h‖χJsu‖H1

scl
+ h‖(1− χ)Jsu‖H1

scl

≤ C1

√
ε‖Pϕε(χJsu)‖L2 + C1h

2‖u‖Hs+1
scl
.

By the estimate ‖[Pϕε , χ]Jsu‖L2 ≤ C2h
2‖u‖Hs+1

scl
, and by absorbing the

error terms ‖u‖Hs+1
scl

in the left hand-side if h is small enough, we obtain

(4.10) h‖u‖Hs+1
scl
≤ C1

√
ε‖JsPϕεu‖L2 + C1

√
ε‖χ[Pϕε , J

s]u‖L2 .

Note that in estimating the last term one may extend ϕ smoothly
outside U if desired. Since

Pϕε = −h2∆− |∇ϕε|2 + 2〈∇ϕε, h∇〉+ h∆ϕε + h2Xϕε + h2q

and since [−h2∆, Js] = 0, the commutator estimates (4.8) imply that
for h� ε� 1 the last term in (4.10) may be absorbed in the left hand

side. This finishes the proof since 1 ≤ e
ϕ2

2ε ≤ Cε. �
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Proposition 4.4. If A is a smooth 1-form and q is a smooth function
on M , there exists a constant 0 < h0 ≤ 1 such that for any func-
tion f ∈ L2(M) there exists a solution u ∈ H1(M) to the equation
eϕ/hLg,A,qe−ϕ/hu = f satisfying

‖u‖H1
scl(M) ≤ Ch‖f‖L2(M).

Proof. We consider the conjugated operator

P ∗ϕ = e−
ϕ
hh2Lg,Ā,q̄e

ϕ
h .

Let f ∈ L2(M), we consider the subspace E = P ∗ϕ(C∞0 (N)) of H−1
scl (N)

and the linear form defined on E by

L(P ∗ϕv) = (f |v)L2(M), v ∈ C∞0 (M◦).

By Lemma 4.9 applied to P ∗ϕ, this form is well defined and

|L(P ∗ϕv)| . ‖f‖L2(M)h
−1‖P ∗ϕv‖H−1

scl (N).

By the Hahn-Banach theorem, there is an extension L̂ of L which is a
bounded functional on H−1

scl (N) with norm less than h−1‖f‖L2 . Since
the dual of H−1

scl (N) is H1
scl(N), there exists a function ũ ∈ H1

scl(N)

such that L̂(v) = (ũ|v) and h‖ũ‖H1
scl(N) . ‖f‖L2(M). Then u = ũ|M is

the desired solution, since for all v ∈ C∞0 (M◦)

(Pϕu|v) = (u|P ∗ϕv) = L̂(P ∗ϕv) = L(P ∗ϕv) = (f |v).

This completes the proof. �

5. Complex geometrical optics

Let ϕ be a limiting Carleman weight in an admissible manifold
(M, g). We will construct solutions to Lg,qu = 0 in M of the form

(5.1) u = e−
1
h

(ϕ+iψ)(a+ r0).

Here the real valued phase ψ and complex amplitude a are obtained
from a WKB construction, and the function r0 will be a correction term
which is small when h is small.

We write ρ = ϕ+ iψ for the complex phase. It will be convenient to
extend the notations 〈 · , · 〉 and | · |2 to complex tangent vectors by

〈ζ, η〉 = 〈Re ζ,Re η〉 − 〈Im ζ, Im η〉+ i(〈Re ζ, Im η〉+ 〈Im ζ,Re η〉),
|ζ|2 = 〈ζ, ζ〉.
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We make similar extensions for the inner product of cotangent vectors.
With this notation, the conjugated operator Pρ = eρ/hh2Lg,qe−ρ/h has
the expression

Pρ = −|∇ρ|2 + h(2(∇ρ) + ∆ρ) + h2Lg,q.

Then (5.1) will be a solution of Lg,qu = 0 provided that Pρ(a+ r0) = 0.
Following the WKB method, this results in the three equations

|∇ρ|2 = 0,(5.2)

(2(∇ρ) + ∆ρ)a = 0,(5.3)

Pρr0 = −h2Lg,qa.(5.4)

These equations will be solved in special coordinates in the admissible
manifold (M, g). We know that (M, g) is conformally embedded in
R × (M0, g0) for some compact simple (n − 1)-dimensional (M0, g0).
Assume, after replacing M0 with a slightly larger simple manifold if
necessary, that for some simple (D, g0) b (intM0, g0) one has

(5.5) (M, g) b (R× intD, g) b (R× intM0, g).

Here R ×M0 is covered by a global coordinate chart in which g has
the form

(5.6) g(x) = c(x)

(
1 0
0 g0(x′)

)
,

where c > 0 and g0 is simple. The limiting Carleman weight will be
ϕ(x) = x1.

5.1. The eikonal equation. Since ϕ was given, the eikonal equation
(5.2) for the complex phase becomes a pair of equations for ψ,

|∇ψ|2 = |∇ϕ|2, 〈∇ϕ,∇ψ〉 = 0.

One has ϕ(x) = x1 and the metric is of the form (5.6), so ∇ϕ = 1
c
∂
∂x1

and |∇ϕ| = 1
c
. The eikonal equation now reads

|∇ψ| = 1

c
, ∂x1ψ = 0.

Under the given assumptions on (M, g), there is an explicit construction
for ψ. Let ω ∈ D be a point such that (x1, ω) /∈ M for all x1. Denote
points of M by x = (x1, r, θ) where (r, θ) are polar normal coordinates
in (D, g0) with center ω. That is, x′ = expDω (rθ) where r > 0 and
θ ∈ Sn−2. In these coordinates (which depend on the choice of ω) the
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metric has the form

g(x1, r, θ) = c(x1, r, θ)

 1 0 0
0 1 0
0 0 m(r, θ)

 ,

where m is a smooth positive definite matrix.
To solve the eikonal equation it is enough to take ψ(x) = ψω(x) = r.

With this choice one has ρ = x1 + ir and ∇ρ = 2
c
∂ where

∂ =
1

2

( ∂

∂x1

+ i
∂

∂r

)
.

5.2. The transport equation. We now consider (5.3). In the coor-
dinates (x1, r, θ) one has

∆ρ = |g|−1/2∂x1

( |g|1/2
c

)
+ |g|−1/2∂r

( |g|1/2
c

i
)

=
1

c
∂ log

|g|
c2

and the transport equation reads

4∂a+
(
∂ log

|g|
c2

)
a = 0.

We choose a as the function

a = |g|−1/4c1/2a0(x1, r)b(θ)

where ∂a0 = 0 and b(θ) is smooth.

5.3. Complex geometrical optics solutions. Finally, the equation
(5.4) may be written as

eϕ/hh2Lg,qe−ϕ/h(e−iψ/hr0) = −e−iψ/hh2Lg,qa.
This can be solved by using Lemma 4.4. We obtain r0 satisfying

‖r0‖H1
scl(M) . h.

We record the properties of the solution just obtained.

Proposition 5.1. Assume that (M, g) satisfies (5.5), (5.6) and let
q ∈ C∞(M). Let ω ∈ D be such that (x1, ω) /∈ M for all x1. If (r, θ)
are polar normal coordinates in (D, g0) with center ω, then, whenever
∂a0(x1, r) = 0 and b(θ) is smooth, the equation

Lg,qu = 0 in M

has a solution of the form

u = e−
1
h

(x1+ir)
(
|g|−1/4c1/2a0(x1, r)b(θ) + r0

)
where ‖r0‖H1

scl(M) . h.
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Next we consider the case where a magnetic field is present. The
construction of complex geometric solutions is similar to the case with-
out magnetic field, except that we have an additional factor in the
amplitude.

Proposition 5.2. Assume that (M, g) satisfies (5.5), (5.6), and let A
be a smooth 1-form in M and q ∈ C∞(M). Let ω ∈ D be such that
(x1, ω) /∈M for all x1. If (r, θ) are polar normal coordinates in (D, g0)
with center ω, then, whenever ∂a0 = 0 and b is smooth, the equation

Lg,A,qu = 0 in M

has a solution of the form

u = e−
1
h

(x1+ir)
(
|g|−1/4c1/2eiΦa0(x1, r)b(θ) + r0

)
where Φ satisfies

(5.7) ∂Φ +
1

2
(A1 + iAr) = 0,

and ‖r0‖H1
scl(M) . h.

Proof. If Pρ = eρ/hh2Lg,A,qe−ρ/h, one computes

Pρ = −|∇ρ|2 + h
(
2∇ρ+ ∆ρ+ 2i〈dρ,A〉

)
+ h2Lg,A,q.

If ρ = x1 + ir then |∇ρ|2 = 0, and the transport equation for the
amplitude a will be

4∂a+ ∂
(

log
|g|
c2

)
a+ 2i(A1 + iAr)a = 0.

A solution is given by a = |g|−1/4c1/2eiΦa0(x1, r)b(θ), where Φ is a
solution of (5.7) and ∂a0 = 0. The equation for r0 becomes

Pρr0 = −h2Lg,A,qa,
and Lemma 4.4 finishes the proof. �

6. Uniqueness results

Let (M, g) be an admissible manifold. In this section we will prove
the global uniqueness results, Theorems 3 to 5. As often in inverse
boundary problems, the starting point is an integral identity which
relates the boundary measurements to solutions inside the manifold.

Lemma 6.1. Let A1, A2 be smooth 1-forms in M and q1, q2 ∈ C∞(M).
If Λg,A1,q1 = Λg,A2,q2, then

(6.1)

∫
M

[
i〈A1−A2, udv−vdu〉+

(
|A1|2−|A2|2 + q1− q2

)
uv
]
dV = 0,
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for any u, v ∈ H1(M) satisfying Lg,A1,q1u = 0 and Lg,−A2,q2v = 0 in M .

Proof. One has Λ∗g,A,q = Λg,Ā,q̄ and

(Λg,A,qf |h)∂M = (dAu|dĀv) + (qu|v),

whenever Lg,A,qu = 0 in M and u|∂M = f , v|∂M = h. These facts imply
the identity(

(Λg,A1,q1 − Λg,A2,q2)f |h
)
∂M

=

∫
M

[
i〈A1 − A2, udv̄ − v̄du〉+ (|A1|2 − |A2|2 + q1 − q2)uv̄

]
dV

where u, v are H1(M) solutions of Lg,A1,q1u = 0 and Lg,Ā2,q̄2v = 0 in
M , which satisfy u|∂M = f and v|∂M = h. The result follows. �

6.1. Recovering a potential. Suppose that we have two potentials
q1, q2 ∈ C∞(M) for which the corresponding DN maps are equal. Ac-
cording to Lemma 6.1 one has∫

M

(q1 − q2)u1u2 dV = 0(6.2)

for any uj ∈ H1(M) which satisfy Lg,qjuj = 0 inM . We use Proposition
5.1 and choose solutions of the form

u1 = e−
1
h

(x1+ir)
(
|g|−1/4c1/2eiλ(x1+ir)b(θ) + r1

)
,

u2 = e
1
h

(x1+ir)
(
|g|−1/4c1/2 + r2

)
,

where λ is a real number and ‖rj‖H1
scl(M) . h. Inserting these solutions

in (6.2) and letting h→ 0 shows that∫
R

∫∫
Mx1

eiλ(x1+ir)(q1 − q2)c(x1, r, θ)b(θ) dr dθ dx1 = 0,

with Mx1 = {(r, θ) ; (x1, r, θ) ∈ M}. We can extend q1 − q2 smoothly
by zero since q1 = q2 up to infinite order on ∂M by Theorem 8.4,
and we may then assume that the integral is over R×D. Taking the
x1-integral inside and varying b gives∫

e−λr
(∫ ∞
−∞

eiλx1(q1 − q2)c(x1, r, θ) dx1

)
dr = 0, for all θ.

We denote the expression in parentheses by f(r, θ), and obtain that∫
γ

f(γ(r)) exp
[
−
∫ r

0

λ ds
]
dr = 0
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for all D-geodesics γ issued from the point ω. Varying ω and using the
injectivity of the attenuated geodesic ray transform given in Theorem
7.1, with constant attenuation −λ, we obtain∫ ∞

−∞
eiλx1(q1 − q2)c(x1, r, θ) dx1 = 0, for all r, θ,

which holds for small enough λ. Since (q1−q2)c is compactly supported
in x1, its Fourier transform is analytic, and we obtain that q1 = q2. This
proves Theorem 3.

6.2. Recovering a magnetic field. Next we show that also a mag-
netic field can be recovered from the DN map. We will need the follow-
ing standard reduction of the problem to a simply connected domain.

Proposition 6.2. Let M0,M be compact manifolds with boundary with
M0 b M , and let (g, Aj, qj) be smooth coefficients in M such that 0 is
not a Dirichlet eigenvalue of Lg,Aj ,qj in M0 (j = 1, 2). Suppose that

A1 = A2, q1 = q2 in M \M0.

If the DN maps Λg,Aj ,qj in M0 coincide, then the integral identity (6.1)
is valid for any H1(M) solutions of Lg,A1,q1u = 0 and Lg,−A2,q2v = 0 in
M .

Proof. Since the DN maps coincide in M0, one has by Lemma 6.1∫
M0

[
i〈A1 −A2, u0dv0 − v0du0〉+ (|A1|2 − |A2|2 + q1 − q2)u0v0 dV

]
= 0,

for any H1(M0) solutions of Lg,A1,q1u0 = 0 and Lg,−A2,q2v0 = 0 in M0.
If u and v are as above, then the restrictions to M0 solve the corre-
sponding equations in M0, and we obtain (6.1) since the coefficients
coincide outside M0. �

Proof of Theorem 4. By boundary determination, Theorem 8.4, and
after a gauge transformation, we may extend Aj and qj smoothly so
that A1 = A2 and q1 = q2 outside M . We are now in the setting of
Proposition 6.2. Therefore, replacing M by a larger manifold inside
R×M0 if necessary, we may assume that M is convex and Aj and qj
are compactly supported in M , and also that the identity in Lemma
6.1 holds whenever u, v ∈ H1(M) are solutions of Lg,A1,q1u = 0 and
Lg,−A2,q2v = 0 in M .

Use Proposition 5.2 to choose solutions of the form

u = e−ρ/h
(
|g|−1/4c1/2eiΦ1a0(x1, r)b(θ) + r1

)
,

v = eρ/h
(
|g|−1/4c1/2eiΦ2 + r2

)
,
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where ρ = x1 + ir, ∂a0 = 0, and Φ = Φ1 + Φ2 is a solution of the
equation

(6.3) ∂Φ +
1

2
(Ã1 + iÃr) = 0 in M.

Here Ã = A1−A2, and Ã1 and Ãr are the components in the x1 and r
coordinates. Inserting these solutions in (6.1), multiplying both sides
by h, and letting h→ 0 implies that

lim
h→0

∫
M

〈Ã, dρ〉uv dV = 0.

Writing the integral in local coordinates gives∫
(Ã1 + iÃr)e

iΦa0(x1, r)b(θ) dx1 dr dθ = 0.

Varying b leads to∫
Ωθ

(Ã1 + iÃr)e
iΦa0(x1, r) dρ̄ ∧ dρ = 0, for all θ,

where Ωθ = {(x1, r) ∈ R2 ; (x1, r, θ) ∈ M} is identified with a domain
in the complex plane, with complex variable ρ. Integrating by parts
and using (6.3) gives

(6.4)

∫
∂Ωθ

eiΦa0 dρ = 0.

The arguments in [7, Section 5], see also [14, Section 7], then imply
that eiΦ|∂Ωθ = F |∂Ωθ where F ∈ C(Ωθ) is a nonvanishing holomorphic
function, and F = eG where G ∈ C(Ωθ) is holomorphic and G− iΦ is
constant on ∂Ωθ. We choose

a0 = Ge−Geiλ(x1+ir)

where λ is a real number, and then (6.3), (6.4), and integration by
parts imply ∫

Ωθ

(Ã1 + iÃr)e
iλ(x1+ir) dρ̄ ∧ dρ = 0, for all θ.

We define

f(x′) =

∫
eiλx1Ã1(x1, x

′) dx1,

α(x′) =
n∑
j=2

(∫
eiλx1Ãj(x1, x

′) dx1

)
dxj.
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The identity above may be written as∫
e−λr

[
f(γ(r)) + iα(γ̇(r))

]
dr = 0, for all θ.

The r-integrals are integrals over geodesics γ in D. By varying the
point ω in Proposition 5.2 on ∂D and using Theorem 7.1, we see for λ
small that f = −λp and α = −idp where p ∈ C∞(D) and p|∂D = 0.
The definition of α and analyticity of the Fourier transform imply that

∂kÃj − ∂jÃk = 0, j, k = 2, . . . , n.

Also ∫
eiλx1(∂jÃ1 − ∂1Ãj)(x1, x

′) dx1 = ∂jf + iλαj = 0,

showing that dÃ = 0 in M and the magnetic fields coincide.
Since M is convex and Ã|∂M = 0, one has Ã = dp where p ∈ C∞(M)

can be chosen so that p|∂M = 0. By a gauge transformation, we may
assume that A1 = A2, and this 1-form will be denoted by A. The
integral identity (6.1) becomes

(6.5)

∫
M

(q1 − q2)uv dV = 0,

for any solutions of Lg,A,q1u = 0 and Lg,−A,q2v = 0. Use Proposition
5.2 and choose solutions

u = e−ρ/h
(
|g|−1/4c1/2eiΦeiλ(x1+ir)b(θ) + r1

)
,

v = eρ/h
(
|g|−1/4c1/2e−iΦ + r2

)
,

where ρ = x1 + ir, and Φ satisfies

∂Φ +
1

2
(A1 + iAr) = 0 in M.

Letting h→ 0 in (6.5) gives∫
eiλ(x1+ir)(q1 − q2)c(x1, r, θ)b(θ) dx1 dr dθ = 0.

Proceeding as in the proof of Theorem 3 shows that q1 = q2. �

6.3. Recovering a conformal factor. The results on the Schrödinger
inverse problem can be used to recover a conformal factor from the DN
map. Recall that we use the notation Λg = Λg,0 when the potential q
is zero.

Proof of Theorem 5. It is enough to show that if (M, g) is admissible
and c is smooth and positive, and if Λcg = Λg, then c = 1. We have
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c|∂M = 1 and ∂νc|∂M = 0 by Proposition 8.1, and then the assumption
and Proposition 8.2 imply

Λcg,0 = Λg,0 = Λcg,q,

where q = −∆g(c
n−2

4 )/c
n+2

4 . We conclude from Theorem 3 that q = 0,

so ∆g(c
n−2

4 ) = 0 in M . Since c
n−2

4 = 1 on ∂M , uniqueness of solutions
for the Dirichlet problem shows that c ≡ 1. �

7. Attenuated ray transform

For the uniqueness results in inverse problems, we have used that
certain geodesic ray transforms are injective. If (M, g) is a compact
manifold with smooth boundary, geodesics can be parametrized by
points on the unit sphere bundle SM = {(x, ξ) ∈ TM ; |ξ| = 1}. For
(x, ξ) ∈ SM let γx,ξ(t) be the geodesic with γ(0) = x and γ̇(0) = ξ. We
assume that (M, g) is nontrapping, which means that the time τ(x, ξ)
when γx,ξ exits M is always finite.

Given a smooth real function a on M , the attenuated geodesic ray
transform of a function f is given by

Iaf(x, ξ) =

∫ τ(x,ξ)

0

f(γx,ξ(t)) exp
[ ∫ t

0

a(γx,ξ(s)) ds
]
dt

for (x, ξ) ∈ ∂+SM . Here we use the sets of inward and outward pointing
unit vectors

∂±S(M) = {(x, ξ) ∈ SM ; x ∈ ∂M, ±〈ξ, ν(x)〉 < 0},

and ν is the outer unit normal vector to ∂M .
We will also need to integrate 1-forms over geodesics. Let f be a

smooth function and α = αi dx
i a smooth 1-form on M , and consider

(7.1) F (x, ξ) = f(x) + αi(x)ξi

for (x, ξ) ∈ SM . The attenuated geodesic ray transform of F is

IaF (x, ξ) =

∫ τ(x,ξ)

0

F (γx,ξ(t), γ̇x,ξ(t)) exp
[ ∫ t

0

a(γx,ξ(s)) ds
]
dt.

This transform always has a kernel: if p is a smooth function on M
with p|∂M = 0, then a direct computation shows that

Ia(ap+ dp(ξ)) = 0.

The main result in this section states that for simple manifolds and
small attenuation, this is the only obstruction to injectivity.
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Theorem 7.1. Let (M, g) be a compact simple manifold with smooth
boundary. There exists ε > 0 such that the following assertion holds
for any smooth real function a on M satisfying |a| ≤ ε: If F is given
by (7.1) and if

IaF (x, ξ) = 0

for all (x, ξ) ∈ ∂+SM , then F = ap + dp(ξ) for some smooth function
p on M with p|∂M = 0.

Note that if α = 0, this shows that any function f whose attenuated
ray transform vanishes must be identically zero. If f = 0 and a 6= 0
everywhere, then any 1-form whose attenuated ray transform vanishes
must be identically zero. Injectivity of the geodesic ray transform for
functions and 1-forms on simple manifolds in the case a = 0 is well
known [1], [20], [27]. The injectivity for functions and small a is proved
in [27], [28] under conditions which involve a modified Jacobi equation
or the size and curvature of M . We give a proof which works on simple
manifolds.

We remark that the notation in this section is somewhat different
from the other sections. For instance, we will denote by∇ the covariant
derivative and more generally the horizontal derivative. The notation
will be explained in more detail below.

7.1. Preliminaries. The proof will be based on energy estimates and
a Pestov identity, which is the standard approach to such problems.
First we need to recall the definition of horizontal (or semibasic) ten-
sor fields on TM . These are (p, q) tensor fields on TM which have
coordinate representations

u = (u
j1···jq
i1···ip ) = u

j1···jq
i1···ip

∂

∂ξj1
⊗ · · · ⊗ ∂

∂ξjq
⊗ dxi1 ⊗ · · · ⊗ dxip

with respect to coordinates (x, ξ) on TM associated to charts x of M .
The components transform in the same way as tensors on M under
changes of charts. Tensor fields on M may be considered as ξ-constant
horizontal tensor fields on TM . See [27] for an invariant definition and
other details on horizontal tensor fields.

For our purposes, it is sufficient to know that smooth functions on
TM are horizontal tensors of degree (0, 0), and that the horizontal and
vertical derivatives defined by

(
h

∇u)
j1···jq
i1···ipi =

h

∇iu
j1···jq
i1···ip := ∇̃iu

j1···jq
i1···ip − Γlikξ

k ∂

∂ξl
u
j1···jq
i1···ip ,

(
v

∇u)
j1···jq
i1···ipi =

v

∇iu
j1···jq
i1···ip :=

∂

∂ξi
u
j1···jq
i1···ip ,
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are invariantly defined operators which map horizontal (p, q) tensors to
horizontal (p+ 1, q) tensors. Here

∇̃iu
j1···jq
i1···ip =

∂

∂xi
u
j1···jq
i1···ip +

q∑
r=1

u
j1···s···jq
i1···ip Γjris −

p∑
r=1

u
j1···jq
i1···s···ipΓ

s
iir .

Thus ∇̃ acts in the same way as the usual covariant derivative.
Below, we will work with smooth functions and tensors on SM . Let

p : TM \ {0} → SM be the map (x, ξ) 7→ (x, ξ/|ξ|). The horizontal
and vertical derivatives on SM are defined by

∇u =
h

∇(u ◦ p)|SM , ∂u =
v

∇(u ◦ p)|SM .

Also ∇iu =
h

∇i(u ◦ p)|SM and ∂iu =
v

∇i(u ◦ p)|SM . If u is horizontal
tensor field on SM , then ∇u and ∂u are also horizontal tensor fields.
For a smooth function on SM , these derivatives are given by

∇iu =
∂

∂xi
(u(x, ξ/|ξ|))− Γlikξ

k∂lu,

∂iu =
∂

∂ξi
(u(x, ξ/|ξ|)).

We mention the following formulas

∇g = 0, ∇ξ = 0, ∂jξ
i = δij − ξiξj,

[∇i, ∂j] = 0, [∂i, ∂j] = ξi∂j − ξj∂i,
[∇i,∇j]u = −Rijklξ

k∂lu,

where R is the curvature tensor and u is a scalar function. We write

∂iu = gij∂ju, 〈∂u, ∂v〉 = ∂iu∂iv, |∂u|2 = ∂iu∂iu.

Let H be the geodesic vector field on SM that generates geodesic
flow. In local coordinates

Hu(x, ξ) = ξi
∂

∂xi
(u(x, ξ/|ξ|))− Γlik(x)ξiξk∂lu, ξ ∈ Sx,

where u is a smooth function on SM . We may apply the operator H
to horizontal tensor fields on SM by defining Hu = ξi∇iu.

7.2. Ray transform of functions. We now consider the boundary
value problem for transport equation:

Hu+ au = −f, u|∂−S(M) = 0,
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where the absorption a and f are smooth functions on (M, g). The
solution is given by

ufa(x, ξ) =

∫ τ(x,ξ)

0

f(γx,ξ(t)) exp
[ ∫ t

0

a(γx,ξ(s)) ds
]
dt,

The trace

Iaf = ufa|∂+S(M)

is the attenuated geodesic ray transform of the function f . It is natural
to define τ |∂−SM = 0, and then ufa indeed vanishes on ∂−SM .

We will prove that f is uniquely determined by Iaf under the follow-
ing assumption. Let γ = γx,ξ, (x, ξ) ∈ ∂+SM , be an arbitrary geodesic,
and consider the quadratic form

(7.2) Ea
γ(X) =

∫ τ

0

(
|DX|2 − 〈RγX,X〉 − a2|X|2

)
(t) dt

where τ = τ(x, ξ), X(t) is a vector field on γ belonging to the space

H1
0 (γ) = {X ∈ H1([0, τ ];T (γ)) ; X(0) = X(τ) = 0},

D is the covariant derivative along γ, andRγX = R(X, γ̇)γ̇. We assume
for all geodesics γ the positive definiteness of this quadratic form,{

Ea
γ(X) ≥ 0 whenever X ∈ H1

0 (γ),

Ea
γ(X) = 0 iff X = 0.

(7.3)

If (7.3) holds we say that any geodesic has no conjugate points with
respect to (7.2). If a = 0 we obtain the usual index form Eγ = E0

γ .
Then clearly there are no conjugate points in the usual sense if there
are none with respect to (7.2).

Proposition 7.2. Let (M, g) be compact and ∂M strictly convex. As-
sume that any geodesic has no conjugate points with respect to (7.2).
Then any smooth function f on the manifold (M, g) is uniquely deter-
mined by its attenuated geodesic X-ray transform.

Proof. Let Iaf = 0. We will assume that u = ufa is smooth on SM
(otherwise one can work in a slightly smaller manifold than M , and
pass to the limit using the smoothness properties of τ as in [27]). The
function u satisfies

∂Hu+ a∂u = 0

and therefore

(7.4) |∂Hu|2 = a2|∂u|2.
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Using the formulas for ∇ and ∂, it is not difficult to check the following
identity (valid for any u ∈ C∞(SM)):

(7.5) |∂Hu|2 = |H∂u|2 + δV + θW −R(∂u, ξ, ξ, ∂u),

where δ and θ are the vertical and horizontal divergences,

δX = ∇iX
i, θX = ∂iX

i,

and V and W are defined by

V i = 〈∂u,∇u〉ξi − (Hu)∂iu, W i = (Hu)∇iu.

From (7.4) and (7.5) we obtain

|H∂u|2 −R(∂u, ξ, ξ, ∂u)− a2|∂u|2 + δV + θW = 0.

Now integrate this equality over the manifold SM . Before this we recall
the integration formulas (see [27]):∫

SM

v d(SM) =

∫
M

dM

∫
Sx

v dSx,∫
Sx

θX dSx = (n− 1)

∫
Sx

〈X, ξ〉 dSx,

∇
∫
Sx

u dSx =

∫
Sx

∇u dSx,

where v is a scalar, X is a horizontal vector field and u is horizontal
tensor field, ∫

M

δX dM =

∫
∂M

〈X, ν〉 d(∂M),

where X is a vector field on (M, g). In these formulas the volume forms
of corresponding manifolds are naturally defined using the metric g.
After integration we have

(7.6)

∫
SM

(
|H∂u|2 −R(∂u, ξ, ξ, ∂u)− a2|∂u|2

)
d(SM)

+ (n− 1)

∫
SM

|Hu|2 d(SM) = 0.

We used the fact that 〈V, ν〉 vanishes on ∂(SM) since u|∂(SM) = 0.
We next show that (7.3) implies

Ea(Y ) =

∫
SM

(
|HY |2 −R(Y, ξ, ξ, Y )− a2|Y |2

)
d(SM) ≥ 0,

for any horizontal vector field Y ∈ C∞(SM ;TM) with Y |∂(SM) = 0,
and that the equality holds iff Y = 0. Santaló’s formula (see [27])
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states∫
SM

v d(SM) = −
∫
∂+S(M)

∫ τ(x,ξ)

0

v(γx,ξ(t), γ̇x,ξ(t))〈ξ, ν〉 dt d(∂(SM)),

for v ∈ C∞(SM). Let

X(x, ξ, t) = Y (γx,ξ(t), γ̇x,ξ(t)),

which implies HY (γx,ξ(t), γ̇x,ξ(t)) = DX(x, ξ, t). Then we have

Ea(Y ) = −
∫
∂+S(M)

Ea
γx,ξ

(X)(x, ξ)〈ξ, ν(x)〉 d(∂(SM)) ≥ 0.

Equality holds iff Y = 0. We have from (7.6) that Hu = 0, which
implies u = 0 and f = 0. �

7.3. Ray transform of 1-forms. Let f be a smooth function and
α = αi(x)dxi a smooth 1-form in M , and consider the boundary value
problem

Hu+ au = −F, u|∂−SM = 0,

where a is a smooth function on M and F is as in (7.1). The solution
u = uFa is given by

uFa (x, ξ) =

∫ τ(x,ξ)

0

F (γx,ξ(t), γ̇x,ξ(t)) exp
[ ∫ t

0

a(γx,ξ(s)) ds
]
dt,

and the trace
IaF = uFa |∂+SM

is the attenuated geodesic X-ray transform of F .

Proposition 7.3. Let (M, g) be compact and ∂M strictly convex, and
suppose that any geodesic has no conjugate points with respect to (7.2).
If IaF = 0, then F = ap + dp(ξ) for some smooth function p on M
which vanishes on ∂M .

Proof. We follow the proof of Proposition 7.2. Again assume that u is
smooth in SM . Then u satisfies

∂Hu+ a∂u = −∂F,
and

|∂Hu|2 = a2|∂u|2 + 2a〈∂u, ∂F 〉+ |∂F |2.
The identity (7.5) then implies

|H∂u|2−R(∂u, ξ, ξ, ∂u)−a2|∂u|2 +δV +θW −2a〈∂u, ∂F 〉−|∂F |2 = 0.

Integrating this over SM , it follows that

(7.7) Ea(∂u) +

∫
SM

[
(n− 1)|Hu|2 − 2a〈∂u, ∂F 〉 − |∂F |2

]
d(SM) = 0.
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Using the integration formula∫
Sx

∂iv dSx = (n− 1)

∫
Sx

vξi dSx

and the identities

|Hu|2 = (au)2 + 2auF + F 2,

∂i∂
iF = −(n− 1)αiξ

i,

we easily obtain from (7.7) that

Ea(∂u) + (n− 1)

∫
SM

(au+ f)2 d(SM) = 0.

The assumption (7.3) and Santaló’s formula imply Ea(∂u) ≥ 0, so
from the last equality we obtain Ea(∂u) = 0 and au + f = 0. Now
Ea(∂u) = 0 implies ∂u = 0, so u = u(x) and

〈du, ξ〉+ au = −f − 〈α, ξ〉, x ∈M, ξ ∈ Sx.
The claim follows. �

It remains to show that simple manifolds satisfy the condition of
Proposition 7.3.

Proof of Theorem 7.1. Let (M, g) be a compact simple manifold with
smooth boundary. We need to show that there is ε > 0 such that

(7.8) Eγx,ξ(X) ≥ ε

∫ τ(x,ξ)

0

|X|2 dt,

for all (x, ξ) ∈ ∂+SM and for all X ∈ H1
0 (γx,ξ). If (7.8) holds and

|a| <
√
ε then any geodesic on (M, g) has no conjugate points with

respect to (7.2), and Proposition 7.3 implies the desired result.
Let first (x, ξ) ∈ ∂+SM , and consider the unbounded operator on

L2(γx,ξ) with domain H2 ∩H1
0 (γx,ξ), given by

Lγx,ξ : X 7→ −D2X −R(X, γ̇x,ξ)γ̇x,ξ.

This operator is self-adjoint and has discrete spectrum, which lies in
(0,∞) since the corresponding quadratic form Eγx,ξ is positive definite.
Therefore

Eγx,ξ(X) ≥ λ1(x, ξ)

∫ τ(x,ξ)

0

|X|2 dt, X ∈ H1
0 (γx,ξ),

where λ1(x, ξ) > 0 is the smallest eigenvalue. The coefficients of L
depend smoothly on (x, ξ) and τ is smooth and positive in ∂+SM , so
it is not hard to see that (7.8) holds in a neighborhood of any fixed
point in ∂+SM .
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For tangential directions we use the Poincaré inequality∫ L

0

|u(t)|2 dt ≤ L2

π2

∫ L

0

|u̇(t)|2 dt, u ∈ H1
0 ([0, L]),

where the constant L2/π2 is optimal [23]. If (x, ξ) ∈ S(∂M) and δ > 0,
then by continuity of τ there is a neighborhood U of (x, ξ) in ∂+SM
such that τ(y, η) ≤ δ in that neighborhood. Choosing δ small enough,
the Poincaré inequality implies

Eγy,η(X) =

∫ τ(y,η)

0

(|DX|2 − 〈Rγy,ηX,X〉) dt

≥
∫ τ(y,η)

0

( π2

τ(y, η)2
|X|2 − 〈Rγy,ηX,X〉

)
dt ≥ π2

2δ2

∫ τ(y,η)

0

|X|2 dt

whenever (y, η) ∈ U and X ∈ H1
0 (γy,η). This shows (7.8) near any

point of S(∂M). It follows that for some ε > 0, (7.8) holds on the
compact set ∂+SM . �

8. Boundary determination

To deal with the inverse problems we are interested in, we need to
use the fact that the DN map determines the Taylor expansions at
the boundary of the different quantities involved. In the case of the
Laplace-Beltrami operator, the relevant result is proved in [18] and is
as follows.

Proposition 8.1. Let (M, g1) and (M, g2) be compact manifolds with
smooth boundary, with dimension n ≥ 3. If Λg1 = Λg2, then the Taylor
series of g1 and g2 in boundary normal coordinates are equal at each
point on the boundary.

In this section we extend the previous result to the case where electric
and magnetic potentials are present. First we need to consider the
gauge invariance of the DN map.

Proposition 8.2. Let (M, g) be a compact manifold with boundary,
and let A be a smooth 1-form and q a smooth function on M . If c and
ψ are smooth functions such that

c > 0, c|∂M = 1, ∂νc|∂M = 0, ψ|∂M = 0,

then we have

Λg,A,q = Λc−1g,A+dψ,c(q−qc)

where qc = c
n−2

4 ∆g

(
c−

n−2
4

)
.
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Proof. It follows from a direct computation that

c
n+2

4 Lg,A,q(c−
n−2

4 u) = Lc−1g,A,c(q−qc)u,

e−iψLg,A,q(eiψu) = Lg,A+dψ,qu.

Let f ∈ C∞(∂M), and let u be the solution of Lg,A,qu = 0 in M which
satisfies u|∂M = f . If

(g̃, Ã, q̃) = (c−1g, A+ dψ, c(q − qc))

and if ũ = c
n−2

4 e−iψu, we have Lg̃,Ã,q̃ũ = 0 in M and ũ|∂M = f . Then

Λg̃,Ã,q̃f = dÃũ(νg̃)|∂M = dA+dψ(e−iψu)(νg)|∂M = Λg,A,qf,

by using the boundary values of c and ψ and the fact that νg̃ = νg. �

Remark 8.3. The conformal gauge invariance is related to the fact
that the conformal Laplace-Beltrami operator ∆̃g on (M, g), defined
by

∆̃g = ∆g −
n− 2

4(n− 1)
Scalg,

transforms under a conformal change of metrics by

∆̃cgu = c−
n+2

4 ∆̃g

(
c
n−2

4 u
)
.

We use the notation f1 ' f2 to denote that f1 and f2 have the same
Taylor series. Our main boundary determination result is as follows.

Theorem 8.4. Let (M, g1) and (M, g2) be compact manifolds with
boundary, of dimension n ≥ 3, and let A1, A2 be two smooth 1-forms
and q1, q2 two smooth functions in M . If Λg1,A1,q1 = Λg2,A2,q2 and if
p ∈ ∂M , then there exist smooth positive functions cj with

cj|∂M = 1 and ∂νcj|∂M = 0,

and smooth functions ψj with ψj|∂M = 0, such that the gauge trans-
formed coefficients

(g̃j, Ãj, q̃j) =
(
c−1
j gj, Aj + dψj, cj(qj − d−1

j ∆gjdj)
)

with dj = c
−n−2

4
j , satisfy in boundary normal coordinates at p

g̃1 ' g̃2, Ã1 ' Ã2, q̃1 ' q̃2.

Furthermore, if g1 ' g2 in boundary normal coordinates on all of ∂M ,
then Ã1 ' Ã2 and q1 ' q2 on ∂M .
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Boundary normal coordinates (x′, xn) at a boundary point p are such
that x′ parametrizes ∂M near p and xn is the distance to the boundary
along unit speed geodesics normal to ∂M . See [18] for more details.

We prove Theorem 8.4 by showing that Λg,A,q is a pseudodifferential
operator whose symbol determines the boundary values of the coeffi-
cients. This method was used in [33] for the conductivity equation,
in [18] for the Laplace-Beltrami operator, and in [22] for the magnetic
Schrödinger operator with Euclidean metric. We follow the proof in
[18].

The first issue to consider is the gauge invariance in the operator
Λg,A,q. This will be dealt with by normalizing the coefficients (g, A, q)
in a way which is suitable for boundary determination. Fix a point
p ∈ ∂M and boundary normal coordinates (x′, xn) near p. In these
coordinates ∂M corresponds to {xn = 0} and

g = gαβ dx
α ⊗ dxβ + dxn ⊗ dxn.

We use the convention that Greek indices run from 1 to n − 1 and
Roman indices from 1 to n.

Lemma 8.5. Let (g, A, q) be smooth coefficients in M and p ∈ ∂M .
There exist a positive smooth function c with c|∂M = 1 and ∂νc|∂M = 0,
and a smooth function ψ with ψ|∂M = 0, such that in boundary normal
coordinates near p the quantities g̃ = c−1g and Ã = A+ dψ satisfy

∂jnÃn(x′, 0) = 0, j ≥ 0,(8.1)

∂jn(g̃αβ∂ng̃
αβ)(x′, 0) = 0, j ≥ 1.(8.2)

Proof. One can find a smooth function ψ near p with ψ(x′, 0) = 0 and
∂j+1
n ψ(x′, 0) = −∂jnAn(x′, 0) for j ≥ 0. Extending this in a suitable

way, one obtains ψ ∈ C∞(M) with ψ|∂M = 0 such that Ã = A + dψ
will satisfy (8.1).

Further, we construct a smooth function c near p which satisfies
c(x′, 0) = 1, ∂nc(x

′, 0) = 0, and

∂jn(log det(cgαβ))(x′, 0) = 0, j ≥ 2.

In fact, one may take c = eµ where µ(x′, 0) = ∂nµ(x′, 0) = 0 and
∂jnµ(x′, 0) = − 1

n−1
∂jn(log det(gαβ))(x′, 0) for j ≥ 2. There is an ex-

tension of c to a positive function c ∈ C∞(M) with c|∂M = 1 and
∂νc|∂M = 0. Since

∂n(log det(g̃αβ)) = g̃αβ∂ng̃
αβ,

one also has the second condition (8.2). �
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Replacing coefficients (g, A, q) by the gauge equivalent coefficients
(c−1g, A+ dψ, c(q − d−1∆gd)) does not affect the DN map. Therefore,
below we will assume that (8.1) and (8.2) are valid. Note that boundary
normal coordinates for g are also boundary normal coordinates for any
conformal multiple of g, if the conformal factor is 1 on ∂M .

The next aim is to write Λg,A,q as a pseudodifferential operator and
to compute the symbol in a small neighborhood of p. Here we use the
usual (not semiclassical) pseudodifferential calculus and left quantiza-
tion, so that a symbol r(x, ξ) in T ∗Rn corresponds to the operator

Rf(x) = (2π)−n
∫

Rn

∫
Rn

ei(x−y)·ξr(x, ξ)f(y) dy dξ.

We denote by p ∼
∑
pj the asymptotic sum of symbols, see [10] for

these basic facts.

Lemma 8.6. Λg,A,q is a pseudodifferential operator of order 1 on ∂M .
Its full symbol (in left quantization) in boundary normal coordinates
near p is −b ∼ −

∑
j≤1 bj, where bj are given in (8.5) – (8.8).

Proof. In the x coordinates, one has

Lg,A,q = −∆g + 2gjkAjDk +G,

where G = |g|−1/2Dj(|g|1/2gjkAk) + gjkAjAk + q and

|g| = det(gjk) = det(gαβ).

From (8.1) we know that ∂KAn(x′, 0) = 0 for all multi-indices K ∈ Nn.
One would like to have An = 0 also inside M . To achieve this, we

introduce as in [22] the conjugated operator

M = e−ihLg,A,qeih,
where h(x) = −

∫ xn
0
An(x′, s) ds. Note that ∂Kh(x′, 0) = 0. Writing

Ãj = Aj + ∂jh, we obtain Ãn = 0 and

M = −∆g + 2gαβÃαDβ + G̃,

where G̃ = |g|−1/2Dα(|g|1/2gαβÃβ) + gαβÃαÃβ + q. We then have

M = D2
n + iE(x)Dn +Q2(x,Dx′) +Q1(x,Dx′) + 2gαβÃαDβ + G̃,

with E, Q1, and Q2 given by

E(x) =
1

2
gαβ∂ng

αβ,

Q2(x,Dx′) = gαβDαDβ,

Q1(x,Dx′) = −i(1

2
gαβ∂α(log |g|) + ∂αg

αβ)Dβ.
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As in [18], one would like to have a factorization

(8.3) M = (Dn + iE(x)− iB(x,Dx′))(Dn + iB(x,Dx′))

modulo a smoothing operator,

where B is a pseudodifferential operator of order 1 with symbol b(x, ξ′).
Using left quantization for symbols, (8.3) implies on the level of symbols
that

(8.4) ∂nb−E(x)b+
∑
K

∂Kξ′ bD
K
x′ b

K!
= q2+q1+2gαβÃαξβ+G̃ mod S−∞.

Let b ∼
∑

j≤1 bj where bj(x, ξ
′) is homogeneous of order j in ξ′. Insert-

ing this in (8.4) and collecting terms with the same order of homogene-
ity, one obtains bj as follows:

b1 = −√q2,(8.5)

b0 =
1

2b1

(−∂nb1 + Eb1 −∇ξ′b1 ·Dx′b1 + q1 + 2gαβÃαξβ),(8.6)

b−1 =
1

2b1

(−∂nb0 + Eb0 −
∑

0≤j,k≤1
j+k=|K|

∂Kξ′ bjD
K
x′ bk

K!
+ G̃),(8.7)

bm−1 =
1

2b1

(−∂nbm + Ebm −
∑

m≤j,k≤1
j+k−|K|=m

∂Kξ′ bjD
K
x′ bk

K!
) (m ≤ −1).(8.8)

With these choices, b ∈ S1 and (8.3) is valid. By the argument in [18,
Proposition 1.2], one has

Λg,A,qf(x′) = −B(x′, 0, Dx′)f(x′) +Rf(x′)

where R is a smoothing operator. �

From the symbol of the DN map, one can recover the following in-
formation on the coefficients.

Lemma 8.7. The knowledge of Λg,A,q determines on {xn = 0} the
quantities

(8.9) gαβ, ∂ng
αβ, ∂KAα, ∂

K lαβ.

Here K ∈ Nn is any multi-index and

lαβ =
1

4
∂nk

αβ + qgαβ,

with kαβ = ∂ng
αβ − (gγδ∂ng

γδ)gαβ.



50 LIMITING CARLEMAN WEIGHTS

Proof. By Lemma 8.6, Λg,A,q determines b|xn=0 and each bj|xn=0. From
b1|xn=0 one recovers gαβ|xn=0. If T (gαβ) denotes any linear combination
of tangential derivatives of gαβ, one has for xn = 0

b0 =
1

2b1

(−∂nb1 + Eb1 + 2gαβÃαξβ) + T (gαβ)

= −∂nq2

4q2

+
1

2
E − 1

√
q2

gαβÃαξβ + T (gαβ)

= −1

4
kαβωαωβ − gαβÃαωβ + T (gαβ),

where ω = ξ′/|ξ′|g. Evaluating at ±ω and varying ω one recovers Ãα
and kαβ, and consequently also ∂ng

αβ, for xn = 0.
Moving to b−1, one has for xn = 0

b−1 =
1

2b1

(−∂nb0 + Eb0 + G̃) + T (gαβ, ∂ng
αβ, Ãα)

=
1

2b1

(lαβωαωβ + gαβ(∂nÃα)ωβ) + T (gαβ, ∂ng
αβ, Ãα)

where T denotes tangential derivatives of the given quantities. Thus,
one recovers lαβ and ∂nÃα on {xn = 0}. By induction, we prove that
for j ≥ 1

b−j = −
(
− 1

2b1

)j
((∂j−1

n lαβ)ωαωβ + gαβ(∂jnÃα)ωβ)

+ T (gαβ, ∂ng
αβ, lαβ, . . . , ∂j−2

n lαβ, Ãα, . . . , ∂
j−1
n Ãα).

Indeed, this is true for j = 1, and assuming this for j one gets

b−j−1 = − 1

2b1

∂nb−j + T (gαβ, ∂ng
αβ, lαβ, . . . , ∂j−1

n lαβ, Ãα, . . . , ∂
j
nÃα)

= −
(
− 1

2b1

)j+1

((∂jnl
αβ)ωαωβ + gαβ(∂j+1

n Ãα)ωβ) + T ( · ).

Thus one recovers ∂jnl
αβ and ∂jnÃα on {xn = 0} for all j ≥ 0. The

result follows since ∂KÃα = ∂KAα when xn = 0. �

We may now prove the main result on boundary determination.

Proof of Theorem 8.4. Let Λg,A,q = Λg̃,Ã,q̃. Replacing both sets of co-
efficients by gauge equivalent ones as discussed after Lemma 8.5, we
may assume that (8.1) and (8.2) are valid. Then Lemma 8.7 implies
that the quantities (8.9) with and without tildes coincide on {xn = 0}.
We prove by induction that for j ≥ 0, one has on xn = 0

(8.10) ∂jnq = ∂jnq̃, ∂j+2
n gαβ = ∂j+2

n g̃αβ, gαβ∂
j+3
n gαβ = g̃αβ∂

j+3
n g̃αβ.



LIMITING CARLEMAN WEIGHTS 51

We first note that

(8.11) gαβ∂
2
ng

αβ = g̃αβ∂
2
ng̃

αβ on xn = 0.

This follows from (8.2) for g and g̃, since ∂jng
αβ = ∂jng̃

αβ on xn = 0 for
j = 0, 1. Note also that (8.2) implies

∂jnk
αβ = ∂j+1

n gαβ − (gγδ∂ng
γδ)∂jng

αβ on xn = 0,

and therefore

∂jnl
αβ =

1

4
(∂j+2
n gαβ − (gγδ∂ng

γδ)∂j+1
n gαβ) + ∂jn(qgαβ) on xn = 0.

To prove (8.10) for j = 0, we use that lαβ = l̃αβ on xn = 0. This
implies, upon multiplying by gαβ and summing, that q = q̃ on xn = 0.

Here we used (8.11). Then lαβ = l̃αβ also implies ∂2
ng

αβ = ∂2
ng̃

αβ on
xn = 0. The equality gαβ∂

3
ng

αβ = g̃αβ∂
3
ng̃

αβ follows by using (8.2).
Assume now that (8.10) holds for j ≤ k. Moving to k + 1, the

equality ∂k+1
n lαβ = ∂k+1

n l̃αβ on xn = 0 implies upon multiplying by gαβ,
summing, and using the induction hypothesis, that

gαβ∂
k+1
n (qgαβ) = g̃αβ∂

k+1
n (q̃g̃αβ) on xn = 0.

The induction hypothesis again gives ∂k+1
n q = ∂k+1

n q̃ on xn = 0, and
∂k+3
n gαβ = ∂k+3

n g̃αβ then follows by going back to the equality ∂k+1
n lαβ =

∂k+1
n l̃αβ on xn = 0. The last statement in (8.10) for j = k + 1 is a

consequence of (8.2). This ends the induction.
The outcome of the above argument is that gαβ ' g̃αβ, Aα ' Ãα,

and q ' q̃ at p. This shows the first statement in Theorem 8.4. If g ' g̃
at each p, then it is easy to obtain q ' q̃ at each p from lαβ ' l̃αβ.
Also, the function ψ constructed locally in Lemma 8.5 can be obtained
globally on ∂M by a suitable partition of unity. Therefore A ' Ã on
all of ∂M . �

Appendix A. Riemannian geometry

In this appendix we include basic definitions and facts which are used
throughout the text. For more details see [12]. We are using Einstein’s
summation convention: repeated indices in lower and upper position
are summed. In the following (M, g) is a Riemannian manifold. When
no confusion may occur, we will use the following standard notations
for the inner product and the norm:

〈X, Y 〉 = g(X, Y ), |X| =
√
g(X,X).



52 LIMITING CARLEMAN WEIGHTS

A.1. Connection and Hessian. The Riemannian metric g on M in-
duces a natural isomorphism between the tangent and cotangent bun-
dles given by

T (M)→ T ∗(M)

(x,X) 7→ (x,X[)

where X[(Y ) = 〈X, Y 〉, and whose inverse is

T ∗(M)→ T (M)

(x, ξ) 7→ (x, ξ])

where ξ] is defined by ξ(X) = 〈ξ], X〉. In local coordinates, if the
metric is given by

g = gjk dx
j ⊗ dxk,

this reads

X[ = gjkX
j dxk, ξ] = gjkξj∂xk .

In particular, the gradient field is defined by ∇ϕ = dϕ]. The mu-
sical isomorphisms allow to lift the metric to the cotangent bundle.
The cotangent bundle is hence naturally endowed with the Riemann-
ian metric g−1 given in local coordinates by

g−1 = gjk dξj ⊗ dξk.
It is natural to use 〈·, ·〉 and | · | to denote the inner product and the
norm both on the tangent and cotangent bundles.

We denote by D the Levi-Civita connection on (M, g). A connection
is a bilinear map on the vector space of vector fields which satisfies the
following conditions:

(i) DfXY = fDXY, and DX(fY ) = (LXf)Y + fDXY if f is a
smooth function on M ,

(ii) DXY −DYX = [X, Y ].

Here LX is the Lie derivative. On a Riemannian manifold, there is
precisely one connection, called the Levi-Civita connection, which is
consistent with the metric, i.e. which satisfies

(iii) LX〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉.
This connection is determined in local coordinates by

D∂xj
∂xk = Γljk∂xl

where the Christoffel symbols Γljk are given by

Γljk =
1

2
glm
(
∂xjgkm + ∂xkgjm − ∂xmgjk

)
.
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Note that Γljk = Γlkj. If X is a vector field on M , then the endomor-
phism DX has a unique extension as an endomorphism on the space of
tensors satisfying the following requirements:

(i) DX is type preserving,
(ii) DX(c(S)) = c(DXS) for any tensor S and any contraction c,

(iii) DX(S ⊗ T ) = DXT ⊗ S + T ⊗DXS for any tensors S, T .

In particular, if f is a function we have DXϕ = dϕ(X) = LXϕ, and for
1-forms the connection is given in local coordinates by

D∂xj
dxk = −Γkjldx

l.

The total derivative DS of S is the tensor DS(X, · ) = DXS( · ).
The Hessian of a smooth function ϕ is the symmetric (2, 0)-tensor

D2ϕ = Ddϕ. The expression of the Hessian in local coordinates is

D2ϕ =
(
∂2
xjxk

ϕ− Γljk∂xlϕ
)
dxj ⊗ dxk.

The following identities will be useful:

D2ϕ(X, Y ) =
1

2
L∇ϕg(X, Y ) = 〈DX∇ϕ, Y 〉,(A.1)

D2ϕ(X,X) =
d2

dt2
ϕ(γ(t))

∣∣∣
t=0
.(A.2)

Here γ is the geodesic with γ̇(0) = X.

A.2. Parallel and Killing fields. First we recall the following iden-
tities for the Lie derivative: if f is a function and X a vector field
then

LfXg = fLXg + df ⊗X[ +X[ ⊗ df,(A.3)

and if S is a (2, 0)-tensor then

(LXS)(Y, Z) = LX(S(Y, Z))− S([X, Y ], Z)− S(Y, [X,Z]).(A.4)

Definition A.1. A vector field X in (M, g) is a Killing field if

LXg = 0.

Note that (A.4) implies

(LXg)(Y, Z) = 〈DYX,Z〉+ 〈Y,DZX〉.

Definition A.2. A vector field X is said to be parallel if its covariant
derivative vanishes identically, that is DX = 0.

The following characterization is used in the proof of Theorem 1.
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Lemma A.3. Let (M, g) be a simply connected Riemannian manifold.
A vector field on (M, g) is parallel if and only if it is both a gradient
field and a Killing field.

Proof. In a simply connected manifold, a vector field X is a gradient
field if and only if the one form ω = X[ is closed. We have

dω(Y, Z) = LY
(
ω(Z)

)
− LZ

(
ω(Y )

)
− ω([Y, Z])

= LY 〈X,Z〉 − LZ〈X, Y 〉 − 〈X, [Y, Z]〉
= 〈DYX,Z〉+ 〈X,DYZ〉 − 〈DZX, Y 〉 − 〈X,DZY 〉
− 〈X,DYZ〉+ 〈X,DZY 〉.

Thus, X is a gradient field if and only if for all vector fields Y, Z

〈DYX,Z〉 − 〈DZX, Y 〉 = 0.

On the other hand, X is a Killing field if and only if

LXg(Y, Z) = 〈DYX,Z〉+ 〈Y,DZX〉 = 0

for all vector fields Y, Z. The result ensues. �

The next result states that the existence of a unit parallel vector
field implies a local product structure on the manifold.

Lemma A.4. Let X be a unit parallel vector field in a manifold (M, g).
Near any point of M , there are local coordinates x such that X = ∂/∂x1

and the metric has the form

g(x1, x
′) =

(
1 0
0 g0(x′)

)
.

Conversely, if such coordinates exist then X = ∂/∂x1 is unit parallel.

Proof. Let X be unit parallel and let Γ be the distribution orthogonal
to X. If V,W are vector fields orthogonal to X then

〈[V,W ], X〉 = 〈DVW −DWV,X〉 = V 〈W,X〉 −W 〈V,X〉 = 0.

Thus Γ is involutive, and by the Frobenius theorem there is a hypersur-
face S (through any point of M) which is normal to X. Let x′ 7→ q(x′)
be local coordinates on S, and let (x1, x

′) 7→ expq(x′)(x1X(q(x′)) be
corresponding semigeodesic coordinates. In fact integral curves of X
are geodesics (if γ̇(t) = X(γ(t)) then Dγ̇ γ̇ = 0), so X = ∂1. Then

g(x1, x
′) =

(
1 0
0 g0(x1, x

′)

)
.

If j, k ≥ 2 then ∂1gjk = 〈D∂1∂j, ∂k〉+〈∂j, D∂1∂k〉 = 0 since ∂1 is parallel.
Therefore g0 = g0(x′).

The converse follows since D∂j∂1 = 0 by a direct computation. �
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Finally, we need the definition of conformal Killing fields.

Definition A.5. A vector field X in (M, g) is called a conformal
Killing field if

LXg = λg.

Note that if LXg = λg, by taking traces one has λ = 2
n

divX. The
notion of conformal Killing field is of course invariant under conformal
change of the metric.

A.3. Submanifolds. Let (M, g) be a Riemannian manifold and let S
be an embedded hypersurface in M . Fix a unit vector field N which is
normal to S. The second fundamental form of S is defined by

`(X, Y ) = 〈DXN, Y 〉,
where X and Y are vector fields tangent to S, and D is the Levi-Civita
connection in (M, g). The eigenvalues of the symmetric bilinear form
` are the principal curvatures of S; their sign depends on the choice of
normal.

Definition A.6. A point of a hypersurface is called umbilical if all the
principal curvatures are equal at that point. A hypersurface is called
totally umbilical if every point is umbilical.

Definition A.7. A hypersurface is called strictly convex if the second
fundamental form is positive definite.

A.4. Curvature tensors. Next we consider curvature tensors on a
Riemannian manifold (M, g). The Riemann curvature endomorphism
is a (3, 1)-tensor on M , defined by

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z,

whenever X, Y, Z are vector fields on M . By lowering indices, one
obtains the Riemann curvature tensor which is the (4, 0)-tensor

R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉.
In local coordinates, with coordinate vector fields ∂a = ∂/∂xa and with
Da = D∂a , the components of the curvature tensor are given by

Rabcd = 〈(DaDb −DbDa)∂c, ∂d〉.
By taking traces of the Riemann curvature tensor, we obtain the Ricci
tensor which is a symmetric (2, 0)-tensor whose components are

Rbc = gadRabcd.

The scalar curvature is the function

Scal = gbcRbc.
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A manifold (M, g) is said to be flat if the Riemann curvature tensor
vanishes identically. Euclidean space is flat, and any flat manifold is
locally isometric to a subset of Euclidean space.

Finally, we wish to define the conformal curvature tensors. First con-
sider the rho-tensor, which is a symmetric 2-tensor given in components
by

Pab =
1

n− 2

(
Rab −

Scal

2(n− 1)
gab

)
.

The Weyl tensor of (M, g) is the 4-tensor

Wabcd = Rabcd + Pacgbd + Pbdgac − Pbcgad − Padgbc,
and the Cotton tensor is the 3-tensor

Cabc = DaPbc −DbPac.

If the metric g is replaced by a conformal metric cg, then the Weyl
tensor transforms as Wcg = cWg. If n = 3 then W ≡ 0, but one has
Ccg = Cg.

A manifold (M, g) is called conformally flat if some conformal man-
ifold (M, cg) is flat. Any 2-dimensional manifold is locally conformally
flat. A 3-dimensional manifold is locally conformally flat if and only
if its Cotton tensor vanishes identically, and a manifold of dimension
n ≥ 4 is locally conformally flat if and only if the Weyl tensor vanishes
(see [8]).
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