THE LINEARIZED CALDERON PROBLEM FOR POLYHARMONIC OPERATORS

SUMAN KUMAR SAHOO AND MIKKO SALO

ABSTRACT. In this article we consider a linearized Calderén problem for polyharmonic operators of order
2m (m > 2) in the spirit of Calderén’s original work [Cal80]. We give a uniqueness result for determining
coefficients of order < 2m — 1 up to gauge, based on inverting momentum ray transforms.

1. INTRODUCTION

Let n > 3 and let 2 C R™ be a bounded domain with smooth boundary 9f2. For m > 2, we consider the
following polyharmonic operator £ with lower order anisotropic perturbations up to order 2m — 1:

L(x,D)=(-A)"+Q(x, D), (1.1)
where
2m—1 A ‘
Q(z, D) = > af,.;(x) D" (1.2)
=0
is a differential operator of order 2m — 1 with 1 < iy,---,i; < n and &' is a smooth symmetric tensor field

of order [ in Q. Einstein summation convention is assumed for repeated indices throughout the article.
The boundary measurements corresponding to the equation £(x, D)u = 0 in 2 may be encoded in terms
of the Cauchy data set (see e.g. [OSSU20] for the general case)

Cr = {(uloa, Ouulog, -+, 07" ulan) + u € H*™(Q), Lu = 0}.

The inverse problem of interest is to determine some information on the coefficients of the operator £, up
to suitable gauge transformations, from the knowledge of the Cauchy data set L.

For various special choices of boundary conditions, one could define a Dirichlet-to-Neumann type
operator for solutions of Lu = 0 in 2. This requires that the boundary conditions lead to an elliptic
boundary value problem (Lopatinskii-Shapiro condition) and that 0 is not an eigenvalue for this problem.
For example, one could consider solutions with the clamped boundary conditions

uloq = fo, Ouloa = fi, -, 00 tuloq = fm1

and consider the boundary map

AS : (fore ooy fe1) = (0Mulaq, - . ., 02 Lu)gq).

Alternatively, one could consider Navier boundary conditions

uloq = fo, (=A)ulaa = f1, - (=A)"tulgq = fin—1

and consider the boundary map

AY  (fo,. ooy fme1) = (Buulaq, O(=A)ulaq, ...,0,(—A)™ tulsq).

If 0 is not an eigenvalue of the corresponding elliptic boundary value problem, then knowing the Cauchy
data set is equivalent to knowing the boundary map. One can view the Cauchy data set as a generalization
of such boundary maps that is independent of the choice of (elliptic) boundary conditions.
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The most classical case is m = 1, so that £ is a second order elliptic operator. The prototypical inverse
problem for such operators is the inverse conductivity problem posed by Calderén [Cal80]. The original
problem was stated for the equation div(yVu) = 0, but if the conductivity function v is C? and positive
one can reduce matters to the Schrodinger equation (A + ¢)u = 0 for some potential g. One can further
consider equations of the form Au + A(x) - Vu + qu = 0 for some vector field A and potential ¢. This
includes the magnetic Schrodinger equation and equations with convection terms, which are clearly of the
form (1.1). Various results are known for related inverse problems for determining the vector field A(x),
sometimes up to a gauge of the form A — A+ V¢, and the potential ¢ from boundary measurements. We
refer the reader to the survey [Uhl09, Uhl14] for more information and references on the second order case.

In this paper we consider a Calderén type problem for polyharmonic operators of order 2m with a
lower order perturbation up to order 2m — 1. There are many previous results on inverse problems for
polyharmonic operators, including [KLU12, KLU14, Ghol5, GK16, BG19, BG20, BG21]. In all of these
results one only determines lower order coefficients up to order < m from boundary measurements. The
reason for this restriction is that the method of complex geometrical optics solutions used in these inverse
problems requires certain L? Carleman estimates, which can become highly delicate for higher order
operators. In the previous works the required Carleman estimate for the polyharmonic operator has
been obtained by using a well known Carleman estimate for second order equations several times in a row.
Since there is a loss of half derivative in the original Carleman estimate (it involves a limiting Carleman
weight), iterating it many times leads to a loss of several derivatives and thus restricts the method to lower
order terms of degree < m.

In this article we will consider a general higher order elliptic operator given by (1.1) and recover several
lower order coeflicients up to order 2m —1. However, because of the restriction mentioned above, we are not
able to consider the full nonlinear inverse problem. Rather, we will only consider the linearization of this
inverse problem. In the linearized problem it is sufficient to use solutions of the “free” equation (—A)™v =0
in the recovery of the coefficients, and this avoids the need to use Carleman estimates. However, even in
the linearized problem the recovery of higher order terms becomes intricate. We will follow the ideas of
[BKS21] where it was observed that momentum ray transforms (MRT) appear naturally in solving inverse
problem for polyharmonic operators. The inversion of various MRT is crucial for recovering the coefficients.
In particular, to handle the coefficient of order 2m — 1, we study the kernel of a partial MRT. To do so,
we demonstrate a new trace free Helmholtz type decomposition result for symmetric tensor fields.

The rest of the article is organised as follows. In Section 2 we derive the linearized inverse problem and
state our main results. Section 3 is devoted to the unique recovery of tensor fields up to order 2m —2. Then
Section 4 deals with the recovery of coefficients up to order 2m — 1 under certain assumptions. Section 5
deals with gauge transformations and recovery of coefficients up to natural obstructions; see Theorem 2.3.
Finally, in Section 6 we describe the kernel of MRT which is the key tool for proving our main results. The
required Helmholtz type decomposition result for tensor fields is then proved in Section 7. In Appendix A
we review some known results and give the construction of special solutions (known as CGO solutions) of
(=A)™y = 0. The Navier to Neumann map is then linearized in Appendix B by computing the Fréchet
derivative.

2. LINEARIZATION AND MAIN RESULTS

We now derive the formal linearization of the polyharmonic inverse problem. The forward operator is
formally given by the map £ — C,. Since C, is a set and not necessarily an element in a Banach space,
we cannot directly compute the Fréchet derivative of the forward operator. We instead assume that

Cr. =Cp, for all € € (—a,a), a>0, (2.1)

i1+

2m—1 o
where Lo = (—=A)™, L = (=A)™ + Q(z,¢,D) and Q(z,e,D) = > al . (x,e) D%, We assume that
!

=0
a' depend smoothly on z and € and that a'(z,0) = 0 for all 0 < I < 2m — 1, i.e. we are computing the
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linearization at the case of zero lower order coefficients. Using that Cr. = Cr,, from [OSSU20, Lemma
2.8] we have the integral identity

<(‘C€ - E())U, U>L2(Q) =0, (22)
for any u,v € H?*™(Q) satisfying Lou = 0 and L v = 0 in . This can be rewritten as

2m—1
< Z aél,,_il (z,€) DUy, e),v(m)> =0 for all € € (—a,a).

=0
Differentiating this with respect to € we obtain

2m—1 2m—1
< Z Oc(al, . (z,€)) Dil"'ilu(:v,e),v(:n)> + < Z al, .., (z,€) D“"'ilﬁeu(:n,e),v(m)> =0.

1=0
Writing w = u|—o and setting € = 0, we have

2m—1
< > el (x,0) Dil'"ilw(x),v(a:)> =0. (2.3)

=0

Setting € = 0 in the equation Lu = 0 and using a’(z,0) = 0 for all 0 < [ < 2m — 1, we see that w solves
(=A)™w = 0. It follows that the identity (2.3) holds for any w and v solving (—A)"w = (=A)™v =0 in
Q.

We can now formulate (with slightly different notation) the main uniqueness question for the linearized
inverse problem considered in this article.

Question 2.1. If aél,,_il for 0 <1< 2m —1 are smooth tensor fields in Q and if

2m—1

2 =0
2 . . . . . l .
for all u,v € H*™(Q) satisfying (—A)"u = (=A)™v = 0, is it true that the coefficients a;,..; vanish
possibly up to suitable gauge transformations?

We mention that if the Cauchy data set is the graph of suitable Dirichlet-to-Neumann type map, one
can make the above formal derivation rigorous and the linearized problem is still given by Question 2.1.
See Appendix B where this is done for the Navier boundary conditions.

We now show that it is not in general possible to recover all the coefficients in Question 2.1 due to the
presence of a gauge. One possible gauge is obtained by replacing £ by e~?Le? for a suitable function ¢.
Note that if

¢ € C*™(Q) and ¥ plog = 0 for 0 < j < 2m — 1, (2.4)
then u and e®u will have the same Cauchy data up to order 2m — 1. Thus for such functions ¢ one has
Cr = Ce*¢£e¢'

It is easy to compute the highest order terms for the conjugated operator:

e ?LePu = e ?((—A)™ + a?™ ! 1Dil""'2m*1 +...)e%u

i1 i9m—
= (e7(=Q)e”)" u+ e (a5, | DT 4 L) (%)
_ 2 —¢(,2m—1 i1 i2m )
= (=1)"(A¢ + |Vo[" +2Ve -V + A)"u+e ?(a; ", — D74 ) (eu)
= (=A)"u+ (af5) DR (—1)"2mV e - V(A" u
Above ... denotes lower order terms. Thus there is always a gauge invariance, where one can add terms

of the form (—1)™2mV¢ - V(A)™ ! to the term of order 2m — 1. There will be corresponding changes in
the lower order terms as well.
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However, if we only consider operators £ for which a?™~! = 0, then this type of gauge does not arise: if
the term (—1)"2mV¢ - V(A)™ ! vanishes identically, then necessarily V¢ = 0 and hence ¢ = 0 using the
condition ¢|gn = 0.

Our first main result states that for operators with a
completely in the linearized inverse problem.

2m=1 — (), one can recover all the lower order terms

Theorem 2.1. Suppose that
2m—2 ‘
/ Z aél...ilD“'"”uv =0 whenever A™u=A"v=0. (2.5)
o =0

Thenal:OianOTOSZSQm—Z

As an immediate corollary of Theorem 2.1 one obtains the following density result on certain spaces of
symmetric tensor fields. For density results involving harmonic functions and tensor fields see e.g. [CF20].
One may also expect other related density results as a consequence of the method of proof of Theorem 2.1.
See Remark 3.3.

Corollary 2.2. For each even integer M > 0 consider the set
M+2 +2

Ay = span{v Bo<|aj<y D u: APy = APl =0 i Q} :

Then Ay is dense in SM (C>(Q)) = EBS/LOSP (C™(90)), where S? (C>=(Q)) stands for the space of smooth

symmetric p tensor fields in Q and @ is the direct sum.

Note that for m = 1, Theorem 2.1 reduces to the statement that if f € C°°(Q) satisfies

/fusz whenever Au=Av=0 in £,
Q

then f vanishes identically in €. This is just the linearized Calderén problem for the Schrodinger
equation (linearized at the zero potential), which has been studied in various settings including partial data
[DSFKSU09,SU16] and Riemannian manifolds [GST19,KLS20]. Results for such linearized problems have
recently become important in the context of inverse problems for nonlinear PDEs, see e.g. [KU20, LLLS21].

Now we state our second main result. It also includes terms of order 2m — 1 and gives a complete answer
(modulo an assumption for ™1 on 99Q) for the linearized Calderén problem for polyharmonic operators
when m = 2,3, showing that one can determine the coefficients uniquely up to the gauge transform
L — e~ ?Le?. In particular, there are no other gauge invariances in this problem. We also obtain a partial
answer when m > 4.

Theorem 2.3. Let £ be as in (1.1)—(1.2) and suppose 95a*™~1 =0 on 9Q for all 0 <r < 2m—1. Assume
that
2m—1 o
/ Z ai-l...ilD“'"”uv =0 whenever A"u=A"v=0.
o =0
1. For m =2 or m = 3, one has
L=e?(-A)me?
for some ¢ satisfying (2.4). In particular,
a2m—1 — Zgnfl(vgb)
where i is the symmetrization with Kronecker delta tensor; see (3.1) for the definition.
2. For m > 4, if we additionally assume that a®™~1 = ig”_lAl for some vector field A1 € C*>(Q),
then L = e~ ?(=A)"e® for some ¢ satisfying (2.4). In particular,

Al = V.
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Remark 2.4. In Theorem 2.3, the boundary assumption on the coefficient a?™~!

a boundary determination result.

can be removed through

In the next section we present the proof of Theorem 2.1. Then, in Section 4, we prove few results (mainly
Proposition 4.3), which we then employ in Section 5 to demonstrate Theorem 2.3.

3. PROOF OoF THEOREM 2.1

In this section we demonstrate the proof of Theorem 2.1. The proof will be based on the trace free
decomposition on 5™, the space of symmetric m tensor fields over 2. To this end, we define two operators
is 0 8™ — S™F2 and js5 : S™ — S™2 as follows:

(iéf)il“'im-w = O-(fir“im ® 5im+1im+2) (31)
n

(.j(sf)il"'ime = f’i1---im_2kk7 (32)
=1

M

where o denotes the symmetrization of a tensor field. Here d;; is the Kronecker delta tensor which is equal
to 1 for i = j and 0 otherwise. We also define jsf = 0 for f € S? or f € S'. Note that the operators is
and js are dual to each other with respect to the L? inner product. Based on this observation we write the
trace free decomposition of tensor fields from [DS10,PSU] as follows: for I > 2 one has

[4]
al =" i (3.3)

k=0

where b'*t is a symmetric tensor field of order | — 2k; with jsb"* = 0. Any f € S™ satisfies jsf = 0 is
known as trace free tensor field. For [ = 0,1 any tensor field a! is trace free.

Note that (3.3) is an orthogonal decomposition on the space of square integrable symmetric tensor fields
over (), denoted by L?(S™). This implies that a! = 0 if and only if b"¥ = 0 for all k; with 0 < k, < [L];
see [Sha94, Equation 6.4.2]. Thus in the remainder of this section we show that under the conditions in
Theorem 2.1, if a’ has the decomposition (3.3) for 0 <1 < 2m —2, then b"% = 0 for all k; with 0 < k; < [L].
This completes the proof of Theorem 2.1.

Proof of Theorem 2.1. We insert (3.3) in the integral identity (2.5) and obtain

om—2 [%]

2m—
- Z Z (a5 )i, D = Y Zbﬁl’“l” L Dk (- ARy g (3.4)
l

1=0 k=0 1=0 k=

w\~

whenever A™y = A™v = 0. We now recall suitable complex geometrical optics (CGO) solutions to the
polyharmonic equation given in (A.5),

u(w; h) =i (ertin)e (ao(x) + har(x) + -+ K" am_1(x) + (23 h)) = en(ertim)e j

1

w(; h) = wETRIT (b () 4 hby () + -+ B by (2) + F(a; h)) = e wl@FIRIE R

where the error terms r(x; h) and 7(x; h) satisfy the estimate ||r(z, h)||H27? < ch™ and [|7(z, h)Hsz? < ch™.

Moreover, we also have that a; and b; are smooth functions in € for all j with 0 < j < m—1. Substituting
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the expressions for u and v given above in the identity (3.4) and using (A.2) and (A.3) we obtain

l
2m2§

Z Z plki Dt |:€h(31+“72) (— lT— A)kl/q e h(e1tim)z
112k, h
1=0 k=
2m—2 [%}
Lk 1 , 1 : 1 k7| A
= bil...z,_%lwil+E<el+m2>il>-~<Dil_%l+g<el+mz>il_%l> (—T-AMA|B
=0 k;=0
l
2m—2 5 -2k,
—21{:1 i Zz 2%k .
223 /(0 ) et b e
=0 k=0 5=0
x DU-2k=i+1 ... Di-2k, ((—ET — Ak A)B. (3.5)

Here 75 can be any unit vector with e;-n2 = 0. From now on we write n = 12. We recover the coefficients
one by one by multiplying (3.5) with suitable powers of h, by letting h — 0 and by inverting momentum
ray transforms (MRT, see Lemma 3.1). This will be done in several steps.

Step 1. We first show that
b2m—2,0 —=0.

We start by multiplying (3.5) by h?™~2. Next utilizing the estimates given in Lemma A .4, ||r(z, h)|| 2 <

ch™, ||7(x, h)||H2m < ch™ and letting h — 0, we see that only f bflm lfmo J(er +in)i, -+ (e1 + )iz _oa0 bo

term survives and other terms will be 0. This implies

/bim (e )iy -+ (€1 + )iz, 300 b0 = 0. (3.6)

Adapting ideas from [KS14] we write,

2m—2,0 : :
bilnf_i%hz (ex +1n)iy -+ (e1 4 i1)ig, s

2m—2 2m — 2
. - 2m—2,0

p=0
2m—2
= Zb?lmlfo’pn Mipy 2< 1,00 i, <n foreach 0<p<2m—2, (3.7)
p=0
where b?lm 12 0P — (§)p (2"; %) bflm 1210 , for each p with 0 <p <2m — 2.
Recall that ap and by solve the transport equations T™ay = T"by = 0. We utilize (A.6) and choose
the following specific solutions ag and by, where yo denotes the direction of n and 3" = (ys,...,y,) are

orthogonal directions:
ap =yy' ! g(y”)eii/\(yﬁiw) and by=1y4 forall k with 0<k<m—1.
Here A € R and ¢(y") is any smooth function in the y” variable. This along with (3.6) and (3.7) implies

2m—2

/ / Z bl21m 11,2 0,17 (y1, 2, y//) iy i, o —1+k —1)\(y1+1y2)dy1 dyo g(y”)dy” —0.
Rn—2 R2 b= 0



Since g can be any smooth function in the 3" variable, varying g and fixing k = m — 1 yields

2m—2
72m—2,0, _
/ zlm “ip P )‘ » Y2, Z/”) My = iy ygm 26’/\3"26@2 = 0. (38)

Here (/\) is the partial Fourier transform in the x; variable. This notation will be used throughout the rest
of the article to denote the partial Fourier transform. Next, we set A = 0 in above to obtain

2m—2
72m—2.0, _
/ zlm “ip P O » Y2, Z/”) My = iy ygm 2 dy2 =0.

Recall that 1 can be any unit vector orthogonal to e, and ys is the coordinate in direction of 7. Thus
the above identity can be interpreted as the vanishing of a certain MRT. By Lemma 3.1 we obtain
b?m=20(0,2") = 0. We next argue by induction and assume that

d’!’
W?m”vo(o,x’) =0 for 0<r<M. (3.9)

Now differentiating (3.8) with respect to A for M + 1 times, then setting A = 0 and using (3.9) we obtain

o dM+1 72 2,0 2 2
m—az,U, 7 -
/ E (d)\M'H bilmip p) (0,92, y") Miy -+ *Mip y2m dys = 0.
r P=0

The combination of this with Lemma 3.1 implies %32"%2’0(0, 2’) = 0. Hence by induction we have
d?"

72m—2,0
—b (0
dAr (

,o') =0 for all non-negative integers r. (3.10)

Since ™20 is compactly supported, the function /527”_2’0()\, x') is analytic in the \ variable by the Paley-
Wiener theorem. This together with (3.10) gives ™20 = (.

Step 2. In this step we prove that for each » with 0 < r < m — 2, we have
pmm2mkrk — 0 forall 0<k<r (3.11)

The proof is based on induction in r. For r = 0 (3.11) follows from Step 1. Assume that (3.11) is true
for all s with 0 < s <7 < m — 2. Our goal is to prove (3.11) for 4+ 1. To this end, we first separate the
integrals for 7 = 0 and that of for j > 1 in (3.5). Then we again separate the term corresponding to j =0
into two terms. As a result from (3.5) we obtain,

om—2—r—1 [5] phkt

By . . 1 -
0= / ﬁ(el Hi2)iy - (ex 4 im2)iy g, (=71 = AA)B

1y 1,k
2

i1 i . . 1 - o~
+ Y Y #(61 +in2)iy - (e +1n2)iy_y, ((_BT - A)MA)B

om—2 (5] 1—2k

—2]471 14 .
+ Z Z Z /( ) h; 2212’? (ex +in2)i; -+ (€1 4+ im2)i; oy,

=0 k=0 j

W D=2k —i+1 ... Di-2k ((—ET — A)klz‘i) B
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Simplifying and utilizing induction assumption in the second integral above we conclude,

2m—2—r—1 [é] bljkl ) .
11 —2k . . N\
0= [ e i (e + i (- - A B
[Lﬁ] 2m7‘277.7k2m—2—r

112k . . 1 kom—2-r A\ B
+ Z / h2m—2—7’—12k2m7277‘ (61 + “72)“ o (61 T 1n2)i2m2727T72k2m—2_’“ <(_ET B A) o A) B
Q

m—1 b?mf27k27n72 1
L1 12m—2—2ko,, . . kom—2 A\ D
+ -+ Z / h2m*2*2k272n—22 (61 + 1772)1'1 T (61 + 1772)i2m—2—2k-2m,2 ((_ET - A) ? ZA) B
kom—2=r+1 ¢

Lk
[ — 2k bu U2k i
< ; ) W(el Fim)iy - (€1 +im)ip_a,

‘ . 1 .
% DU-2k—j+1 ... D2k ((_ET — Ak A)B. (3.12)

Our next goal is to find the limit limj,_,q h?™~27""!1x (3.12). To achieve this, we consider the non-zero
integrals in the R.H.S of (3.12) with h(®*™~277=1) in the denominator. Observe that, these terms are derived
from first three integrals in the preceding equation (for certain values of summation variables) and there
will be no contribution from the last term in the above displayed equation as we see below. We show this
by examining the last term for each values of j, when [ > 2m — 2 —r as j > 1. We verify this only for
7 =1 and for other values of j similar arguments work. Therefore we consider

2m—2 [ ] ok 1
— ”Ll 1 ) . ) )
Z Z / ( l) = 2;1 lel 61 + 1772) (61 + 1772)il_2kl_1D 1—2k; ((_ET . A)klA) B

1=0 k=0 ¢
2m—2—r—1 [3] Lki
[ -2k ) ; 1 <~
- J (775 ittt + e e+ i, D (T = AV ) B
Q

l)kl

om—2 (4] | op B 1
) i1l —2k ) - o
+ Z Z / ( 1 > W(el +ing)iy -+ (e1 + 1172)1-17%[711) 1—2k, ((_ET . A)klA) B
1= ok i 1
/ < . l> %(61 + 1"72) (61 -+ in2)i172kl,1Dil_2kl ((7ET . A)kl;l) B
2m—2—r T 2m_2_r’k2m7277‘

32 b
2m —2 —r — 2k2m 2 p M im—2 2k, o,
+ Z / < h2m7277"72k2m,2,7-71
Q

ka 2— 7‘—1

. . ; 1 o~
X (61 + 1772)i1 e (61 + 1772)i2m—2—r—2k2m,27r_1D12m7277ﬂ72k2m_2_r ((_ET - A)ka_Q_rA) B+

2m—2,kam—2

m—1 b
2m — 2 — 2koy—9 11 82m —2—2ko, _ . .
+ / ( 1 " > h2m—2—2k2mi2—21 (61 + 1772)i1 T (61 + 1772)7;2m7272k2m_271
kom—2=r+1 QO

Lr_Ayen2 i) B

w Di2m—2-2kgm o ((—
h
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We arrived at the last equality using the induction hypotheses. Now notice that the highest power of h
in the denominator of the aforementioned terms is 2m — 2 — r — 2, therefore these terms will disappear,
when multiplying them by h?™~2-"=1 and then letting h — 0. Thus multiplying (3.12) by A?™~2-"=1 and
letting h — 0, we obtain

r41
3 / BRI (e i)y - e )iy (<1 Fa0) b =0, (3.13)
k=0 ¢,

Employing the same strategy as in (3.7), we next express b2~ 2 kr+1=F (¢ 1ip); - (e1 +in)
for each 0 < k <r + 1, as the sum of lower order tensors in the following way:

lom—2-2(r+1)+k

2m—2—2(r+1)+k

2m—2—k,r+1—k __ § : 2m—2—lr+1-k,p
B = bllzp iy -+

“Nip for 0<k<r+1.
p=0
Next, we choose ag = y5 ! g(y")e ?W1H1%2) and by = "' 7P for 0 < p < r + 1 to be the solution of the
transport equation 7™ () = 0, where g is an arbitrary smooth function in y”. Plugging this into (3.13),
then utilizing arbitrariness of g and performing integral in the y; variable from (3.13) we conclude
r+1
Z / cTJrlik32mf2fk,r+lfk(}\7 y2,y") ygm—Z—Q(r+1)+k+(r+1—p)e)\yzdy2 =0 for 0<p<r+1 (3.14)

where ¢,41_j, are non-zero constants for 0 < k < 7+ 1. Note that the constant (—1)"*'~* appearing in the
equation (3.13) is absorbed into ¢,41_k. Next, we specify A = 0 in above to obtain

r+1

ZCT+1ik12m7272(r+1)+k+(r+lfp)§2m727k,r+17k =0 for 0<p<r+]1,

k=0
where for all non-negative integers m, I"™ stands for the MRT defined in Section 6; see equation (6.2). We
next combine Lemma 6.7 with Lemma 3.1 to deduce that /17\2m_2_k”“+1_k(0, 2')=0forall 0 <k <r+1. At
first, applying Lemma 6.7 from the preceding equation we segregate MRT of different order tensor fields.
This means that for any 0 < k < r + 1, we have [2m=2-2(r+1)+k g2m—2—kr+1-k — (. This along with
Lemma 3.1 entails p2m—2-kr+1=k(0 2/) = 0 for all 0 < k < r + 1.

We next argue by induction and for each 0 < k < r + 1 assume that

dr
(W?m—2"”“"“) (0,2/)=0 forall 0<p< M. (3.15)
Next differentiating (3.14) M + 1 times more and then evaluating at A = 0 and using (3.15) we obtain
r+1 NN ) dM+1A2 -
ZCT+1*kI m—2— (T’+ )+ +(T+ *p) <d>\M+1B m—2—k,r+1— ) = 0.
k=0

This together with Lemma 6.7 entails

2m—2-2(r+1)+k dMt B2m—2—kr+1-k | _
I d)\M-HB =0 forall 0<Ek<r+1.

M+1

By Lemma 3.1 this gives (m?m*%k’”l*k) (0,2") = 0 for all 0 < k < r + 1. Hence by induction for

all non-negative integers p, we obtain

p
(;}\1;/52771—2—1@,7’-&-1—/%) (0,2)=0 forall 0<k<r+1. (3.16)

We have that for each 0 < k < r + 1, the tensor b 2-*F7+1=k ig compactly supported in the z; variable.
This implies the tensor b*™—2=Fr+1=k(\ 2/} is analytic in the A variable by the Paley-Wiener theorem.
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This together with (3.16) implies that, for each 0 < k < r + 1 we have p?™~2-Fr+1=F — 0 in Q. This
finished the induction step and completes the proof of (3.11).

Observe that, m < 2m—2—k <2m—2and 0 <r—k <m—2—k whenever 0 < k <rand0<r <m-—2.
After a re-indexing we conclude combining Step 1 and Step 2 that

bk =0 forall k suchthat 0<k <l—-m and m<1l<2m—2.

At this stage, inserting above findings into the integral identity (3.4) we obtain

om—2 (3]
— Lk
0= bil“‘il—le
l=m k;j=l-m+1 =0 k;=0

m—1 [é}
Dil‘“il—le (_A)kluv + Z Z bl-7kl Dil“‘il—le (—A)klU’U.

1102k,

Step 3. Next, we show that

poki _ {O forall 0<k < [%] where 0<I<m-—1 (3.17)

0 forall I—m<k <[L] where m<1<2m-—2.

This step can be carried out using the same analysis used in [BKS21, Theorem 1.1]. However, we give
an alternate proof using the ideas from Step 2. To this end, we multiply (3.5) by h™~! and let h — 0
(using similar arguments given in Step 2) to obtain

2m—2
) /bl,kl (e1 +in)iy -~ (e1 +n)iy_y, T ag by =0, (3.18)
I=m—1 Q
where m — 1 —kp—1 = -+ =2m — 2 — koyp—2 = A =m — 1 and ag, by satisfy 7"(-) = 0. This entails
2m—2
> / B (o) i)y, - (e1 4+ i0)iy,, o, T ™ Vagby =0 with T™ag = Ty = 0.

Extending the tensor fields b44=(m=1) by 0 outside of €, then choosing ag = yé”_l g(y"e Murtiv2) and
bo = Yy 1P f6r 0 < p < m — 1, varying ¢ to be any smooth function in the y” variable and performing
integral in the y; variable, we obtain for almost every 3" that

2m—2

Z Cl—(m—1) M2 I2m_2_l+(m_l_p)gl’l_(m_l)()\, yo,y )dys =0 for all p with 0<p<m-—1,

l=m—1

where BY~(m=1) can be expressed in terms of b4/~ ("=1) as it was done in (3.7). At this stage, utilizing
Lemma 6.7 we deduce that 12m—2-1Bbl=(m=1) = 0 for every [ satisfying m — 1 <[ < 2m — 2. This along
with Lemma 3.1 yields y’l*(mfl)(O, ') =0form—1<1<2m—2. We now use induction to conclude
that for all non-negative integers p, dd;pgl’l_(m_l)()\, x') =0, where m —1 < < 2m — 2, which is similar to
the line of argument presented in the previous steps; see for instance [(3.9)-(3.10)]. Combining this with
Paley-Wiener theorem we obtain b=~ (z) =0, where m — 1 <1 < 2m — 2.

Next we consider the coefficients multiplying (3.5) by A™~2 and letting h — 0. In this case, we will
obtain the next identity by replacing m by m — 1 in (3.18).

2m—4
> /bl’kl (ex +in)iy - (e1 +1n)i_y, T ag bo = 0,
where m — 2 — k0o =+ =2m — 4 — koyy_g = A = m — 2. Iterating similar steps as above we can infer

that bbi=(m=2) = 0 for all [ with m — 2 <1 < 2m — 4. In doing so, after finitely many steps, we conclude
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(3.17). Now the proof of Theorem 2.1 is complete combining all the steps (Step 1, Step 2 and Step
3). O

Lemma 3.1. Let f(x1,2") be a bounded symmetric m-tensor field in R™, compactly supported in x’ variable.
Suppose for all unit vectorsn L ey, writing ¥’ = (x2,2") where xo is the direction of n and x” are orthogonal
directions, we have that

m
/ 25 firin (0,22,2") [ [J(er +in), | dwa =0, for a.e. a”.
R J=1
Then,

N isv(0,2")  for m >2
f(O,:c)—{ 0 for m=0,1

where v is a symmetric m — 2 tensor field compactly supported in =’ variable. In addition, if we assume
that f satisfies jsf = 0 then f(0,2) = 0.

We do not present the proof of this lemma as it follows from [BKS21, Lemma 3.7]. We end this section
with the following remarks.

Remark 3.2. This remark suggests that there is a another way of avoiding the gauge appearing in the
Theorem 2.3. Instead of assuming a?m~ 1t =0, one can assume that a! = isb"2 for m <1< 2m —1 in
Theorem 2.1 and conclude in a similar way that o/ = 0 for all j with 0 < j <2m — 1.

Remark 3.3. Corollary 2.2 gave a density result for even integers. For odd integers K > 0, Theorem 2.1
implies the following (non-optimal) result: the set

+2

A = span {v Blaj<x Du: Ay = APy = 0 in Q}

is dense in the space S¥ (C>(Q2)) = @ZI){:OSP (C>=()).
One could also ask if the linear span of the set

Apips = {Do‘v ® DPu: APy = APy = 0in Q, for all multi-indices «, 8 such that o] = p1, |8] = pQ} ,

is dense in the space smooth symmetric tensor fields defined in Q of order p; + ps. Here ® denotes the
symmetric tensor product.

In particular when p; = ps = 1, this is asking if the linear span of tensor products of gradients of
any two biharmonic functions is dense in the space of smooth symmetric two tensor fields. However, a
similar density result is not true if one replace biharmonic functions by harmonic functions. The latter
density question arises in the linearized version of the boundary rigidity problem; see [Shad4, Chapter 1]
and [PSU, Chapter 11]. This question also appears while linearizing certain anisotropic elliptic PDE from
the Cauchy data set; see [CF20, Section 6].

4. RECOVERY OF COEFFICIENTS UNDER AN ADDITIONAL ASSUMPTION

In this section we present the proof of Proposition 4.3 which will be the main ingredient to prove Theorem
2.3 in the following section. To proceed further, we define two differential operators on C'*°(S™), the space
of smooth symmetric tensor fields of order m.

Definition 4.1. [Sha94, Chapter 2] The symmetric covariant derivative d : C°°(S™) — C>(S™*H1) is
given by

afil-“im

y 1§z’1---,z’m+1§n.
8xim+1

(Af)ireignss = 0(i1 - imt1)
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Definition 4.2. [Sha94, Chapter 2] The divergence operator § : C°*°(S™1) — C°°(S™) is given by

n Ofi i
(6f )iy = D —atmk 1 <y iy <o

ox
k=1 k

The operators —d and § are dual to each other with respect to L? inner product. We also define
db . C°(S™) — C®(S™F) by taking composition of d with itself k times. Similarly we define
5k . 0®°(8™) — C>(S™ k). In particular,

S f = Z 68 Jir-vim . forany feC>®(S™),

Xy - 0%y,
11, ,bm =1
d ¢—m, for any (ZJEO (Q)

Our next result is as follows.

Proposition 4.3. Let m > 1. Suppose

2m—1
/ Z a“ ”Dl1 Uy =0 whenever A™u= A"y =0. (4.1)
Q

2m=1 — 0 in Q if we additionally assume
2 lg?m=t =0 and jsa® 1t =0. (4.2)
As a result, this implies @ = 0 in Q for 0 < j < 2m — 1 by Theorem 2.1.
2. Moreover, we also have

ol = @2y 4isa®™ Y where ¢ fulfils 0 glag =0 for 0<1<2m—2, (4.3)

1. Then we have a

2m—1,1

where ¢ is a scalar function and a is a symmetric tensor of order 2m — 3.

Proof. Step 1. Extend a?>™~! by zero to R”. We first prove that (4.1) implies

/a?{,’?;;ml(el +1in)i, -+ (e1 +1n)iy,,_;a0bo =0, whenever T™ay =T"by = 0. (4.4)
Rn

This step can be proved by choosing u and v to be CGO solutions as in (A.5) and then multiplying (4.1)
by h?™~! and letting h — 0.

Step 2. Here we show that (4.4) implies that certain MRT's of

m—1 m—1
~2m—1,0dd .__ 2: Jm—1—p~2m—1,2p+1 " ~2m—1,even .__ Z /m—pg2m—1,2 "
a T L5 a P (an27y ) and @ ? p(()?y?ay )

~2m—1,o0dd ~2m—1,even

become 0. Recall that a denotes the Fourier transform of a in x1, and note that a and a
are tensor fields of order 2m — 1 and 2m — 2 respectively. Also i§ and j§ are same as (3.1) and (3.2)
respectively. However in this case the indices vary from 2 to n.

Similar to (3.7)) we next write

a?ﬁ@lm_l(el +in)iy - (er +i0)ig,, o

2m—1
Zazm 1’19771~1-~17ip, 2<i,--,i,<n foreach 0<p<2m -1

11--0p
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2m—1,p _ /:\p (2m—1 2m—1 _ A\p ,2m—1 . . . .
where Uiy = (i) ( Y )ai1-~~z‘p1--~1 =¢p (i) ;)" 1 This together with (4.4) implies
2m—1
2m—1,p
§ y.eqy” Mia M@0 bo = 0.
Rn p:D

Next we choose ag = yg%l gly” )e—iA(y1+iy2), by = y’2n71. Then utilizing the arbitrariness of g and taking
partial Fourier transform in the first variable, we obtain

2m—1
~2m—1, _
/e“’2 @ PNy g miy i, ya " dya = 0. (4.5)
R p=0

Next, we specify A = 0 in above, after that we replace n by —n and again put A = 0 in above. As a result,
we obtain following two equations.

Zm_l/\?m—l " 2m—2
S a0,y y ) ney iy, v dye
0= R p=0
a et ~2m—1,p " 2m—2
/ ZO (=D)P a0, y2,5") miy - miy 3™ dy.
R p=

We add and subtract above two relations. This entails
2m—1

~2m—1, _
/ (=0 a 0, y0, 4" ) My -y y3™ T dya = 0.
R P=0

This allows us to separate even and odd modes of a?™ 1. After a re-indexing this entails

o om—1,2p+1 " 2m—2
f ZO gy (0392, ) iy -, 5™ dy

0=4" TIY)L:—I
S @0, 50,y iy i, y3 ™ .
R p=0
Utilizing Lemma 6.5, the next identities follow from the definition of a?™~ 104 and g2m—1even,
~2m—1,0dd -
/ a0, 52, Y") My Mgy Y3y = 0, (4.6)
R
/ a0, 2,y ) iy e i Y3 iy = 0. (4.7)
R

Step 3. We now assume the additional conditions (4.2). Then we claim that

a*m=10,2") = 0.
Observe that, combining Lemma 6.2 and (4.6) we have [ a?f?;;’:iif((),y%y”) Miy Mgy, Yo dy2 = 0 for
R

all 0 < p < 2m — 2. In other words, vanishing the highest order moment is enough. This along
with [Sha94, Theorem 2.17.2] entails that there is a distribution ¢(0,2’) satisfying a?m~1°44(0,2') =
Im—1 .. .
d""¢(0,2"). This implies
m—2
F2m—12m—1 _ _ Z i iTPg2mL2Hl . g2mlg (4.8)
p=0
From [Sha94, Theorem 2.17.2] we also have ¢(0,z’) = 0 outside of some ball in R*~L.
Using the fact that a?™~1°44(0,2’) € L2(R"™!) and @2 '¢(0,2) = (0}, jorn_1P(0, 7)) 21 . jom_1<ns it
follows that ¢ € H>™~1(R"™1). Here H*(R" 1) denotes the L? based Sobolev space of order k; see e.g.
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[Eval0, Chapter 5] for precise definition. We next consider the L? inner product of a?"~1?m~1 in the
following way:

A~ — _ ~2m— _ ~2m—1,2m—1 ~2m—1,2m—1
<a2m 1,2m I(O,m'),an 1,2m 1(0,1”» — Z /Rnl aiﬁ%.izm_ﬂz (O,ZL‘/) aiﬁlnizm_ﬂ; (O,IL‘/) dl’l.
11, 12m—1=2

This together with (4.8) entails
<a2m71,2m71 a2m71,2m71

m—2
~2m— — Im—1—p~2m— I2m—1
_ <a2m 1,2m 17 . § :’L(;m Pa2m 1,2p+1 +da;n ¢>

=0
2

bS]

A~ — — / 1—p~ A~ _ _ _
— <a2m 1,2m 1’_§ Z(Sm p 2m— 12p+1>+<a2m 1,2m ldeZJn 1 >

p=0

3

m—
_ G2m—12m—1 ;m—1-ps2m—1.2p+1 ~om—12m—1 2m—1
= g < yis p —|—<a yd d)>.
=0

Now we take the Fourier transform of jsa?”~! = 0 in the z; variable and evaluate at the origin to obtain
jsa®™=1(0,2') = 0. This implies

n n
) ~2m—1,2m—1 __ 2m—1,2m—1 2m—1 ~2m—1 \2m—1~2m—1
J5a - Z i iy skl — Z( ) Qi) g skl — 7(1) Qi o311
=2 k=2
_ 2m —1 )2m 1-(2m—3)52m—12m-3 _ 1 52m—12m-3
2m — 3 C2m—3
Proceeding in this way we obtain
—p~ I .
jim I=pg2m—12m—1 _ _ 52m—12p+1 for ()< p<m — 2. (4.10)
Cp
Taking Fourier transform of the relation 62" 'a?”~! = 0 with respect to z; variable gives

2m—1
> (2%71) Ak 53”7171652”1_1()\, 2') = 0. This for A = 0 entails

533717162m—1(0’ :E/) -0 — 5§Z’n7162m—1,2m—1(07x/) —0.

Let ¢ € C°(R"1) such that ¢ — ¢ in H>™~1, then from above as N — oo we see that
0= (_1)2m—1<5a2;nfla\2m—1,2m—1’ ¢N> — <a2m—1,2m—1,d3267/nfl N> N <a2m—1,2m—1,d?;nfl¢>‘

This implies (@>™~ 121 2"~ 1¢) = 0. The combination of this along with (4.9) and (4.10) implies
m—2
<62m—1,2m—1 aZm—1,2m—1> — _l Z <a2m—1,2p+17a\2m—1,2p+1> ]

)

&
P p=0

To put it another way, it gives

m—2
<A2m 1,2m— 1 A2m 1,2m— 1 + 2 : <A2m 12p+1 A2m 12p+1> 0.

p=0 P
This in addition to the fact that ¢, > 0 for 0 < p < m — 2 implies

a?m=brl Y =0 for 0<p<m—1.
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By Lemma 3.1 and jsa?™~! = 0 from (4.7) we obtain a?™~1v¢?(0, 2/) = 0. This together with jsa?™ 1 = 0

m
implies 3 é (@*m— 12 g?m=1L2) = 0. We have that ¢, > 0 for all p with 0 < p < m — 1, this entails
p=0
a?m=12r(0,2") = 0 for all 0 < p < m — 1. The combination of a*™~12(0,2) = @?™~12P+1(0,2") = 0 for all
p with 0 < p < m — 1 implies a?™~1(0,2’) = 0.
Step 4. We still assume the additional conditions in (4.2), and show that a?*™~! = 0.
Since a?™~! is compactly supported in the x1 variable, this implies @™ (A, 2') is analytic in A by
Paley-Wiener theorem. Therefore it is enough to show that

d .
@cﬂm_l(o, ') =0 for all non-negative integers .
From previous step we have a>™~!(0,2") = 0. We now argue by induction and assume that
dt .
Wa%l_l(o,:n') =0 for all integers | with 0<[< M. (4.11)
For M + 1, differentiating (4.5) M + 1 times with respect to A gives
M+1 g [2m—1
M +1 _ d ~2m—1 -
> / < k ) yp TR e Y A PN y”) | iy, 9372 dya = 0.
k=0 p=0
We now specify A = 0 in preceding equation and then utilize (4.11) to conclude
g 2m—1 2m—2
~zm—1, /! —
/ Z (Wail,_.ip p(07y27y )) Niy * Thp me dy2 =0. (412)
R P=0
2m—1 9 1
Differentiating the relation > (¥ ") A¥ o2n=1=kg2m=1(\ 2') = 0, M + 1 times more with respect to
k=0
gives
M+12m—1 Ml
2m —1 kKU ke, d om—1—k~2m—1/y ./
Y 2 (M) ot e ol =0 (113
r=0 k=r
From (4.11) we obtain
A h2met
W(SI’WL am_(0,$):0 for 1§7‘SM+1 and 1§k§2m—1
In the last relation above we have used the fact that, % commutes with 9,/. Setting A = 0 in (4.13),
then utilizing above findings we obtain Cf%%632:7”“162”1_1(0,:c’) = 0. Since jsa®™~! = 0, this implies

75 (%?m_l(o, x’ )) = 0. Using the last two relations and repeating the similar analysis as before for
the integral (4.12) we obtain %amfl(o, 2’) = 0. This completes the induction step and implies
dl
dN
Combining this with Paley-Wiener theorem we obtain a®”~!(z) =0 in . In combining all of the above

steps with Theorem 2.1, we conclude that a/(z) =0 forall 0 < j < 2m — 1. To complete the proof of
Proposition 4.3 we will use a decomposition result proved in Lemma 7.1.

a*™=10,2') =0  for all non-negative integers 1.

Step 5. In this step we prove (4.3).
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We first substitute u and v from (A.5) in the integral identity (4.1) and obtain

2m—1

. . (e1+in)-z ~ (e1+in)-x ~
/ Z aflil-..ilD”"'” (e R A) e~ h o B=0.
Q =0

Multiplying above by h?™~! and letting & — 0 we arrive at [, a?ﬁ?;;m_l (e1+in)i, - -~ (e1+in)ign_ a0 bo = 0,

where ag and by solve the transport equation T™ay = T"bg = 0. Thanks to Lemma 7.1 we can decompose
a®™~1 in the following way:

a?mt = @?ml 3 A2l with Oldlog =0 for 1=0,1,---,2m —2,

and @™~ ! meets the following conditions §2"~1@?"~! = jsa®>™~! = 0 in Q. This is known as trace free

Helmholtz type decomposition of symmetric tensor fields proved in Section 7. Plugging this decomposition

of a®~Vinto [, a;™ ! (er+in)i, -+ (€1 +11)iy,_, a0 bo = 0 and utilizing (e1 + i, e1 +in) = 0 we obtain
/(&2m_1 + AP D) iy (€1 )iy <+ (€1 4 1)y, a0 bo = 0. (4.14)
Q

Since ¢ fulfils 9L p|laq = 0 for 0 < I < 2m — 2, this along with integration by parts entails

2m—1
- - . : 2m —1 1
(=12 /(d2m L O)isin 1 (€1 +10)iy - (€1 + 1))y, a0 bo = /<f> > ( f >T2m Fag T"by.
Q Q k=0
We next make use of transport equations T™ag = 0 and T™by = 0 to deduce fQ ¢ Zi:o_ ! (2”};1)T2m*1*ka0 Tkby.
This implies [o,(d*™71¢)s,.ign_, (€1 +1n)s; - - (€1 +17)4y,,_, a0 by = 0. Combining this with (4.14) we arrive

at [o a?ﬁ;;m_l(ﬁ +in)i, -+ - (e1 +1in)iy,,_, a0 bo = 0. We next extend @™~ ! to be 0 outside of  and obtain

11 12m—1

/&Zml (e1 +1n)iy - -+ (e1 +1n)iy,, a0 bo = 0, where ag and by solve T™(-) = 0.
R’l’l

2m— 2m—

Since a ! satisfies the conditions in (4.2), utilizing previous steps we obtain @ 1'= 0. This implies
a?m1 = j5b2m 3 4 4?m~1¢, where ¢ satisfies 85@39 =0 for 0 <1 < 2m —2. This completes the proof. [

5. PROOF OF THEOREM 2.3

The proof of Theorem 2.3 will be presented in this section. However, before we get to the proof of
Theorem 2.3, let us have a look at the gauge transformation for the case of m = 2.

5.1. Gauge transformation. To this end we denote

Losg2a100 = (—A)? + 0} D% +a?; D7 + aj D' + d°,
Lo=(—A)2.
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Note that Cauchy data of v and e®v up to order 3 are the same if ¢ € C*(Q) satisfies 05¢|@g = 0 for
0 <75 < 3. Now we compute
e ?Loetv = e P (—=A)%ev

= (e7?(=A)e?)?v

= (Ap+ Vo[> +2V¢ -V + A) (A + Vo[> + 2V - V + A

= (A)?v+ A(Vo- V) + A(f(p)v) + 2V - V(A

+4V6 - V(Ve - Vo) +2V¢ - V(f(d)) + fA($)v +2f(¢) Vo - Vu + f(¢)Av
= (A0 4 4V¢ - VAv +4V%¢ - V2 + 4V @ Vo - V2 + 2f(4) A
_—

third order term

+2VAG- Vo +4V¢- V2 - Vu+ f(¢)Ve - Vu+2Vf(¢) - Vu+4f(¢)Ve - Vo
+0A(f(9)) + 20V - Vf(d) +v f2(),
where f(¢) = Ap + V|2

The above calculation shows that if ¢ is as above, then
Ca3,a2,a1,a0 = Cy,
where a® = 4i5(V ), and a?,a', a’ can be read off from the computation above. Such calculations can also

be done for m > 3, but it will be somewhat cumbersome.

5.2. Summary of results. Here we summarize few important results we have gotten so far from previous
sections since they will help us and the reader when we apply them in this section.
Lemma 5.1. Let a™ € C®(Q) be a symmetric M tensor field where M > 0 is an integer.

1. Let M = 2m — 1 and assume that

/a?ﬁ;;ml (e1 +1in)i, - -+ (e1 +11)ig,,_a0bo = 0 for all unit vectors n L ey
Rn

where T™ag = T™bg = 0. Then we have a®*™ 1 = d2”jl¢ +isa®™ b1 where a®™ b s a smooth
symmetric tensor field of order 2m — 3, and ¢ € C™(Q) satisfies O ¢loa =0 for 0 <1 < 2m — 2.
2. Let M = 2m and assume that

/a?lnf,i?m(el +1in)i, -+ - (e1 +1n)iy,, Taobo = 0 for all unit vectors n L e;
R’ﬂ

where T™ g = T™Hby = 0. Then we have a®™ :7d2m¢1 + iza®™t where a®™! is a smooth
symmetric tensor field of order 2m — 2, and ¢1 € C™(Q) satisfies O,d1|oq =0 for 0 <1< 2m — 1.

Proof. For first part we refer Step 2-5 in the proof of Proposition 4.3. One can employ similar line of
arguments for second part as well. ([l

Lemma 5.2. Let a' be the same as above such that | < m. Suppose there holds
m
Z/agl,_ij (e1 +in)i, -+~ (e1 +1in)s; T Jagbyg =0  for all unit vectors n L e,
=14
where T™ag = T™by = 0. Then for some tensor a’' of order j — 2 we have
o = djgbj +isa’'  where ¢; matches the boundary condition d'¢jlan =0 for 0 <1< j—1.

Note that, a*' = 0.



18 SAHOO AND SALO

Proof. The proof relies on the careful choice of solution of transport equations ag and by along with second
condition of Lemma 6.7 and Lemma 5.1. The proof of Theorem 2.1 which uses the first hypothesis of
Lemma 6.7, involves a similar argument; see in Step 2 from equation (3.13)-(3.16). O

5.3. Proof of Theorem 2.3.

Proof. The proof of Theorem 2.3 will be divided into several steps. Note that, for simplicity, in the proof
we may use same symbols such as ¢g, ¢1, to express tensor fields of different order.

Step 1. The case of m = 2.

By the assumption of Theorem 2.3 we have
3
/Zaél._,ilD“"'”uv =0 whenever A?u= A% = 0.

We insert CGO solutions of u and v given in (A.5) and derive

3

. . (e1+in)-xz ~ (e1+in)-xz ~
/Zai L D (e S5 A) e B = 0. (5.1)
Q

=0

To continue we then multiply (5.1) by k3 and let h — 0 to obtain

/a7,31~~~i3 (61 + ln)ll e (61 + 177)13 an bO =0.
Q

Here ag and by solve T?ag = T%by = 0. This together with Proposition 4.3 entails

a3 = A3y + isa®t  where ¢ fulfils 9L pglag =0 for 0<1<2 (5.2)
where a®! is a smooth vector field in Q. Recall that, a™* denotes a symmetric tensor field of order m — 2k
for every non-negative integers m and k for which m — 2k > 0. After that, we see that the coefficient of h?
is indeed zero by plugging (5.2) into (5.1). However, it can be seen from the discussion at the beginning
of this section that we have not yet obtained the exact gauge, which is i5(V¢), for some scalar ¢. This
differs from inverse problems involving second order elliptic partial differential equations, where the gauge
can be obtained in a single step by multiplying a particular integral equation by h and then letting h — 0.
The form of a® presented in (5.2) can eliminate the coefficient of A3, but not the one corresponding to h?.
As a result, multiplying (5.1) by h? and setting h — 0 yields

3/a?1---i3 (e1 +in)i, (e1 +1n)iy 8231 ao by + / a; i, (e1 +1in)y (e1 +1in)i,a0 bo = 0.
Q Q

This together with (5.2) implies

0 3/ 03 1yis @0 (€1 + i0)iy (€1 4 1)y On, g bo +/ 35, (€1 4 1n)iy (€1 +1n)iya0 bo
Q

+ / a2 (e1 + in); Tag bo. (5.3)
Q

Combining integration by parts, boundary conditions of ¢g and T2ag = T%by = 0 from above we derive

3
1 /3i3¢0 O, T'ag Tbo + / a; i, (e1 +in)s (er +in)i a0 bo + / i’ (e1 +in); Tag by = 0.
) )
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The factor i appears in the above expression because T' = 2(e; + in) - 9. Now we choose ag = = - . This
gives Tag = 2i and 8361.3 Tag = 0 for 1 < i3 < n. This implies

/agm (e1 +1n)iy (e1 +1n)iy(z - 1) by + 2i /a?’l (e1 +1in);bo = 0.
Q Q

We next use Lemma 5.2 for m = 2 to obtain a? = d?¢; + isa®! and b' = d¢y. Substituting this into above
integral identity and using the boundary conditions of ¢ and ¢o we arrive at

' =d¢y and o = ¢y + isa®!

where ¢ satisfies 8ll,¢1\ag =0 for 0 < I < 1. Inserting the above form of a*! and a? in (5.3) and then
performing integration by parts we obtain [, ¢o (ATagTby + (VTag, VThy)) = 0. Extending ¢y = 0
outside ) and doing the change of variable  — y we obtain fRn oo (ATao Tby + (VTap, VTb())) = 0.We

choose Tag = yp and Tby = g(y") e W1 +12) for all A with X\ # 0 and g is any smooth function in 7"
variable. This implies

ATag =0, VTay=(0,1,0,---,0) and VTby=e W) (_Xig(y"), \g(y"), Vyrg(y")) .

Inserting above into the integral identity [o, ¢o (ATagThy+ (VTag, VT'by)) = 0 and then varying
g and taking partial Fourier transform in the first variable, we obtain for almost every y” that
Jz ggo()\, Y2,y ) eM2 dys = 0 for all A\ with X # 0. Since yo varies in a compact set, one can let A — 0 using
Lebesgue dominated convergence theorem and obtain fR ggo (0,92,4") dya = 0. This along with uniqueness
of the ray transform [Sha94, Chapter 2] implies ¢o(0,2’) = 0. One can now repeat arguments used before
to show that & do(\, ') |a=o = 0 for all non-negative integers . This implies ¢9 = 0 by Paley-Wiener. As

ax.
a result we obtain

a® =is(Ver) with  ¢1lgpn =0
a? = d%¢1 +isa®!  with ¢é1|sn = 0v01]aa = 0.

Since 8,lja3lag =0 for 0 <1 < 3, this implies 8f,¢1 =0 on JN for 0 <[ < 3. Thus ¢, satisfies the conditions
in (2.4). We now perform the gauge transformation in the third order perturbation and replace a® by 0.
After gauge transformation lower order terms will change accordingly. We denote them by @ for I = 0,1, 2.
Note that @’s are now depends on ¢; and can be recovered using Theorem 2.1. In other words we obtain

L()=e9 (=A)2%(-) where ¢; fulfils (2.4) for m = 2.

This completes the proof of Theorem 2.3 for m = 2.
Step 2. The case of m = 3.

The proof for m = 3 is similar to the case of m = 2. Therefore, in this case we do not give the complete
details of the proof. By the assumption we have

5
/Z aél_..hDil"'iluv =0 where u and v solve A%u = A3y =0. (5.4)

Inserting the CGO form of u and v given in (A.5) and multiplying (5.4) by A° and then letting h — 0
we obtain from Proposition 4.3 that a® = d®¢g + isa®', where ¢q fulfils 0\¢oloq = 0 for 0 < | < 4.
Next we multiply (5.4) by h* and let h — 0 and repeat similar analysis for the case of m = 2 to deduce
a® = igd3¢ + i§a5’2, a* = d*¢; +isa®! and ¢g = 0, where ¢, satisfies the boundary conditions 0,¢; = 0
for 0 <1 < 3. We now consider coefficients of h=3. To do that, we multiply (5.4) by h% and let A — 0 to
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obtain
0= / a2 si (er +in)i, - (e1 + )iy anbo + / abL (ex + )iy (e1 + im)i, Taobo + / a?2(e1 + 1n)i, T2agbo
Q [9] Q

+4 / d, i, 1 (ex +in)i, -+ (ex + in)iy (0i,a0)bo + 3 / 47,01 (e1 +in)i; (ex + in)iy (T(Diza0))bo
Q

/dzl s @1 (e1 +1n)iy -+ (e1 +in)iy Aaobo. (5.5)

We next analyze the last three terms in the above expression. To this end, we make use of integration by
parts and 0\¢1|sq = 0 (where 0 < I < 3), then followed by T3ag = T3by = 0. We are not going to mention
where we applied these assumptions because it will be clear from the context. As a result, we obtain

f A3 01 (e +in)i, -+ (e1 +in)i; Aagho = —3§ f ¢1 (3T?AagTby + 3T Aag T?by)
f d3 o1 (e +in)iy (e1 + )iy T(iga0) bo = — qul[ (VT%a9, VTho) + (VTao, VT2h) |
— [ [2 T2 Aag Tho + TAag T?bo)} ,
f dj i, @1 (er +in)iy - (e +in)iy (iya0)bo = § f ?bl (3T%Aag Ty + 3T Aay T?by)
+ f ¢1 (3(VT?ag, VTh) + 3 (VT Aag, VT?by)) .

Choosing ay = = - 1, we see that T'ap = 2i. This implies P(D)Tap = 0, where P(D) is any differential
operator. This along with (5.5) implies

0 = / a?1i2i3 (61 + 177)1 (61 + 177)13 ao bo + / z{zg (61 + 177)@1 (61 + 177)12Ta0 bO (56)
Q Q

The combination of this with Lemma 5.2 implies
a® = d3y +isa®>'  with 9Ly1]ogn =0 for 0<1<2,
atl = A%y +isa®?  with Olihslon =0 for 0<1<1.
To proceed further we next establish a relation between 1 and .To do so, we substitute above relations

into (5.6) and use integration by parts to conclude

1 1
g /1/)1 (3T26L0 Tby + 3T ag T2b0) — Z /1,[)2 (2T2CLO Tby + Tag T2b0) =0.

Since we choose ag = x - 7, this implies T?ag = 0 but Tag # 0. Next choosing by such that T?by # 0, we
obtain 21 — 311 = 0 in €. Next we choose ag such that T2%ag = ¢, for certaln non-zero constant and by
such that Tbo = 0. With these choices of ag and by from (5.5) we obtain fQ 52 (e1 +in)i, T?agby = 0. This

implies a®? = dv3, where 13 = 0 on 9. Thus we have

a® = BYy +iza, ot = %d2¢1 +isa®? with Oabilagg =0 for 0<1<2
CL5’2 = dLZJ3 with ’(/J3|aQ =0.

Substituting this into (5.5) and then choosing ag and by such that T2ag = ¢ for some non-zero constant c
and T2by = 0, we obtain Jo(41bs + 311)(T?ag Tho) = 0. This entails 13 = —%?ﬂbl. Thus we obtain

3 3
a® = &3Py +iza>t, ot = §d2¢1 +isa®?, a*? = *Zd@blo
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Again inserting above findings into (5.5) and utilizing integration by parts and boundary conditions of
11, we see that the first three integrals in (5.5) disappear. As a result we end up with integral identities
involving 1 and one can iterate similar arguments presented in Step 2. to conclude p; = 0 in 2. This
entails a® = —%z%dzbl,a‘l = i5(%d21/11 +isa®?) and a® = d3¢; + isa®!, where v satisfies the boundary
conditions 9\11]sq = 0 for 0 < I < 2. We next use the assumption from Theorem 2.3 that 0%a°|pq = 0
for 0 <1 <5 to conclude 9\ 4]|gq = 0 for 0 < I < 5. In this stage we perform the gauge transformation
and substitute a® = 0. Then the new set of coefficients can be recovered uniquely by Theorem 2.1. In
particular we have

L(:)=e Y (=A)3e¥(:) where ¢ satisfies (2.4) for m = 3.
This completes proof of Theorem 2.3 for the case of m = 3.

Step 3. The case of m > 4.

In this case a®™~! = " 1Al for some vector field A' € C(Q) by the assumption of Theorem 2.3.
This implies we have the following integral identity.

2m—2
/A%D"(—A)m uv—i—/ Z ak .. ”D’1 Uy =0 where A™u= Ay =0. (5.7)
Q

We next choose suitable CGO solutions of the polyharmonic operators given in Lemma (A.4). Note
that, Laplace operator (—A) acting on such solutions can produce maximum one negative power of h;
see (A.2). Thus D;(—A)™ ! will produce maximum m-th negative power of h when applied to CGO
solutions. Therefore, we will encounter the vector field A! when we multiply (5.7) by A™ and the
integral fQ AlD (—A)™ lyv will disappear when we multiply it by h™tFk for some integer k > 1 and
let h — 0. We start by multiplying (5.7) by h?™=2, ... h™*! respectively and utilize Theorem 2.1 to
derive a?m! = i’gl_lem*l’m*l for certain smooth symmetric tensors b ~4m=! of order | defined in Q for
each [ with 2 <[ <m — 1. Inserting these into (5.7) and then multiplying (5.7) by A™ we obtain

/ Alfer+im) T gy + 3 / b e i)y - (e i) T lagbg = 0. (5.8)
Q =2q
We next write above integrals over R” by extending the symmetric tensor fields by 0 outside Q. Then
we choose particular solution of the transport equation T™ag = T™by = 0. Now combination of these,
(5.8) and Lemma 5.2 entail A' = d¢; and 6?0t = dlg; + igh?m—bm=+1 for 2 < [ < m, where
each ¢ for 1 < | < m satisfies the boundary conditions 8,1/*1@\39 = 0. Substituting above relations
into (5.8) we obtain [, Y72, {(d'¢y, (e1 +in)®) T™lagby = 0. This along with integration by parts
and the boundary conditions for ¢; implies >/, (—1)! ¢, 2221 (]lj) T PagTPhy = 0. We next choose
bo in such a way that TP*tby = 0 while TPbg # 0 for 1 < p < m —1. The combination of this with
S e Z ()Tm pangbo—Olmphelep()(—1)l¢l:0foreachpwith1gpgm—l.We
obtain m — 1 relatlons involving m unknown. Fix xg € €2, then from above we obtain

Z (;) (=)' ¢i(zg) =0 for 1<p<m-—1.
l=p

It is evident that the above matrix equation has one dimensional kernel. Therefore ¢1(z¢) = ¢2(x0) =

- = ¢m(x0) = ¢(z0) (say). Since the matrix is independent of z, this implies one can vary xo and obtain
$1(x) = ¢go(z) = -+ = dm(z) = ¢(z) in Q. Therefore we obtain a?"~ ! = ig”_lAl = i7" 1 (V¢) with
O 1p|lsn = 0. By the assumption of Theorem 2.3 we have 9\a’™ !pq = 0 for 0 < I < 2m — 1, this
immediately gives the same for ¢. Since ¢ satisfies (2.4), this implies we can now implement the gauge
transformation and eliminate the highest order perturbation a>™~!. Lower order coefficients will change
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as a result and those terms can be retrieved using Theorem 2.1. Thus we obtain
L()=e ?(=A)™e? (-) where ¢ fulfils 0 ¢lsgo =0 for 0<1<2m—1.
This completes the proof. O

5.4. Remarks about general case. We wrap up this section with a discussion regarding how one might
proceed in the general case. Since the operator (1.1) we consider is not symmetric, the gauge we encounter
in the term a?™~! will propagate up to a’. One expects gauges in the different orders:

a1 involves first order derivatives of some scalar function

a2 involves second order derivatives of some scalar function

a™ involves mth order derivatives of some scalar function

Here is one possible approach to recover the coefficients:
(1) Multiplying 2?™~! in the integral identity (3.5) one can infer that

a?m = @2 g +i5a®™ b1 where ¢ satisfies Ol =0"for 0<1<2m—2.
(2) Next multiplying h?™~2 in (3.5) we obtain
a2m—2 — d2m—2¢1 + i5a2m—2,1, a2m—1,1 — Clde_3¢l + Z-5a2m—1,27 ¢0 =0

where ¢ satisfies 9L¢; = 0 for 0 <1 < 2m — 3.
(3) In general at k-th stage one can expect the following

a2mfl = cry ,L-gn—ldekaJrlqbk + i]§+1—la2mfl,k+1fl

holdsfor 1 <l <kand1<k<mand ¢, =0for 1 <I<k-—1.
(4) If the above assertion is proved, then substituting £k = m,l = 1 in the above we obtain

a® ™t ="V, with 8¢, =0 1=0,1.

(5) At this point, one can perform the gauge transformation to replace a®™~! by 0. The new set of
coefficients up to order 2m — 2 can be then recovered by Theorem 2.1.

6. MOMENTUM RAY TRANSFORMS

Let ™ = S™(C2°(R™)) be the space of smooth compactly supported symmetric m-tensor fields in R™.
For f € S™ and for each non-negative integer k, the momentum ray transform (MRT) is denoted by J*
and given by

oo
T, €) = / B f i (w )€ gimdt forall (z,€) € R” x (R™\ {0}).
— 0o

These transforms were first introduced by Sharafutdinov [Sha86,Sha94]. For k = 0, J°f = Jf is the
classical ray transform/ X-ray transform, which is well studied due to its potential application in different
branches of science such as medical imaging, seismology, and inverse problems related to partial differential
equations. For m = 0, MRT appears when studying the inversion of the cone transform and conical Radon
transform, where the latter transforms have promising applications in Compton cameras; see [KT17]. We
also need to define the MRT of F € 8™ =S @® S' @ --- @ S™. Any such F can be written uniquely as

AR

Fe=3" 10 = fi((?) + fi(ll) Azt 4.4 fP) Lda’t e da fi(l’ff?imdxil - dgim
p=0 (61)
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which can be viewed as sum of a function, a vector field, and symmetric tensor fields with f® e SP for
each 0 < p < m. For any smooth and compactly supported F' € S™ and for all (z,£) € R” x R™\ {0} and
for every integer k > 0 the momentum ray transform [BKS21] is given by

TEF(,8) =) J* P (a,€)
p=0 (6.2)

= / e (1@ + 1)+ 1P @+t € -+ 117 (@ +1€) € g .

—00

We now introduce the notion of MRT on the set S"(£’) consisting of compactly supported distributions
in S™. This will be done by using adjoints. The momentum ray transforms J* : S™(&’) — D'(R" x R™\ {0})
[BKS21, Definition 4.4] are defined as:

(JEE, W)= (F, (J*)*0) = f}f@), (J*)5®) where ¥ e CP(R™ x R™\ {0}),
p=0

and (J¥)*W is given by

ky = k(e — kogin o gim J(p —
(<J>\P><x>—</n/Rt Wt dtd e [ g t£,§>dtd§>,

which is an element of @1 ,C>(S?) and
(Jh)0 = / / th e € W (x — t€,£)dt dE.
n JR

6.1. Injectivity of MRT. We denote I*F := J¥F|gnysn-1 for every integers k > 0. In this section we
recall certain injectivity results of the operator F' —— J™F and F —— I"F from [BKS21] without their
proofs.

Lemma 6.1. [BKS21, Theorem 4.5] Let F' € S™(E’) and m > 0. Then
JEF =0 holds for all integers k with 0 <k <m = F=0.

Lemma 6.2. [BKS21, Lemma 4.8] Let F' € S™(E), then the operator JEF satisfies the following relation

N (—1P (B pl JFPF if p<k
i {0 ’ if p>k

After taking restrictions on R™ x S*™1 this gives

D ok PGP PR i p<k
: ax>pIF_{0 ’ if p>k

This lemma entails that highest order MRT (J™F') uniquely determines all the lower order MRT
(J)F)0 < k < m. Analogous result holds if one replace J*F by I*F. Consequently, one can obtain
next results.

Lemma 6.3. Suppose F € S™(E') and m > 0. Then J"F =0 = F =0.

m
Lemma 6.4. [BKS21, Theorem 4.18] Let m > 2 and F = > f) € S™(&’). Then
=0

ImF — JmF|RnXSn71 - O
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if and only if
f(Q[%]) = —ig i([;%]_lf(zl_z) and f(2[mT*1]+1) — i iL%]_lf@l_l)

Moreover, I"™F = 0 if and only if FF =0 form =0,1.
Lemma 6.5. The following equality
F@ ) (@, &) = 1" (x,€)

holds for any fO € S' and for all integers p with p > 1. For p = 0 this holds trivially because ig is the
identity operator.

Remark 6.6. We know that any symmetric m-tensor field in R™ has (mt:z—l) distinct components.

m
Suppose F' is the same as in (6.1). Then F has a total of (H’;_l) = (™) distinct components.
=0

As a consequence, recovering F' in R” is equivalent to recovering a symmetric m-tensor field in R+,
However to recover a symmetric m-tensor field in R"*!, MRT information is required on the tangent
bundle of unit sphere which is a 2(n 4+ 1) — 2 = 2n dimensional data set. As a result, the kernel of J™F
is trivial (see Lemma 6.3), whereas the kernel of I"™F' is nontrivial when m > 2 (see Lemma 6.4) because
I™F is specified on the unit sphere bundle.

Next we prove the following result, which was used to segregate MRT of different order tensor fields in
the previous sections.

Lemma 6.7. Let F,,, € S™(&') and m > 0.
1. Suppose
enI"E, 4+ o+ TFTYF 4 o IFFy =0
holds for certain non-zero constants c¢; where 0 < j < m and for all 0 < k < m. Then
I’F,=0 for p=0,1,---,m. (6.3)
2. Additionally, if we assume
A T 4+ di TP =0
holds for certain non-zero constants d; where 0 < j < m —1 and for all 0 <k <m — 1. Then
I’F,i1=0 for p=0,1,---,m—1. (6.4)
Proof. We only give the proof of (6.3) and that of (6.4) follows similarly. We have that
e I" Ty + -+ el I R+ g IR Fy = 0.

Applying (£,0,)* to the above equation and then using Lemma 6.2 we obtain
k+ kE+m-—1 _ kE+1 k
cm< km>ImFm+cm_1< ’: )Im 1Fm_1+---+c1< . )11F1+co <k> I°Fy =0,

for all k£ with 0 < k < m. The above relation can be written as the matrix equation AX = 0 where
X =I"F,, - ,I°F),

Cm Cm—1 s C1 €0
en(™)  emaa(T) o all) o«
m—+2 m—+1 3

A= (") (") 0 oaly) o«

() ema () e e
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We now complete the proof by showing det A % 0. This follows from Lemma 6.8. This implies X = 0, i.e.
I"F,=0 for p=0,1,---,m.
O

m(m+1)

Lemma 6.8. det A= (—1)" 2 ¢y ¢

Proof. We have
det A = Co " Cm det Am+1

where
1 1 s 1 1
oG e @
A= | ("5 (") () 1
G ) e ()1
We now subtract the (m — k)-th column from the (m — k — 1)-th column for 1 <k < m — 2 to obtain
1 0 . 0
()
A — | ("2 =) =()
G =) - =G

This implies det A,,+1 = (—1)™det A4,,, where A, is obtained from A,,; by considering first m rows

and m columns respectively. Proceeding in this way after finally many steps we obtain det A,,11 =
m(m+1)

(—1)mHm=1+-+42+1 This implies det A = (=1)~ 2z ¢o- - - Cm. O
7. A NEW DECOMPOSITION OF SYMMETRIC TENSOR FIELDS

We now prove a suitable trace free Helmholtz type decomposition of symmetric tensor fields, which we
used in the previous section to deal with partial data MRT.

Lemma 7.1. Let f be a smooth symmetric m tensor field in Q. Then the following decomposition holds:
f=Ff+isgv+d™s, with jsf=08"f=0

and alyqs@ =0,1=0,1,---,m — 1, where f €S, veS"? and ¢ € SO are smooth symmetric tensor

fields in Q.

This is a generalization of the decomposition shown in [DS10]. In [MS21], they proved certain
decomposition of symmetric tensors.

Remark 7.2. For m = 1, this is the well known Helmholtz (or solenoidal) decomposition.

Proof. We closely follow the arguments used in [DS10]. We first assume that f can be written in the given
form as

f=F+iw+dme, (7.1)
and we derive an equation for ¢. Applying js to (7.1) and using js f =0 we get
Jsf = jsisv + jed™ ¢
Since jsis is invertible by [DS10, Lemma 2.3], we obtain
v = (jsis) "' (Jsf — jsd™ ). (7.2)
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This together with (7.1) implies
f=F+i5((sis) " Usf — jsd™9)) + d™¢. (7.3)

Denote q = i5(jsis) 'js and p = (Id — q). From [DS10, equation (2.15)] we have that p is the projection to
the trace free component of a symmetric tensor and that p(isv) = 0 for any v. Thus from (7.3) we obtain
pf =f+pd"o.

Applying 6™ to the above identity and using 6" f = 0 we obtain
0Mpd™p = 6"pf.
Hence, ¢ solves the following boundary value problem.
(=1)""pd™¢ = (=1)"6"'pf in Q
8ll,q§:0 on 0 for [=0,1,--- ,m—1. (7.4)

We next show that §”pd™ acting on scalar functions in €2 is a strongly elliptic operator in the sense of

[Tayll, Formula 11.79, Section 5.11]. Then by [Tay11, Exercise 3, Section 5.11] the map
H?™(Q) N H(Q) — L*(Q) 75)
¢ — 6"pd™¢ '

will be Fredholm operator of index zero. To prove the ellipticity of ¢"'pd™ we follow [DS10, Section 5] and
introduce the following. For x € R", we define the symmetric multiplication operators i, : S™ — S™+! by

iz fivigeimpr = Oy« s by e 1) (Tiy 1 Firia. i )-

We also define the dual of the operator i, the contraction operator j, : S™ — S™~! by

(o f)ivigeimor = Firigerim @™
Similarly, 7 ¢+ and j,ex are defined by taking the composition of i, and j, with itself k times, respectively.
The principal symbol of 6™pd™ at (z,§) € Q x (R™\{0}) is given by (—1)" jeompicem, where (i)™ jeem and
()™ i¢om are the principal symbols of 6™ and d™ respectively. Thus the principal symbol of (—1)™§"pd™
IS jewmpigem, which is real valued and non-negative since for any ¢

(Jeompicomd, @) = (picomd, igam @) = (pPigomd, pigom®).

Also by Lemma 7.3 we obtain jeempicom # 0 for £ # 0. Thus we have shown the ellipticity of the
boundary value problem (7.4). By elliptic regularity any element in the kernel of (7.4) will be smooth.
Now (—1)™6™pd™¢ = 0 in Q and 8\p|sq = 0 for 0 <1 < m — 1 gives

(=1)"0Mpd™¢, ¢y = (pd™ ¢, pd™¢p) = 0 using integration by parts.
This implies pd™¢ = 0. From [DS10, Lemma 3.4, Equation 3.8] we have that

m
dpf = pdf + n+2m—216pf or feS
Replacing f by d™ !¢ entails
—1
d dm—l — L . dm—l .
pd™ g = oo™
Denote u = pd™ ¢ and v = n£;1_45pdm_1¢. Note that, trace of uw = 0. This gives
du = iv.

Hence u is a trace free conformal Killing tensor field. Now using the boundary conditions 0'¢|sq = 0 for
0 <1< m—1 we conclude u|so = 0. By [DS10, Theorem 1.3] we have v = 0. Repeating this process
finitely many times we will obtain pd¢ = d¢ = 0. Since ¢|sq = 0, this implies that ¢ = 0 in 2. Thus the
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boundary value problem has (7.4) has zero kernel. Since it has Fredholm index zero, this says (7.4) also
has zero co-kernel. This shows that the mapping (7.5) is an isomorphism.
Finally, given f € S™, the fact that (7.5) is an isomorphism together with ellipticity shows that there

exists a unique ¢ € C>(Q) solving (7.4). We then define v by (7.2), which implies that igv = qf — qd™¢.
We also define f = f — igv — d™¢. It follows that

f=1—(af —qd"¢) —d"¢ =pf — pd"o.
Then jsf =0 and 6™ f = §™pf — 6™pd™¢ = 0. This proves the required decomposition. 0
Lemma 7.3. For any £ # 0, if
pigam@ =0,
then ¢ = 0.

Proof. For m =1 we have pi¢¢p = ig¢p. Since { # 0 and (ig¢)r = &£r¢, we obtain ¢ = 0. We proceed by
induction and assume that

€ #0, picemd =0 = ¢ =0.
Suppose that pigem+1¢ = 0. Then by [DS10, Lemma 5.3]we have

igpigom¢ — is(jsis) ™ jepicome = 0.

m—+1
Denote f = pigem@. Taking the inner product of the above equation with i¢ f gives

(ig frief) — 1 (i5(jsis) ‘e fief) =0
.. 2 NI T
= (Jetef, f) — m((]ala) Lief, jsicf) = 0. (7.6)
From [Sha94, Lemma 3.3.3] we have
T N
Jeief = Lo T+ el

Combining j5f = 0 with the formula jsie = miﬂjg + %igjg on S™ given in [DS10, Equation 5.6], we get

.. 2

]Mgf = mﬂgf-
From [DS10, Equation 5.13], which can be used since jsf = 0, we obtain
m(m + 1)

=1 - . .
The combination of last two displayed equations and (7.6) give
2
2| 72 2
1—-— =0.
€I+ (1= g ) e =0

Since (1 — ﬁ) > 0 for n > 2 and m > 1, this implies f = pi¢em¢ = 0. Hence by induction we have
¢ =0. =
APPENDIX A. CONSTRUCTION OF SPECIAL SOLUTIONS

In this section, we describe the construction of special solutions known as complex geometric optic (CGO)
solutions of polyharmonic operators that we have already utilized in the earlier sections.
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A.1l. Carleman estimate. Let @ C R™, n > 3 be a bounded domain with smooth boundary. In this
section, we construct Complex Geometric Optics (CGO) solutions for (1.1) following a Carleman estimate
approach from [BU02, DSFKSUO07].

We first introduce semiclassical Sobolev spaces. For A > 0 be a small parameter, we define the

semiclassical Sobolev space HZ,(R"), s € R as the space H*(R") endowed with the semiclassical norm

1
HU'HHSSCI(]Rn) = ||<hD>SU||%2(Rn)a € =1+,

For open sets {2 C R™ and for non-negative integers m, the semiclassical Sobolev space H!7(2) is the space
H™ () endowed with the following semiclassical norm

‘uHHm Z || hD UHLQ

la|<m

These two norms are equivalent when 2 = R" and for every integers m > 0.
Let €2 be an open subset containing (2 in its interior and let ¢ € C*°(2) with V¢ # 0 in Q. We consider

the semi-classical conjugated Laplacian Py, = e%(—hQA)e%, where 0 < h < 1. The semi-classical
principal symbol of this operator Py, is given by po,(x,&) = [£]* — |Vap]? + 2i€ - V.

Definition A.1 ([KSU07]). We say that ¢ € C™(€) is a limiting Carleman weight for Py, in Qif Vo #0
in O and Re(po ), Im(po,,) satisfies

{Re(po,@),lm(po,w)}(x,f) = 0 whenever pg,(z,§) =0 for (z,§) € Q x (R™\ {0}),

where {-, -} denotes the Poisson bracket.

Examples of such ¢ are linear weights ¢(r) = « -z, where 0 # o € R" or logarithmic weights
o(z) = log |& — mo| with zo ¢ €.
As mentioned already, we consider the limiting Carleman weight in this paper to be p(z) = z;.

Proposition A.2 (Interior Carleman estimate). Let p(x) be a limiting Carleman weight for the conjugated
semiclassical Laplacian. Then there exists a constant C'= Cgq »; 4 such that for 0 < h <1, we have

W™ |ull L2 () < CHthe%(—A)me_%uHHs;lgm, for all u € C(Q).

This follows by iterating a Carleman estimate for the semiclassical Laplacian with a gain of two
derivatives proved in [ST09]. We omit the proof here. We refer the reader to [KLU14, KLU12, GK16].

A.2. Construction of CGO solutions. Next we use Proposition A.2 to construct CGO solutions for
the equation (—A)™u = 0. To this end, we state an existence result whose proof is standard; see
[DSFKSU07,KLU12] for instance.

Proposition A.3. Let © be as defined in Proposition A.2. Then for any v € L*(Q) and small enough
h >0 one has u € H*™(Q) such that

e h(=A)"etu=v inQ, with [ ull g2 () < CR™ [0 20
We now use Proposition A.3 to construct a solution for (—A)™u = 0 of the form

u(w;h) = e (ao(x) + hay(z) + - + B Lap 1 (z )—i—r(x'h)) (A.1)

— 5 (A(z; h) +r(x;h)), where A(z;h) Z haj(x

Here {aj(z)} and r(z;h) will be determined later. We choose 1(z) € C*°(Q) in such a way that
po,o(x, Vi) = 0. This implies |Vo| = |V¢| and Vyp - Vip = 0 in Q. We calculate the term
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(—A)mewiwA(x;h) in Q. Due to the choices of ¢ and 1 we have V(¢ + i¢)) - V(¢ +ip) = 0 in Q
and thus we obtain
i i 1 m
e ERE (—A)e SR Ala h) = (—hT - A) A(z: h) (A.2)
where
T =2V,(p+ith) - Vo + Aup +it), (A.3)

We now make the coefficient of h™%J to be 0 for 0 < j < m — 1 and obtain the following system of
transport equations.

T™ag(x) =0 ' in Q, (A1)
Tmaj(x) = =Y 5y Mpaj_p(z) inQ, and 1<j<m-—1 '

where M;’s are certain differential operator of order m + j (1 < j < m — 1) and can be computed from
(A.2).

It is well known that equations in (A.4) have smooth solutions; see for instance [DSFKSUO07]. We provide
an explicit form for the smooth solution ag solving (A.4) for our inverse problem, which will be effective in
getting the generalized MRT of the coefficients. Using ag(z),- -, am—1(x) € C>°(2) satisfying (A.4), we

see that
@tiv ptiv

e h (=A)"e h a(x;h) ~ O(1).
Now if u(x;h) as in (A.1) is a solution of (—A)™u(z;h) = 0 in 2, we see that

iy iy ptiy

O=e rn (“A)"u=¢€e""rn (=A)"e =

(A(z; h) +r(x;h)).

This implies

p+iy ptiy

e h (=A)"e k

r(z;h) = F(z;h), for some F(z;h) € L*(Q), for all h > 0 small.

By our choices, a;(z) annihilates all the terms of order A=/ in efwﬁ(x D)e@a(az; h) in Q for
j=0,.. — 1. Thus we get ||[F(z,h)||r2(q) < C, where C' > 0 is uniform in h for h < 1.
Using Prop081t10n A.3 we have the ex1stence of r(z;h) € H>™(Q) solving

otiy m et

e h (A)"e R (s h) = F(x;h),
with the estimate
|7 (x; h)”H2rln(Q) < Ch™, for h > 0 small enough.

.. . . . . . _ iy etip
Similarly, we can construction CGO solution of the adjoint equation (e =R (—A)mewh
ptiy ptiy

e h (=A)"e” h u=0. We now sum up the above calculation in the next lemma.

yu =

Lemma A.4. Let h > 0 small enough and ¢, € C®(Q) satisfy po,(x,Vip) = 0. There are suitable
choices of ap(x), ..., am—1(x),bo(x),...,bym_1(x) € C®(Q) and r(z;h),7(z;h) € H2m( ) such that
+iy

h) = ﬂ( o(2) + har(z) + - + W™ Lap 1 (z) + (23 ) =

A,

u(;
v(z;h) = (bo( )+ hbi(x) 4+ -+ hm_lbm—l( ) + (2 h)) wiiwé

solving (—A)™u(z) = (=A)™(z) = 0 in Q for h > 0 small enough, with the estimates
||7(z; h)HHQm(Q) |7 (x ;h)||nglrl(Q) < Ch™. Moreover, ag(x) and by(z) solve the transport equations

Tma() = Tmb[) = 0.
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A.3. Solutions with linear phase. Now we choose a suitable coordinate system and express the solutions

in that system. We choose ¢(x) = = - e; = x1, where e; = (1,0,0---,0). Choose an orthonormal frame
{m = e1,m2, -+ ,mn}, where {na, - ,n,} are unit vectors on the hyperplane perpendicular to e;. Then
we choose ¥ (z) = x - n2. We denote y = (y1,¥y2, - ,yn) is the coordinate with respect to new basis and

v = (y2,- yyn), ¥ = (y3, -+ ,yn). With this choice of ¢ and 1 the solutions in Lemma A.4 take the

form
u(z; h) —en(e1tim)z (ao(z) + hay(z) + -+ R a1 () + r(a; h)) = e%(“*i”?)'xfl, (A5)
vy h) =e~ W TR (b0 (@) 4 hby () + -+ B oy () + Fla b)) = e nletim)Iep '

The transport equation T™ag = 0 becomes
T™ag = 2™ (0y, +10y,)™ao = 0.
Denote the complex variable z = y; + iys. Then the above transport equation reduces to
07'ag = 0.
A complex valued function satisfying 02'ap = 0 is known as poly-analytic function; see [Bal91] for more
details. The general solution of 07*ag = 0 is given in the following lemma.

m—1

Lemma A.5. The general solution of 0T'ag = 0 is given by ag = . (z — 2)*fi(2), where fi is a
k=0

holomorphic function for all0 < k <m — 1.

We do not give the proof of this lemma as it follows from standard induction argument; see
[BKS21, Lemma 2.6]. This immediately gives the following particular solution of T™ag = T™by = 0
having the form

ag =bo = 5 f(2)g(y"), foreach 0<k<m—1, (A.6)

where g is any smooth function in 3" variable. This particular form of solution will be helpful in order to
get the MRT of unknown coefficients.

APPENDIX B. LINEARIZATION OF NAVIER TO NEUMANN MAP

In this section, we linearize the Navier-to-Neumann map by computing its Fréchet derivative. We follow
the analogous argument used in [KRS21, Lemma 4.4]. To this end we first recall the operator (1.1) together
with its Navier boundary conditions.

L(z, D) = (=A)™ + Q(z, D), in 0
{ yu = (u, =Au, -, (=A)" " u) = (fo,- -+, frm1)  on 99, (B.1)

where Q(x, D) is a partial differential operator of order 2m — 1 and given by:

2m—1

Q(.Z,D) = Z a’ér--il(m) Dil"'il'

=0
If 0 is not an eigen value of £(x, D), then (B.1) has a unique solution u € H*™(Q) for any (fo, -+ , fm—1) €
H’,:”:_Ol H2m=2k—3 (09); see [GGS10]. The Navier to Neumann map is denote by Ny and defined as follows.
Ng : TI7 B =2=3(8Q) — [[1y H"272(99) by
No(fos- -+ s fm—1) = (O foloa, -+, O fm—1l00).-

The Fréchet derivative of Ny is given in the next lemma.

(B.2)
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Lemma B.1. Suppose 0 is not an eigen value of (—A)"u + Q(z,D)u = 0 in Q. Let Py
HZL;Ol Hsz%fé(aﬁ) — H?™(Q) be the solution operator for the Dirichlet problem

{((-A)m +Q(z,D))Pof =0 in Q (B3)
vPof = (Pof, =APQf, -+, (=A)""'Pof) on 0Q.
Suppose Gg = L*(Q) — D(L) be the Green operator satisfies
(A" +Q)GoF =F in Q, YGoF =0 on 0.
Then the linearized (or Fréchet derivative of ) Navier to Neumann map
Bg = (DN)g : L>*(Q) — B (nﬁl H2m2’f%(ag),mH1 H2m2k3(09)>
k=0 k=0
s given by
(BoH)(f) = 0,7Go(-=HPqf)lo- (B.4)

Proof. Suppose ||H || (q) is small so that Ng, g is well defined, where H is same as @ with different set
of smooth tensor fields. Given f = (fo, f1,-.-, fm-1) € H}?:_Ol H2m_2k_%(89) we have
No+uf —Nof = 0u(vPornf —1Pof)lon-
The function w = Py f — Pgf satisfies the following partial differential equation.
(=A)" +Q(z,D))w=—-Hw—HPyf in Q
yw = (w, (=A)w, -, (=A™ lw) =0 on I

We can write w = Ggo(—H w) + Go(—HPgf) and w € D(L). Utilizing the continuity of the Green
operator Gg(H w) we obtain

1 : .
||GQ(H'LU)||HQ77L(Q) S CHH 'LUHLQ(Q) S §||w”H27n(Q) lf ||H||LOO(Q) 1S Small.

We have [|w|| g2m (o) = [|Go(—H w)+Gqo(—HPg f)| g2m(q)- The combination of this with triangle inequality

and last displayed relation implies ||wl| g2m @) < [[H || (q) HfHHWH1 22} (00" Next we observe that,
k=0

(No+1 —Ng = DNG(H))(f) = 0, (yw = vGoHPq f) loq = 0, (vGo(—Hw))|aq-
Béf trace theorem, continuity of Gg and |[w||gzmq) < [|H| 1~ (@) HfHHZ?ol 2m-2k b o) W obtain from
above

Hal/('YGQ(_Hw)) HHZZOI H2m72k7% 59)

< G (H W)l maney < 1Hllze(ey Il ) < Wy 1 s ey
This proves that the Fréchet derivative of Q — Ny at Q is Bg. O

Our next result gives the required integral identity involving unknown coefficients under the assumption
that Bg = 0 at @ = 0. Compare next result with (2.3) where a formal computation is given.

Lemma B.2. Assume that the linearized (or Fréchet derivative of) Navier to Neumann map vanishes at
Q=01.e., (BoH)f =0. Then the following integral identity
2m—1
/ Z &él._,il () D" iyy =0 such that A™u=A"v=0 in Q.
o =0

holds. Where H is same as Q represented by @, for certain smooth symmetric tensor fields of order | for
each 0 <[ <2m —1.
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Proof. Let Pyg € H*™(€)) be an arbitrary function satisfying

(=A)"Pog=0 in Q and ~yPyg=g on 01,

where g = (g0, , gm-1) € [ [1s H2m 2’“7’(89) Next consider the following:

where Go(—

(BoH) f, g) - / dGo(~HPyf) g

Hm 1H2m 2k— 2(89) Hm 1H2m 2k— i(c')ﬂ)

HPyf) solves (—A)"Go(—HPyh) = —H Py f in Q and vGo(—H Py f)|so = 0. Multiplying Pyg

to the equation (—A)"Go(—HPyh) = —H Py f we get

/(—A)mGo(—HPOh) Pog = —/POQH(Pof)~
0

We next make use of integration parts, (—A)mPog =0in Q and vyGo(—HPyf) = 0 on 91 to derive

1
/ (—H Pyf) Pog = / By (— A" 1Go(~H Py f) (— ) Pog

<Bo f)

>HZL 01 H2m 2k:— (8Q) H;n O1 H2m Qk— (BQ)

This along with (BoH)f = 0 implies [(—H Pyf) Pog = 0, where Py f and Pyg solve (—A)™ (-) = 0. Recall

D

that H is same as Q represented by @'. This finishes the proof. O
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