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Abstract

In this article we present a novel convexity measure for object shape analysis. The

proposed method is based on the idea of generating pairs of points from a set, and

measuring the probability that a point dividing the corresponding line segments belongs

to the same set. The measure is directly applicable to image functions representing

shapes, and also to gray-scale images which approximate image binarizations. The

approach introduced gives rise to a variety of convexity measures, which makes it

possible to obtain more information about the object shape. The proposed measure

turns out to be easy to implement using the Fast Fourier Transform and we will

consider this in detail. Finally, we illustrate the behavior of our measure in different

situations and compare it to other similar ones.
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A New Convexity Measure Based on a

Probabilistic Interpretation of Images

I. INTRODUCTION

Shape analysis is one of the major fields of computer vision research. Techniques of shape

analysis are widely applied, for example in classification, calibration, image registration, seg-

mentation, etc. There is also plenty of demand in other disciplines which use pattern recognition

techniques, like biology, mathematical morphology, medical image analysis [1], and integral

geometry, [2], [3]. Common features which are used to describe shape include compactness,

circularity, rectangularity and convexity. Here, we concentrate on measuring object convexity.

We recall that an object is said to be convex if the line segment between any two points in the

object belongs to the same object. For more information about convexity see [4].

Convexity in image processing has been studied for quite some time and convexity measures

and their applications are discussed in several publications, like [5], [6], [7], [8], [9], [10].

In this paper, we present a novel framework for constructing convexity measures, based on

probabilistic ideas. This technique was originally introduced in [11], but here we define more

general measures and consider their properties carefully, comparing them with other similar

methods. However, when comparing these techniques, one should keep in mind that desirable

properties of a convexity measure may vary according to the specific application. For example,

in some cases, strong reactivity to already slight changes in the shape is required, but in other

applications, we may need strong robustness against such alterations. It is also reasonable to

require some basic properties of the convexity measures to ensure that they behave well and

produce sensible results. We begin by introducing these properties in a similar manner to that

in [9].

Definition 1: A convexity measure should have the following basic properties:

1) The convexity measure is a number from (0, 1].

2) The convexity measure of a given shape is equal to 1 if and only if the shape is convex.

3) There are shapes whose convexity measure is arbitrarily close to 0, implying that there is
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no gap between 0 and the minimal possible value of the measure.

4) The convexity measure is invariant under appropriate geometric transformations of the

shape.

We continue by reviewing some previously proposed convexity measures, which are divided

into two primary groups following [9]. This partition is made in order to illustrate the main

characteristics of the methods, and to give a guideline for choosing the proper measure (or

measures) for a particular application.

Definition 2 (Area based convexity measures): For a given planar shape K, where K ⊆ R2

is a compact set, we define

Cch(K) = |K|
|ch(K)| ,

Cmcs(K) = |mcs(K)|
|K| ,

where ch(K) is the convex hull of K, |K| is the area of a set K, and |mcs(K)| is the supremum

of the areas of convex subsets of K.

Further, let X and Y be independent random variables drawn uniformly from the set K, and

let [x, y] be the line segment between x and y. We define a third convexity measure as

Cls(K) = P ([X, Y ] ⊆ K),

where P (A) denotes the probability of the event A.

In general, the measures in Definition 2 can be thought to be area-based, since their values

depend on the areas of different parts of the object. Consequently such measures are usually

tolerant with respect to small defects in the objects, which can be caused for example by noise

or insufficient segmentation. From these measures Cch and Cls are particularly interesting. The

measure Cch is practical and robust, appearing frequently in the literature and applications. Also,

Cls is interesting here because it is based on probabilistic ideas similar to our new method.

However, the main problem with this measure is that Cls is difficult to compute, even if the

examined sets are polygons [9]. For this reason, the actual validation of this measure usually

has to be done by sampling. The measure Cmcs is not very practical, because the |mcs(K)| is

not straightforward to compute.
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Sometimes too much robustness is undesirable and we want to have strong effects on the

value of the measure, even if the object changes only slightly. There are also some theoretical

examples [9] where the area based measures are not well suited to detecting convexity. In these

cases it would be better to use so called boundary based measures. We define two of them, for

simplicity just for polygons, as follows:

Definition 3 (Boundary based convexity measures): For a given planar shape K, where K ⊆
R2 is a compact and connected polygon, we define

Cchp(K) =
Per2(ch(K))

Per2(K)
,

where Per2(K) is the usual L2 perimeter, see [9], of K and ch(K) is the convex hull of K.

Further, let R(K, α) denote the minimal rectangle with edges parallel to the coordinate axes

which contains the polygon K rotated by angle α. We now define

Cpoly(K) = min
α∈[0,2π]

Per2(R(K, α))

Per1(K)
,

where Per1(K) is the L1 perimeter, for definition see [9], of K.

In this paper, we present a new method for constructing convexity measures which is based

on similar probabilistic ideas as Cls, but uses points rather than lines. It turns out that there is

an elegant and efficient way of evaluating the measure using the Fourier transform. There is

also the possibility of applying the measure directly to gray-scale images, which eliminates the

need to threshold a slightly noisy image to a strictly binary one. In the presented framework, our

measure belongs to the area-based class, and it will be shown to fulfill all the requirements given

in Definition 1. We begin with an introduction to the new measure and its properties, followed

by a discussion of the actual implementation. Finally, we illustrate the behavior of the measure

in several experiments, comparing it to other similar ones.

II. NEW CONVEXITY MEASURE

In this section, we will define our new measure and illustrate its properties. Before continuing,

we recall the relevant definitions and fix some assumptions on the examined sets.

Definition 4: A set A ⊆ R2 is called convex if for any points x, y ∈ A, the line segment

{(1 − t)x + ty ; 0 ≤ t ≤ 1} is contained in A. Equivalently, A is convex if and only if for
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any points x1, . . . , xn ∈ A, any convex combination a1x1 + . . . + anxn, where aj ≥ 0 and

a1 + . . . + an = 1, is in A.

Let K denote the set to be studied. We restrict our attention to sets K which belong to

K = {K ⊆ R2 ; K is compact, nonempty, and K = int(K)},

where int(A) is the interior and A is the closure of a set A ⊆ R2. With this restriction,

we only simplify the discussion by excluding very large sets and sets of measure zero. In

image processing, this results in no loss of generality, since digital images always satisfy these

conditions.

A. Definition of the convexity measure

The new convexity measure is based on the simple idea of generating pairs of points from

a set K, and then checking if certain points on the corresponding line segments belong to K.

Here is the precise definition.

Definition 5: For 0 < α < 1 and K ∈ K , we define a convexity measure

Cα(K) = P (αX + (1 − α)Y ∈ K),

where X and Y are independent random variables drawn uniformly from K.

In other words, Cα(K) measures the probability that a point which lies on the line segment

between two random points from the set K, is also contained in this set. The parameter α

determines the location of the point on this line segment. By varying α, we obtain infinitely

many different measures. Definition 5 is somewhat similar to the definition of C ls, but the major

difference is that here we measure probabilities of points instead of whole line segments. This

results in two substantial advantages. The first is that by varying α we will have a number of

convexity measures. Secondly, we will show that there is a computationally efficient way of

evaluating Cα, unlike in the case of Cls which is usually difficult to compute. Definition 5 also

gives rise to several generalizations of this measure, which we consider in more detail later.

Note that Cα has the symmetry Cα(K) = C1−α(K), and hence 0 < α ≤ 1/2 will give all the

information.
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B. Connection with MSA

At this point, we observe that Cα has a strong connection to the image transform called

Multiscale Autoconvolution (MSA) [12] [13]. Let us now consider this connection in more

detail.

Let f ≥ 0 be an image intensity function in L1(R2) ∩ L2(R2), where L1(R2) is the space of

absolutely integrable functions with the norm ‖f‖L1 =
∫
R2 |f(x)| dx and L2(R2) is the space of

square integrable functions with the norm ‖f‖L2 =
(∫

R2 |f(x)|2 dx
)1/2

[14]. We define a random

variable

Uα,β = αX1 + βX2 + γX0,

where γ = 1−α− β and (X0, X1, X2) are independent random variables with values in R2 so

that P (Xj = xj) = 1
‖f‖L1

f(xj) (for notational convenience, we write P (X = x) for the value

of the probability density function of X at x). The MSA transform Mf of f is defined for

α, β ∈ R as the expected value of f(Uα,β),

Mf(α, β) = E[f(Uα,β)].

We now consider functions f which correspond to sets K ∈ K . The characteristic function

χK of the set K is defined as

χK(x) =

⎧⎨
⎩ 1 if x ∈ K,

0 otherwise.

Now by setting f = χK in the MSA transform, we have

MχK(α, β) =

∫
K

P (Uα,β = u) du = P (Uα,β ∈ K). (1)

In other words, MχK(α, β) is the probability that αX1 + βX2 + γX0 lies in K when the Xj

are drawn uniformly from K. Since α + β + γ = 1, one recognizes that if α, β, γ ≥ 0 then

MχK(α, β) is the probability that a convex combination of X0, X1, and X2 lies in K. We now

easily see that the measure Cα corresponds to the special case of this convex combination where

β = 1 − α. Thus Cα(K) = MχK(α, 1 − α).
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C. Explicit expressions for Cα

We proceed to derive different explicit expressions for the measure Cα. As it was noted that

Cα is a special case of the MSA transform, we follow similar ideas to those in the derivation

of MSA [13].

Let f = χK be the characteristic function of K as given above. Then for 0 < α < 1 we

define a random variable

Uα = αX1 + (1 − α)X2,

where X1 and X2 are independent random variables with values in R2 so that P (Xj = xj) =

1
|K|f(xj). Now it can be easily shown that Uα has a probability density function given by

P (Uα = u) =
1

|K|2 (fα ∗ f1−α)(u), (2)

where fa(x) = a−2f(x/a) and ∗ denotes convolution. Using this notation, the value of Cα can

be expressed as

Cα(K) = P (αX + (1 − α)Y ∈ K) = P (Uα ∈ K) =

∫
K

P (Uα = u) du. (3)

Substituting (2) in (3) we can write the measure Cα in terms of the probability density function

as

Cα(K) =

∫
K

1

|K|2 (fα ∗ f1−α)(u) du

=
1

|K|2
∫

R2

f(u)(fα ∗ f1−α)(u) du

=
1

|K|2
1

α2(1 − α)2

∫
R2

∫
R2

f(u)f(
u − x

1 − α
)f(

x

α
) dx du. (4)

The double integral in (4) is computationally expensive to evaluate for large images, and it is

important that one can use the Fourier transform with the convolution theorem and the Plancherel

formula,
∫

R2 f ḡ =
∫

R2 f̂ ¯̂g (see [14]), to write (4) as a single integral,

Cα(K) =
1

|K|2
∫

R2

f̂(−ξ)f̂(αξ)f̂((1 − α)ξ) dξ, (5)

where f̂(ξ) =
∫
R2 e−2πix·ξf(x) dx is the Fourier transform of the image function f = χK .
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D. Properties of Cα

Here, we shall consider some important properties of the proposed measures, including the

general requirements for convexity measures given in Definition 1.

Property 1: Cα satisfies the four requirements for a convexity measure:

1) 0 < Cα(K) ≤ 1 for any K ∈ K .

2) Cα(K) = 1 for K ∈ K if and only if K is convex.

3) infK∈K Cα(K) = 0.

4) The measure Cα is affine invariant: if A is an affine transformation, then Cα(A (K)) =

Cα(K) for any K ∈ K .

Proof: The properties are quite natural, and we will give here brief explanations of how

to prove them. The details are in Appendix I.

1) Since Cα(K) is the probability of an event it is always ≤ 1. Any set K ∈ K contains a

disk, so this probability is always > 0.

2) It is well known that K is convex if and only if the midpoint of any two points of K

belongs to K. If K ∈ K , then we also know that K is convex if and only if the midpoint

of two points of K belongs to K with probability one. This is true for other points than

the midpoint as well, so we get that K is convex if and only if Cα(K) = 1.

3) Let K = Kδ = {x ∈ R2 ; 1 − δ ≤ |x| ≤ 1} be a thin annulus. Then Cα(Kδ) → 0 as

δ → 0, showing that these thin annuli have an arbitrarily small convexity measure.

4) It is geometrically evident that the probability Cα(K) stays unchanged in an affine trans-

formation of K.

Next we turn our attention to the continuity properties of the measure. First we consider

the case where a binary image f = χK is disturbed with nonbinary noise h. We make the

assumptions that h ∈ L1 ∩L∞, |h| is bounded by a constant R, and ‖h‖L1 ≤ 1
2
|K|. Here L∞ is

the space of bounded functions with the norm ‖f‖L∞ = supx∈R2 |f(x)| [14]. In practice ‖h‖L1

is much smaller than |K|, so the nonbinary image f + h is close to the original binary image.

We state the result in terms of the MSA transform Mf(α, β), which is the natural analog of Cα

for nonbinary images (recall that Cα(K) = MχK(α, 1 − α)).

Property 2: Let f = χK , K ∈ K , and let h ∈ L1(R2) ∩ L∞(R2) satisfy ‖h‖L∞ ≤ R and
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‖h‖L1 ≤ 1
2
|K|, where R ≥ 1. Then there exists an absolute constant C0 so that

|M(f + h)(α, β) − Mf(α, β)| ≤ C0R
‖h‖L1

|K|
for all α, β ∈ R.

The proof of Property 2 is given in Appendix II. This property justifies the idea that one

may compute the convexity measure of a gray-scale image without first converting it to a binary

one. The assumption is that the gray-scale image is a slightly noise disturbed model of a binary

image, and the result shows that the convexity measures of the original binary image and the

gray-scale image are almost the same. Note that for nonbinary images the convexity measure

may be larger than one.

In practice one may have digital images of shapes where the boundary pixels have gray-

scale values between 0 and 1, and in this case one may interpret these nonbinary values as the

probability of a pixel belonging to the shape. Applying the convexity measure directly to this

image removes the need for limiting the image to a strictly binary one.

The second version of the continuity property is given for binary images. If A, B ⊆ R2 we

define the symmetric difference

A	B = (A � B) ∪ (B � A).

Let K ∈ K , and suppose K ′ ∈ K satisfies |K ′	K| ≤ 1
2
|K|. We think of K ′ as a disturbed

version of K. The result states that the convexity measures of K and K ′ differ at most by

C0
|K ′�K|

|K| .

Property 3: Let K, K ′ ∈ K and suppose |K ′	K| ≤ 1
2
|K|. Then

|Cα(K ′) − Cα(K)| ≤ C0
|K ′	K|

|K|
where C0 is an absolute constant.

The proof of this property is given in Appendix III. Property 3 states that the value of Cα

depends continuously on the measured set, and it gives an upper bound for the change in the

value of the measure for a given distortion scale in K. This continuity is important because it

ensures that sets differing only slightly will also have Cα values close to each other.

We conclude the theoretical discussion by giving inequalities which relate Cα to other area-

based measures.
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Property 4: If 0 < α < 1 and K ∈ K , then

Cmcs(K)2 ≤ Cls(K) ≤ Cα(K).

We will prove this in Appendix IV. This property gives some insight to the relations between

the absolute convexity values of different measures. However, it does not give any information

about the order in which the different measures rank objects.

E. Generalizations of Cα

When looking at (1) we observed that in the case where α, β, γ ≥ 0, the MSA transform

of χK becomes the probability that a convex combination of three points from the set K also

belongs to K. It was further noticed that if we take this convex combination so that it contains

only two points, i.e. β = 1−α so that γ = 0, we have the Cα measure. However, using a convex

combination of three or more points leads to a generalization of the Cα measure as follows:

Definition 6: For K ∈ K and α1, . . . , αn ≥ 0 such that α1 + . . . + αn = 1, we define a

convexity measure

Cα1,...,αn(K) = P (α1X1 + . . . + αnXn ∈ K)

where X1, . . . , Xn are independent random variables drawn uniformly from K.

Similarly to Cα it can be shown that also Cα1,...,αn can be computed through the Fourier transform

of f = χK as

Cα1,...,αn(K) =
1

|K|n
∫

R2

f̂(−ξ)f̂(α1ξ) · · · f̂(αnξ) dξ.

It is also possible to combine Cα with different α values to form new convexity measures. To

be more precise, we present the following definition:

Definition 7: Let µ be a probability measure on the interval (0, 1). For K ∈ K we define a

convexity measure

Cµ(K) =

∫
(0,1)

Cα(K) dµ(α).

Due to the symmetry Cα(K) = C1−α(K) it is enough to consider measures µ which are

symmetric with respect to α = 1/2. For such a measure one has

Cµ(K) = 2

∫
(0,1/2)

Cα(K) dµ(α) + C1/2(K)µ({1/2}).

There are two main examples of suitable measures µ:



10

1) If µ =
∑k

j=1 ajδαj
where aj ≥ 0,

∑k
j=1 aj = 1, 0 < α1 < . . . < αk < 1, and δα is the

Dirac measure at α, then

Cµ(K) =
k∑

j=1

ajCαj
(K).

In the special case µ = δα we obtain the original convexity measure Cα.

2) If dµ(α) = w(α) dα where w ≥ 0 and
∫ 1

0
w(α) dα = 1, then

Cµ(K) =

∫ 1

0

Cα(K)w(α) dα.

Thus Cµ(K) may be thought of as a weighted average, or integral average, of the Cα(K).

The possibility of using different measures µ gives additional flexibility to the construction of

convexity measures. We note that the properties derived for Cα in Section II-D are also valid

for Cµ.

It is also straightforward to extend Cα and Cµ to cover sets in Rn where n ≥ 3. This requires

no changes in Definition 5, as long as we consider sets K belonging to

K = {K ⊆ Rn ; K is compact, nonempty, and K = int(K)}.

We also note that in this case the the expression in terms of the Fourier transform of f = χK

extends similarly to

Cα(K) =
1

|K|2
∫

Rn

f̂(−ξ)f̂(αξ)f̂((1 − α)ξ) dξ,

where f̂(ξ) =
∫
Rn e−2πix·ξf(x) dx. Such measures can be used to analyze the shape of three-

dimensional objects, but as the main subject of this article is the two-dimensional case we will

not discuss this in more detail here.

III. IMPLEMENTATION

For the implementation of Cα we have basically two possibilities. We can simply approximate

the probability in Definition 5 by taking random pairs of points from the set K and testing whether

the dividing point determined by α belongs to K. The other possibility is to evaluate the Fourier

transform based expression (5). The first approach is straightforward to implement, and the only

parameter is the number of pairs of points used in the approximation. The sampling, however,

becomes more time consuming if we also allow gray-scale images approximating the binary one

because in this case the examined lines are selected with different probabilities.
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In the second approach, we need to discretize the integral (5) resulting in

Cα(K) =
1

N1N2

1

|K|2
N1N2−1∑

i=0

f̂(−wi)f̂(αwi)f̂((1 − α)wi), (6)

where f = χK and wi are N1 ×N2 points in a rectangular grid in R2. We may think of f̂ as the

discrete Fourier transform of a discrete function f , i.e. f is an N1 ×N2 matrix which represents

the digital image. Formula (6) contains scaled versions of the continuous Fourier transform f̂ .

We know that f̂(aw) = f̂a(w) where fa(x) = 1
a2 f(x

a
), so we may write (6) equivalently as

Cα(K) =
1

N1N2

1

|K|2
N1N2−1∑

i=0

f̂(−wi)f̂α(wi)f̂1−α(wi). (7)

In the experiments, we mainly use the measure C1/2, and in this case when α = 1/2 expression

(7) simplifies further to:

C1/2(K) =
1

N1N2

1

|K|2
N1N2−1∑

i=0

f̂(−wi)f̂1/2(wi)
2. (8)

Implementing (7) or (8) is quite straightforward, apart from the fact that we need to scale the

original image f . We recall that since 0 < α < 1 there is only need for image decimation. In our

implementation, this was done by dividing the image into equal sized regions and then summing

the elements in them to form one element in the decimated image. This method was chosen

because, in the probability sense, it preserves statistical relations between each part of the image.

One should also keep in mind that the Fourier transform length must be long enough to avoid

the wrap-around error, so if the original image f is an M1 ×M2 matrix, the transform length Ni

must satisfy Ni ≥ (|α|+ |β|+ |γ|)Mi − 2. The Matlab algorithms we implemented and used to

compute the Cα values can be retrieved from the URL: http://www.ee.oulu.fi/research/imag/msa/.

As an example we give the full Matlab program for computing C1/2 in Appendix V.

IV. COMPUTATIONAL COMPLEXITY

We next turn our attention to the computational complexity of convexity measures. Con-

sidering first the two implementations for Cα, it turns out that computing the measure using

random sampling has asymptotic complexity O(nl) and the Fourier approach has the complexity

O(N2 log2 N), where nl is the number of randomly chosen pairs of points, and N is the side

length of the image. The proportional efficiency between these implementations thus depends

on the chosen nl, which again determines the accuracy of the random sampling approach.
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Fig. 1. (a) Mean relative error and (b) computation time with different numbers of samples.

To get some insight into this matter, we performed a simple experiment involving Matlab

implementations of both approaches. We had binary images I of size 240 × 240, consisting of

three rectangular areas of pixels with value 1 on a background having pixel values 0. Each time

image I was generated the side lengths of these rectangles were randomly taken from interval

[10, 60] and their relative positions were set so far from each other that in any case when two

points are taken from different rectangles their midpoint lies in the background. For this set one

can directly see that C1/2 has the value

C1/2 = (
A1

A
)2 + (

A2

A
)2 + (

A3

A
)2,

where A1, A2, A3 are the areas of the three rectangles and A = A1+A2+A3. We measured both

computation time and relative error from the theoretical value, defined as d = abs(correct value−
estimate)/(correct value), with different numbers of sampling points nl and averaging over

1000 samples of I . Figure 1 shows the results, and we can observe that at the point where

both approaches work equally fast, the Fourier transform based evaluation gives clearly more

accurate results. The point of equal computation time differs, of course, if we take a larger image

than 240 × 240. However even by taking 140 000 samples, which was separately measured to

correspond to equal computation time for a 600 × 600 image, we do not achieve a similar

accuracy to the Fourier based approach. Taking also into account that the Fourier transform is

easy to implement and it can be used directly for gray-scale approximations of binary sets, we
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Fig. 2. Measured computation times with different convexity measures and image sizes.

saw no reason to use random sampling evaluation in the later experiments in this paper.

Considering the other convexity measures, the Cch and Cchp have the same complexity as

determining the convex hull of an object which is O(n log h) where n is the number of nonzero

pixels in the examined image and h is the number of vertices of the convex hull [16]. According

to [9], Cpoly has a complexity of O(n2
p), where np is the number of vertices of the polygon.

Finally the random sampling evaluation of Cls results in the same complexity O(nl) as the

random sampling approach of the Cα. However the computation is considerably slower than

in the case of Cα, because it requires evaluation at a number of points on the examined line.

The actual relative performances are not easily determined from the asymptotic complexities,

especially when these depend on different properties of the measured sets. To get a rough idea,

we ran an experiment where we measured the mean time of evaluating the convexity measures

of 26 binary images, of size N ×N , of letters from A to Z. We illustrate the computation times

with different image sizes N in Figure 2. For the Cls measure, we used a random sampling

approach with 10 000 samples. Looking at the results, it can be observed that computation

times for all the measures are roughly in the same range, except for the Cls which is clearly

slowest at small image sizes. The exact performance depends on the considered sets as well as

the implementations, but altogether the measures are quite fast to compute even for moderately

large images.
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each image.

V. EXPERIMENTS

In this section, we illustrate the properties of our measure and compare it with the other

measures defined in Section I. However, as already discussed, it should be kept in mind that the

optimal behavior of a measure depends heavily on the application, and our experiments consider

situations in which our measure could be useful. Also, in order to achieve a fairer comparison,

we made a polygon approximation before applying Cchp or Cpoly and used 50 000 samples when

evaluating Cls. We begin the experiments by a short qualitative evaluation. We took a set of 20

different shapes and classified them according to their convexity values computed using C1/2.

We illustrate the results in Figure 3, where the object having highest convexity is on the upper

left corner. The point of this experiment was to indicate that at least intuitively the obtained

results are sound.
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Fig. 4. Samples of tangram images.

A. Classifying and sorting binary objects

In this first experiment we assess the convexity measures in object sorting and recognition

tasks in noisy conditions. As test objects we took 100 binary 128 × 128 images of tangrams,

which are produced in an ancient Chinese game, as figures composed of seven pieces of given

shape. Some of these are illustrated in Figure 4. The reason for using tangrams is that they

give rise to a wide variety of shapes which have roughly the same area and perimeter. All the

objects were different in shape and only one was convex, because it would make no sense to try

to classify convex objects using convexity measures. The noise used to distort the images was

generated in the following way. First, we added uniformly distributed binary noise to the images,

where the strength D of the noise is the probability of a pixel to be inverted. Then we selected

Fig. 5. Samples of noise distorted tangrams, using noise number 0.25.
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Fig. 6. Results of the experiments using tangram dataset, (a) the Spearman ranks and (b) the

classification error rates.

the largest connected component, and further used connectivity analysis to remove all holes that

were less than 20 pixels. Figure 5 depicts a few samples of the resulting noisy tangrams.

We computed the convexity values from the original and noise distorted versions of the tangram

set with several different noise levels. According to these values, we sorted the tangrams in order

of convexity at each noise level, and measured how these correlated with the convexity order of

the original tangrams. As a measure for this correlation we used the Spearman rank [17], which

is a way of estimating the correlation of two data groups possibly having very different scales.

In this way the correlation is estimated only using the ranking data and not the absolute values.

The resulting correlations are plotted in Figure 6(a), which clearly illustrates the noise tolerance

of the area based measures compared to the boundary based ones. It can be further observed

that the proposed C1/2 measure outperforms the other measures, producing consistent rankings

even under severe noise conditions.

In addition to sorting, another important use of shape descriptors is in object classification.

To see how the measures perform in such a task we also recognized the noisy tangrams using

the convexity values as features. A noisy tangram was classified to be the one from the originals

having the closest convexity value. Since only one of the measured objects was actually convex,

we expect that when changing the value α in Cα, the information that it gives from the shape

also changes. In this case a combination of several Cα, with different values α, could result in
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more discriminative information from the objects and thus improve recognition performance. To

see this, we also computed C1/4 values from the tangrams and used the measurement vector

[C1/2, C1/4] for the classification. The corresponding classification error rates are plotted in

Figure 6(b). We see that already C1/2 outperforms the other measures by a clear margin, but

the combination of C1/2 and C1/4 improves this still further. The results obviously indicate that

using several Cα values may improve the results.

B. Lesion classification

One of the issues in medical image analysis is to automatically identify prominent melanomas

from images of skin lesions. This topic has recently been more broadly discussed in [1], where

also a novel method for such detection is presented. It is known that one of the most important

factors in discriminating benign melanocytic lesions from malignant melanomas is the shape

of the lesion border. Using this fact in [1] they constructed a measure of the lesion border

irregularity and classified those having very irregular border, in the context of this measure, as

the most prominent melanomas. To evaluate the method they classified 40 lesion borders, some

illustrated in Figure 7, and computed the Spearman rank correlation of the obtained result to a

classification made by 14 human experts. The method achieved a rank of 0.88, which was better

than the results obtained with the other techniques they considered.

The convexity measure is also very suitable for such shape measuring, which was also

discovered in [10]. We wanted to see how the C1/2, Cch, Cls, Cchp, and Cpoly perform in such a

task by performing the same experiment as in [10]. In this case we classified those having the

lowest convexity as the most prominent melanomas. The Spearman ranks achieved with different

convexity measures are illustrated in Table I. From these one can observe that boundary based

measures are not suitable for this type of a problem as was already stated in [1], however

Fig. 7. 4 samples of the classified lesions.
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TABLE I

ABSOLUTE SPEARMAN RANKS IN LESION CLASSIFICATION TEST.

C1/2 Cch Cls Cchp Cpoly

0.95 0.90 0.84 0.37 0.42

the area based convexity measures work remarkably well. Already Cch outperforms the results

presented in [1], and C1/2 does even better. The experiments done in [10] resulted in comparable

performance, but evaluating the measures in [10] is not trivial and requires genetic algorithms.

Taking into account also how simple for instance C1/2 is to compute compared to the irregularity

measures presented in [1], one can see the potential of these methods as a part of medical image

analysis systems.

C. Pollen classification

Pollen allergies are very common and are usually treated with a medication that is used only

during those times of the year when certain pollens are in the air. For this purpose pollen

forecasts and measurements are essential. To take such measurements one has to collect pollens

from the air and somehow recognize how many and which types of pollens there are in the

atmosphere. In Albert-Ludwigs Universität in Freiburg, such recognition has been accomplished

using microscope images of pollens collected from outside air [18]. One of the discriminating

features between different pollen types is the object structure that appears in these images. In this

experiment we wanted to see how our convexity measures work as descriptors for these structures

and how they perform in classification. This recognition task is very difficult since real world

pollens are not always geometrically transformed versions of each other, and in addition many

types of disturbances appear during the collection and imaging processes.

We had a sample pollen image database from the Albert-Ludwigs Universität Freiburg con-

taining a total of 1751 gray-scale images of 12 different types of pollens. In order to produce

binary images describing the structure of pollens we applied two different procedures. In the

first approach, we applied the Canny filter [19] and then dilated the obtained edge image using a

circular element of 2 pixels diameter. In the second approach, we computed the absolute values

of the image gradients, normalized them to the interval [0, 1], and then thresholded them. The
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thresholding was done using either the so-called ”hard” or ”soft” technique, which we define as

follows:

fh(x) =

⎧⎨
⎩ 1 if f(x) > t,

0 otherwise.

fs(x) = 1 − e−((1/t) log(2)(1/6)f(x))6 ,

where fh is the result of hard thresholding, and fs is the result of soft thresholding. The parameter

t, in both approaches, is chosen using the Otsu algorithm [20] to be such that it minimizes the

intraclass variance of the 0 and 1 pixels in fh. In other words, the soft thresholding gives a

gray-scale image that approximates the strict binarization fh, and we presume that in the case of

distortions, this approximation changes less than in the corresponding fh. Therefore we expect

a measure computed from fs to behave more robustly compared to that computed from the

corresponding fh. We recall here that only Cα could be applied to the gray-scale image fs and

Fig. 8. Six samples of different pollen types. The first row has the original images, the second

row has the hard thresholded images, the third row has the softly thresholded images, and the

fourth row has the dilated edge images. The measured sets are denoted by black color.
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these nonbinary values are interpreted as the probability of a pixel belonging to the shape, as

discussed in Section II. In all cases, the convexity measures were directly applied to the achieved

edge dilated images, or binarized gradient images without any further preprocessing. Figure 8

illustrates 6 different types of pollen and their thresholded gradient and dilated edge images.

The state-of-the-art pollen classification systems use around 20-60 features, so it was expected

that a single convexity value does not have enough information to distinguish between the pollen

classes. This fact was also verified in experiments where the correct classification rates with

single measures remained around 20% − 46%. However, as in the tangram experiment, we can

take several Cα measures to construct measurement vectors which contain more discriminative

information about the objects.

Recalling Section 4, due to the symmetry it is enough to consider the interval 0 < α ≤ 1/2,

but unfortunately there is no other theoretical result which would show how to select an optimal

set of α values. It is also likely that the optimal choice would depend on the measured objects,

and might be found using an evaluation process with training data. For our experiment, we

decided to take somewhat arbitrarily four sets of α, having 1, 3, 5 and 10 values. The largest

set A3, having 10 values, was taken to be A3 = {C1/(2β) | β = 1, . . . , 10}. The set A2, having

5 values, was taken from the the set A3 simply by picking every second value. Similarly A1

was created by taking every second value from A2. Finally A0 was taken to have only C1/2.

We made such a selection in order to have a situation where A0 ⊂ A1 ⊂ A2 ⊂ A3, making it

possible to observe whether the addition of new features brings new information or increases

classification perfomance.

To evaluate the features we computed the 10-fold cross validation errors for both edge

images and gradient images, using the Support Vector Classifier [21] with the RBF kernel.

The results achieved are presented in Table II. It is interesting to observe that already three

simple shape descriptors contain significant discriminating information on the objects, and with

10 descriptors the classification accuracy is 89%. We can also observe that when comparing the

two thresholdings the soft approach results in better performance, supporting the assumptions

presented. The state-of-the-art pollen classification systems have 96% classification accuracy with

the same data, but as they use plenty of gray-scale features and are optimized for such detection,

we consider the results with only few convexity descriptors to be really promising. In addition,

even if the classification results of 50 − 89% with a few convexity values will not satisfy the
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TABLE II

CLASSIFICATION RATES USING 10-FOLD CROSS VALIDATION FOR DIFFERENT α-SETS.

α-set A0 A1 A2 A3

Gradient images, soft threshold 46.1 % 73.1 % 80.2 % 89.4 %

Gradient images, hard threshold 44.9 % 65.9 % 77.6 % 87.7 %

Edge images 29.3 % 52.9 % 63.2 % 72.3 %

needs of the application, one could use this easily computable information to complement other

features.

VI. DISCUSSION

Different shape measurement applications set different requirements for the convexity measure.

In some cases, strong reactivity to small defects in the object is desirable, and in other cases the

image quality might be poor and one needs robustness against noise or other distortions. Due to

these different objectives it is hard to design a measure that is applicable to all situations. If we

consider the Cchp, and especially Cpoly measures, one would expect that these boundary-based

techniques work well when strong reactivity is desired and good quality images are available.

On the other hand in the presence of noise these measures would clearly not be applicable. The

experiments in Section V and in [9] further support this conclusion.

Comparing the other probability based approach Cls to our method, there are clear advantages

in using points rather than lines. The use of points gives rise to a variety of measures and

offers an elegant way of evaluating them, which is lacking from Cls. Also the results presented

in Section V illustrate that the performance and the robustness of the point based approach is

significantly better.

In this paper, we propose a new area based convexity measure and provide a comprehensive

discussion about its properties. We show that the measure fulfills the four basic requirements

given in Section I, and also that it depends continuously on examined set. This additional fact

is important for applications where stability under noise is desired. We also gave an efficient

procedure for computing the measure using the Fourier transform. A new feature of the measure

is that it does not require an exact binary image, but can also be applied to a gray-scale image
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which approximates the binary set. This property removes the need for strict binarization, and

according to the experiments this seems to improve the robustness of the measure. Generally this

feature might be useful when the objects are poorly segmented or suffer from gray-scale noise.

Also, our formulation of the measure gives rise to a whole set of convexity measures, which can

be used to extract more information from the sets under study. The results with tangrams and

pollen classification support this idea. The existence of several measures gives new possibilities

for choosing the proper convexity measures for a specific application.

VII. CONCLUSIONS

In this paper we presented a novel convexity measure for shape analysis. The method turns

out to be easy to implement using the Fast Fourier Transform, and it can be applied directly to

an image containing a binary set or a gray-scale approximation of it. An example program for

computing the measure is included. The theory presented also provides a basis for constructing a

whole set of convexity measures which will make it possible to extract more information about

the object shape, and will give flexibility to adjust the method to the needs of applications.

In addition, the measure can be extended in a straightforward way to cover also 3-dimensional

objects. According to the experiments presented, our method provides robust results with respect

to noise and in this sense outperforms the other measures included. We also demonstrated our

novel measure in two real world classification tasks where it seemed to perform very efficiently.

Taking into account how simple the proposed convexity measures are to compute, we expect

them to be useful in many computer vision applications.
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APPENDIX I

PROOF OF PROPERTY 1

We begin with a precise statement which characterizes convex sets in terms of the probability

that a point on the line segment between two points from a set belongs to the same set.

Lemma 1.1: Let X and Y be independent random variables drawn uniformly from the set K.

(a) If K ⊆ R2 is a compact convex set, then P (αX+(1−α)Y ∈ K) = 1 whenever α ∈ (0, 1).

(b) Let K be a compact subset of R2 which satisfies K = int(K). If P (αX + (1 − α)Y ∈
K) = 1 for some α ∈ (0, 1), then K is convex.

Proof: (a) Since X, Y ∈ K almost surely and K is convex, one has αX + (1− α)Y ∈ K

almost surely, so P (αX + (1 − α)Y ∈ K) = 1.

(b) If f = χK then according to (4) we have

P (αX + (1 − α)Y ∈ K) =
1

α2(1 − α)2|K|2
∫

R2

∫
R2

f(u)f(
x

α
)f(

u − x

1 − α
) dx du.

We make the change of variables x = αs, u = αs + (1 − α)t. The Jacobian of this change of

variables is α2(1 − α)2, and we obtain

P (αX + (1 − α)Y ∈ K) =
1

|K|2
∫

R2

∫
R2

f(αs + (1 − α)t)f(s)f(t) ds dt

=
1

|K|2
∫

K

∫
K

χK(αs + (1 − α)t) ds dt.

Since χK ≤ 1 the last expression is always ≤ 1. But we had P (αX+(1−α)Y ∈ K) = 1, and this

implies that there is a set E ⊆ K2 = K×K which has measure zero, so that αs+(1−α)t ∈ K

whenever (s, t) ∈ K2
� E.

Take first s = (s, t) ∈ int(K)2. We claim that there is a sequence in K2
�E which converges

to s. For if not, then there is a small ball in int(K)2 with center s which would only contain

points of E, and this contradicts the fact that |E| = 0. Hence s is the limit of some sequence in

K2
� E, and we have αs′ + (1− α)t′ ∈ K for any point s′ in that sequence. Since K is closed

we obtain αs + (1 − α)t ∈ K for any points s, t in int(K).

Now let s, t be any points of K. The assumption K = int(K) implies that there is a sequence

in int(K)2 which converges to (s, t). We have αs′ + (1 − α)t′ ∈ K for any point (s′, t′) in this

sequence by the above argument, and again the fact that K is closed implies that αs+(1−α)t ∈
K. It follows that K is convex.
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Proof: (of Property 1)

1) One has Cα(K) = P (αX + (1 − α)Y ∈ K) ≤ 1. The condition K ∈ K implies that

int(K) is nonempty, so there is a ball B ⊆ K. This shows that

Cα(K) ≥ P (αX + (1 − α)Y ∈ K, X ∈ B, Y ∈ B)

= P (X ∈ B, Y ∈ B) =
|B|2
|K|2 .

2) This is a consequence of Lemma 1.1.

3) We take K = Kδ = {x ∈ R2 ; 1 − δ ≤ |x| ≤ 1}. One has

Cα(K) = P (αX + (1 − α)Y ∈ K) =

∫
R2

P (αX + (1 − α)Y ∈ K|Y = y)

× P (Y = y) dy =
1

|K|
∫

K

P (αX + (1 − α)y ∈ K) dy.

Note that

P (αX + (1 − α)y ∈ K) = P (X ∈ 1

α
K − 1 − α

α
y) =

|K ∩ ( 1
α
K − 1−α

α
y)|

|K| .

Using complex notation y = reiθ, rotational symmetry gives |K ∩ ( 1
α
K − 1−α

α
y)| = |K ∩

( 1
α
K + 1−α

α
r)|. The last expression is the area of the intersection of two annuli, and a

geometric argument shows that this area is maximal when r = 1. We obtain

Cα(K) ≤ |K ∩ ( 1
α
K + 1−α

α
)|

|K| .

The numerator of the right side is majorized by the area of a subsector of K with angle

2θ, where θ → 0 as δ → 0. This shows that Cα(Kδ) → 0 as δ → 0 for fixed α.

4) This follows from the affine invariance of the MSA transform [13], since χA (K) = χK ◦
A −1.

APPENDIX II

PROOF OF PROPERTY 2

The following result will be used in the proof of Property 2.

Lemma 2.1: [14] Let f ∈ L1(R2) and g ∈ Lp(R2), p = 1 or p = ∞. Then

‖f ∗ g‖Lp ≤ ‖f‖L1‖g‖Lp.
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Proof: [of Property 2] Fix α, β ∈ R, and let γ = 1 − α − β. We assume first that all

of α, β, γ are nonzero. Then one of |α|, |β|, |γ| is ≥ 1/3, say |γ| ≥ 1/3 (the same argument

works if |α| ≥ 1/3 or |β| ≥ 1/3). We write I(p, q, r, s) =
∫
R2 p(u)(qα ∗ rβ ∗ sγ)(u) du for

p, q, r, s ∈ L1 ∩ L∞. Then Lemma 2.1 and the fact that ‖fa‖L1 = ‖f‖L1 for a �= 0 imply

|I(p, q, r, s)| ≤ ‖p‖L∞ ‖q‖L1 ‖r‖L1 ‖s‖L1 , (9)

|I(p, q, r, s)| ≤ 9‖p‖L1 ‖q‖L1 ‖r‖L1 ‖s‖L∞. (10)

We now have

M(f + h)(α, β) − Mf(α, β) =
1

‖f + h‖3
L1

I(f + h, f + h, f + h, f + h) − 1

‖f‖3
L1

I(f, f, f, f)

=
‖f‖3

L1 − ‖f + h‖3
L1

‖f‖3
L1 ‖f + h‖3

L1

I(f, f, f, f) +
1

‖f + h‖3
L1

[
I(h, f, f, f) + I(f, h, f, f) + I(f, f, h, f)

+ I(f, f, f, h) + I(h, h, f, f) + . . . + I(f, h, h, h) + I(h, h, h, h)
]
. (11)

We need to estimate the expression on the right of (11). Since ‖f‖L∞ = 1, (9) gives

|I(f, f, f, f)| ≤ ‖f‖3
L1.

The assumption ‖h‖L1 ≤ 1
2
|K| = 1

2
‖f‖L1 implies ‖f +h‖L1 ≥ 1

2
‖f‖L1 . Then the absolute value

of the first term in (11) is bounded by

8|‖f + h‖3
L1 − ‖f‖3

L1|
‖f‖3

L1

. (12)

We have

‖f + h‖3
L1 − ‖f‖3

L1 ≤ (‖f‖L1 + ‖h‖L1)3 − ‖f‖3
L1 = 3‖f‖2

L1‖h‖L1 + 3‖f‖L1‖h‖2
L1 + ‖h‖3

L1

≤ C0‖f‖2
L1‖h‖L1

and

‖f + h‖3
L1 − ‖f‖3

L1 ≥ (‖f‖L1 − ‖h‖L1)3 − ‖f‖3
L1 = −3‖f‖2

L1‖h‖L1 + 3‖f‖L1‖h‖2
L1 − ‖h‖3

L1

≥ −C0‖f‖2
L1‖h‖L1

where C0 denotes an absolute constant which is replaced by a larger such constant whenever

needed. Now (12) is ≤ C0
‖h‖L1

‖f‖L1
, which takes care of the first term in (11).
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To continue, first note that 1
‖f+h‖3

L1
≤ 8

‖f‖3
L1

. Now (10) gives

|I(h, f, f, f)| ≤ 9‖h‖L1 ‖f‖2
L1

and 1
‖f+h‖3

L1
|I(h, f, f, f)| ≤ C0

‖h‖L1

‖f‖L1
. For the other terms of the form I(h, · ) we use (10) and

also ‖h‖L1 ≤ 1
2
‖f‖L1 , and obtain that |I(h, · )| ≤ 9(max {R, 1})‖f‖2

L1 ‖h‖L1 . Then

1

‖f + h‖3
L1

|I(h, · )| ≤ C0R
‖h‖L1

‖f‖L1

since R ≥ 1. Finally, for the terms I(f, · ) we use (9) and ‖h‖L1 ≤ 1
2
‖f‖L1 and obtain

1

‖f + h‖3
L1

|I(f, · )| ≤ C0
‖h‖L1

‖f‖L1

.

This ends the proof for the case where α, β, γ �= 0.

If one of α, β, γ is zero, say γ = 0, then β = 1 − α and

M(f + h)(α, β) − Mf(α, β) =
1

‖f + h‖2
L1

I(f + h, f + h, f + h) − 1

‖f‖2
L1

I(f, f, f)

where I(p, q, r) =
∫

p(u)(qα ∗ rβ)(u) du. In this case one of |α|, |β| is ≥ 1/2, and using this fact

and obvious counterparts for (9) and (10) one proceeds in a similar way as above. This takes

care of the case where one of α, β, γ is zero.

Finally, suppose two of α, β, γ are zero. We may assume α = β = 0 and γ = 1, and then

M(f + h)(0, 0) − Mf(0, 0) =
‖f + h‖2

L2

‖f + h‖L1

− ‖f‖2
L2

‖f‖L1

=
(‖f + h‖2

L2 − ‖f‖2
L2)‖f‖L1 + (‖f‖L1 − ‖f + h‖L1)‖f‖2

L2

‖f‖L1‖f + h‖L1

.

We note that ‖f + h‖L1 ≥ 1
2
‖f‖L1 , |‖f + h‖L1 − ‖f‖L1| ≤ ‖h‖L1 , and

‖f + h‖2
L2 − ‖f‖2

L2 =

∫
R2

((f + h)2 − f 2) dx =

∫
R2

(2fh + h2) dx

so that |‖f + h‖2
L2 − ‖f‖2

L2| ≤ (2‖f‖L∞ + ‖h‖L∞)‖h‖L1 ≤ 3R‖h‖L1 . Further, ‖f‖2
L2 ≤ ‖f‖L1 .

Using these facts we obtain

|M(f + h)(0, 0) − Mf(0, 0)| ≤ (6R + 2)
‖h‖L1

‖f‖L1

.

The last expression is bounded by 8R
‖h‖L1

‖f‖L1
, which ends the proof.
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APPENDIX III

PROOF OF PROPERTY 3

Proof: We let f = χK and h = χK ′ − χK , so that f + h = χK ′ . Then |h| ≤ 1 and

‖h‖L1 = |K ′
� K| + |K � K ′| = |K ′	K|, so h satisfies the conditions of Property 2 with

R = 1. Thus

|MχK ′(α, 1 − α) − MχK(α, 1 − α)| ≤ C0
|K ′	K|

|K| .

The left hand side is the same as |Cα(K ′) − Cα(K)|, so we obtain

|Cα(K ′) − Cα(K)| ≤ C0
|K ′	K|

|K| .

APPENDIX IV

PROOF OF PROPERTY 4

Proof: If A is any convex subset of K, one has

Cls(K) = P ([X, Y ] ⊆ K) ≥ P ([X, Y ] ⊆ K, X ∈ A, Y ∈ A)

= P (X ∈ A, Y ∈ A) =
|A|2
|K|2 .

Taking the supremum over all convex subsets of K gives

Cls(K) ≥ |mcs(K)|2
|K|2 = Cmcs(K)2.

Also, for fixed α,

Cα(K) = P (αX + (1 − α)Y ∈ K) ≥ P ([X, Y ] ⊆ K) = Cls(K).

APPENDIX V

MATLAB PROGRAM FOR COMPUTING C1/2

The input f in the algorithm is a binary image, or a gray-scale image which is close to a

binary image. We note that the second and third lines are just to make the image dimensions

even numbers.



28

function F=convexity(f)

[m,n]=size(f);

f=[[f,zeros(m,rem(n,2))];zeros(rem(m,2),n+rem(n,2))];

[m,n]=size(f);

f0=sum(f(:));

f1=f(1:2:m,1:2:n)+f(2:2:m,1:2:n)+f(1:2:m,2:2:n)+f(2:2:m,2:2:n);

F=real(sum(sum(conj(fft2(f,m,n)).*(fft2(f1,m,n).ˆ2))))/(n*m*f0ˆ2);
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