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Abstract. In this paper we introduce affine invariants based on a mul-
tiscale framework combined with nonlinear comparison operations. The
resulting descriptors are histograms, which are computed from a set of
comparison results using binary coding. The new constructions are anal-
ogous to other multiscale affine invariants, but the use of highly non-
linear operations yields clear advantages in discriminability. This is also
demonstrated by the experiments, where comparable recognition rates
are achieved with only a fraction of the computational load. The new
methods are straightforward to implement and fast to evaluate from
given image patches.

1 Introduction

In computer vision, invariant features have provided an elegant way of identify-
ing objects under geometric transformations. The appropriate transformations
depend heavily on the application, but in many cases the affine transformation
provides a reasonable model. Several affine invariant features have been con-
sidered. The first method, the affine invariant moments [1, 2] was introduced
already in 1962. Since then affine invariant spectral signatures [3], crossweighted
moments [4], and the trace transform [5] have been presented. Unfortunately
these methods often suffer from sensitivity to nonaffine distortions, implemen-
tational difficulties, and the lack of discriminating features.

One recent approach to affine invariants is the multiscale framework. The
idea in this framework is to extend the given image to a set of affine covariant
versions, each carrying slightly different information, and then to extract some
known invariant characteristics from each of them separately. The construction
of the affine covariant set is the key part of the approach, and it is done by
combining several scaled representations of the original image. The advantage
is the possibility for variations, which is also demonstrated by the amount of
methods created using this framework: multiscale autoconvolution [6], spatial



multiscale affine invariants [7], generalized affine invariant moments, multiscale
autoconvolution histograms [8], and ridgelet-based affine invariants.

Hitherto, the invariants introduced using the multiscale framework apply
simple pointwise products and convolution for creating the affine covariant sets
from scaled representations. While these linear operations offer robustness to
noise and other distortions, they can also easily compromise the discriminabil-
ity of the features. In this paper we introduce new multiscale affine invariants,
which apply nonlinear comparison operations to the combinations of the scaled
representations. We also introduce a way for combining several comparisons to-
gether using a binary code construction. These nonlinear operations and the
binary code construction have not been used in previous multiscale invariants.
The experiments performed demonstrate that the use of comparison operations
has a clear impact on the performance, and the new methods achieve compara-
ble or better results with only a fraction of the computational load of the earlier
methods.

2 Multiscale approach

We begin with a description of the multiscale approach in constructing affine
invariants. First we recall the definition of an affine transformation.

Definition 1. A spatial affine transformation A of coordinates x ∈ R2 is given

by A (x) = Tx + t, where t ∈ R2 and T is a 2 × 2 nonsingular matrix with

real entries. Further, let f : R2 → R, f ≥ 0, be an image function. The affine

transformed version fA of f is given by

fA (x) = f ◦ A
−1(x) = f(T−1x − T−1t).

The construction of multiscale affine invariants can be done in three steps.

1. The image f is represented in n different scales f(α1x), . . . , f(αnx).
2. The scaled images are combined to a new image Gf(x). The combination is

required to be affine covariant, which means that for any affine transforma-
tion A one has

G(f ◦ A
−1)(x) = (Gf)(A −1(x)).

3. An affine invariant operation is applied to f and Gf to obtain the full in-
variant If .

The procedure is illustrated in Figure 1. The advantage of the method is that
by varying the scales αi, the combinations G, and the affine invariant operations,
it is possible to create a great variety of different features for many purposes.

The first step, scaling of images, is straightforward. The third step can also
be quite simple. Possible choices for the affine invariant operation include the
normalized integration

If =
1

‖f‖L1

∫

R2

Gf(x) dx, (1)
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Fig. 1. Example of multiscale scheme, where two scaled representations are combined
together with pointwise product. The final invariants are computed from the resulting
images Gif .

or more generally, any affine invariant moment [2] can be used. Also, one may
apply a histogramming operation to Gf .

The second step is often the most complicated one in this approach. One
needs to take the scaled images f(αix) and combine them to a new image
Gf(x), so that Gf and G(f ◦ A

−1) are related by the affine transformation
A . The reason for using scaled images is that scaling commutes with matrix
products, i.e. αT = Tα. The translation causes some problems. It may either
be normalized away by computing the image centroid, or one may choose G more
carefully so that translation invariance is obtained without finding the centroid.

We will discuss a few examples for G. First we consider the spatial multiscale
invariants (SMA) [7], given here in a slightly modified form. We choose Gf to
be a product of the original f and two scaled representations of it, f(αx), and
f(βx). In this formulation, the translation component must be normalized and
it is done by computing the image centroid µ(f). The operator G is given by

Gf(x) = f(x)f(αx + (1 − α)µ(f))f(βx + (1 − β)µ(f)), (2)

where α, β ∈ R. We then construct the invariant feature I by using the normal-
ized integration (1). The result is the SMA transform, given by

Sf(α, β) =
1

‖f‖L1

∫

R2

f(x)f(αx + (1 − α)µ(f))f(βx + (1 − β)µ(f)) dx. (3)

Due to its simplicity, Sf(α, β) is very fast to evaluate, and the possibility of
varying the scales results in an infinite number of different descriptors.

Another example is the multiscale autoconvolution (MSA) [6], where one
uses a combination of convolutions and products to form Gf . One advantage of



this descriptor is the fact that the translation component does not have to be
considered separately. Define

Gf(x) =
1

‖f‖2

L1

f(x)(fα ∗ fβ ∗ fγ)(x), (4)

where α, β, γ ∈ R, α+β+γ = 1, fa(x) = a−2f(x/a), and ∗ denotes convolution.
The actual invariant features are again constructed by normalized integration,
which gives the MSA transform

Mf(α, β) =
1

‖f‖3

L1

∫

R2

f(x)(fα ∗ fβ ∗ fγ)(x) dx. (5)

This formulation is not computationally appealing, but fortunately Mf can be
computed using the Fourier transform f̂ as

Mf(α, β) =
1

f̂(0)3

∫

R2

f̂(−ξ)f̂(αξ)f̂(βξ)f̂(γξ) dξ.

These two examples illustrate the application of the multiscale framework in
constructing affine invariants. Further examples could include generalized affine
invariant moments, multiscale autoconvolution histograms, and ridgelet-based
affine invariants. The basic idea of applying the multiscale framework is similar
in all the examples, although the preprocessing and the computation of the
actual invariant characteristics may differ.

3 The new approach

All the multiscale affine invariants presented above perform the combination
Gf of scaled images by using convolutions or pointwise products. These opera-
tions, which have a linear character, seem to behave robustly under noise, but
in many applications they can compromise the discriminability of the methods.
For this reason, better performance might be achieved by using other, nonlinear
functionals in the combination of the scaled images.

We propose here to replace the products in the earlier constructions by point-
wise comparison operations. This approach is motivated by the excellent perfor-
mance of the local binary patterns (LBP) [9], where similar comparison opera-
tions were used to construct highly discriminative texture descriptors. Another
motivation is the fact that comparison operations perform well under illumina-
tion distortions, which are very common in real applications. We demonstrate
the new approach in two cases, based on similar formulations as in SMA and
MSA.

3.1 Invariant based on comparison of scaled images

The first new invariant is analogous to SMA. However, instead of two scales we
take only one, and we replace the product by the comparison operation

Gf(x) = Gαf(x) = X(f(x), f(αx + (1 − α)µ(f))), (6)
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Fig. 2. Illustration of the process for generating the invariant histograms.

where α ∈ R and µ(f) is the image centroid, and

X(a, b) =

{

1 if a > b,
0 otherwise.

(7)

It is easy to show that G(f ◦A
−1)(x) = Gf(A −1(x)), which was required in the

multiscale framework. Now one could simply compute the normalized integral
from the binary image Gf to form the affine invariant. However, this would
destroy the spatial information in Gf , and one would need to use many different
α values to achieve desired discriminability. Instead, we propose to compute
Gαf(x) with only a few different α values, say α1, α2, . . . , αn, and then to use
a binary code construction as in LBP to combine all the information to a new
function

Bf(x) = Bα1,...,αn
f(x) = Gα1

f(x) + Gα2
f(x) · 2 + . . . + Gαn

f(x) · 2n−1. (8)

The function Bf has integer values from 0 to 2n − 1, and it completely en-
codes the information in the functions Gα1

f, . . . , Gαn
f . It follows immediately

that B(f ◦A
−1)(x) = Bf(A −1(x)), so also Bf fulfills the requirement of affine

relationship in the multiscale framework. Thus, to compute the final affine in-
variant, one could just evaluate the normalized integral of Bf . This approach,
however, does not make sense, since the different combinations would have an
uneven impact to the resulting invariant value. Instead we construct a histogram
HSf(k), with 2n −2 bins, from nonzero values of Bf , and we normalize the his-
togram so that the sum over all bins is equal to one. Compared to the direct
integration of Gαf , this makes it possible to preserve the relative spatial ar-
rangements in the functions Gα1

f, . . . , Gαn
f . The construction of the invariant

is illustrated in Figure 2.

3.2 Invariant based on comparison of image and its scaled

autoconvolution

The previous construction has the disadvantage that one needs to eliminate the
translation by computing the image centroid. Also, it shares the same incom-
pleteness issues as SMA [7]. For these reasons, we base the next construction on
a formulation which is similar to MSA. Consider the convolution of two scaled



representations of f as

Cf(x) = Cαf(x) =
1

‖f‖L1

(fα ∗ f1−α)(x).

Here α ∈ R and fa(x) = a−2f(x/a). It is easy to see that C(f ◦ A
−1)(x) =

Cf(A −1(x)), and Cf is an affine covariant operator.
We take the functions Cαf as a basis for the new invariant, and use compar-

ison operations for combining them. If X is the comparison operator in (7), we
define

Gαf(x) = X(f(x), Cαf(x)). (9)

It immediately follows that Gα(f ◦ A
−1)(x) = Gαf(A −1(x)), and the require-

ment in the multiscale approach is satisfied. With each α value we get a binary
image Gαf , and we use these binary images in the expression (8) to get Bf . One
may then form a normalized histogram of Bf as in the preceding invariant. The
resulting histogram is denoted by HMf(k).

4 Implementational issues

Evaluating HS can be done similarly as SMA [7], with a few straightforward
modifications. Basically the only differences are that instead of a product we
use a comparison operation, which is then followed by the binary coding, and
the histogram operation instead of the sum. It is also possible to apply a similar
interpolation scheme as in SMA, where the interpolation grid is designed so that
all the required samples are computed at once. This gave a significant speed
advantage in SMA. Due to the very similar implementations, HS is almost as
efficient to evaluate as SMA. The only difference is the histogramming, which is
slightly slower than summing. It is easy to show that the asymptotical complexity
for an N × N image is O(N2) for both HS and SMA.

The computation of HM is similar to MSA [6]. However, the product in
MSA can be handled in Fourier domain, which is not possible for the compari-
son operation. The convolution involved in (9) can still be evaluated using the
Fourier transform, and we also have the advantage that if 0 < α < 1 the Fourier
transform does not have to be zero padded for accurate evaluation. In addition
to this, we need to select a way to perform the scaling to produce f(x/α) and
f(x/(1 − α)). We could do this also in Fourier domain, but as in MSA, better
results are achieved by scaling in the spatial domain before taking the Fourier
transform. The final asymptotical complexity of the method is the same as in
discrete Fourier transform, i.e. O(N2 log N).

The Matlab programs which were used to evaluate both HS and HM are
available at the website: http://www.ee.oulu.fi/research/imag/cmp_inv/.

5 Experiments

In this section we assess the two new invariants HS and HM in classifica-
tion experiments and compare their performance to MSA, MSA histograms
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Fig. 3. Examples of the proposed affine invariant histograms. The first row has his-
tograms HS for images 1 and 2, and the absolute difference between these. The second
row has the same data for the histograms HM .

[8], SMA, and affine invariant moments (AMI) [2]. We start by giving some
examples of the invariant histograms HS and HM in Figure 3. The scaling
parameters used with HS were {0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4} and with HM
{0.02, 0.055, 0.09, 0.11, 0.16, 0.205, 0.35, 0.45}. The same parameters are also used
in the classification experiments later. Notice the slight differences between his-
tograms for images 1 and 2, which are due to nonaffine discretization errors.

In the classification experiments, we selected the parameters for compar-
ison methods so that they have approximately the same computational load
as the corresponding new methods. In the case of MSA we used 5 invariants
with (α, β) = {(−0.1, 0.1), (−0.1, 0.3), (−0.2, 0.2), (−0.2, 0.4), (−0.3, 0.4)},
and in the case of SMA 10 invariants with (α, β) = {(−1,−1), (−1,−0.25),
(−1, 0.75), (−0.75,−0.5), (−0.75, 0.5), (−0.5,−0.5), (−0.5, 0.5), (−0.25,−0.25),
(−0.25, 0.75), (0.25, 0.5)}. In addition to these we also computed the MSA and
SMA with a larger amount of features, namely 19 for MSA and 36 for SMA. For
other comparison methods we selected the MSA histogram with (α, β) = (−0.1,
0.3) and AMI with 60 independent invariants. We will refer to these methods
as MSA5, SMA10, MSA19, SMA36, MSAhist, and AMI, respectively. Since the
methods except for HS are not illumination invariant, we normalized the images
so that they have mean 128 and standard deviation 30. The classification was
performed using a simple nearest neighbor classifier, where the distance measure
was the histogram intersection for the histogram approaches and the Euclidean
distance for the others. The calculation of Euclidean distance was preceded by
PCA decorrelation and dimension reductions in order to enhance the classifica-
tion performance.

In the first experiment we classified 256×256 gray-scale images of postcards,
obtained from photographs taken from different viewing angles. The training



Fig. 4. Some examples of training images (first row) and angle distorted images (second
row).

set included one image from each of the 50 different postcards and the test set
included 175 images of the same postcards taken from various angles in natural
light. The camera we used was Canon EOS 10D with EF 17-40mm F/4L USM
lens. The resulting classification problem is not easy, since in addition to the
affine deformations, the test images are subjected to many other distortions due
to real photographing conditions. Some examples of the training and test images
are shown in Figure 4. The achieved classification results are given in Table 1,
along with the approximate computation times per one 256 × 256 image. The
results indicate that HS has the clearly the best performance if we take into
account the computation time and the classification accuracy. The difference
is especially large compared to SMA. Also HM performs well, outperforming
MSA5 and MSA histograms in classification. With 19 features for MSA we were

Table 1. Classification error percents under real view angle distortions.

HS HM MSA5 MSA19 MSA hist. SMA10 SMA36 AMI

Classification error 3.4 % 5.7 % 22.9 % 3.4 % 27.4 % 36.6 % 26.3 % 65.7 %
Execution time 1.08 s 1.89 s 2.42 s 11.40 s 0.19 s 2.62 s 5.09 s 0.29 s

Table 2. Classification error percents under illumination distortions.

HS HM MSA19 SMA36

Underexposure by 1.5 apertures 2.4 % 2.4 % 1.6 % 10.4 %
Underexposure by 3 apertures 4.0 % 5.6 % 0.0 % 11.2 %

Table 3. Classification error percents under heavy illumination and noise distortions.

HS HM MSA19 SMA36

Underexposure by 2 and ISO 3200 24.0 % 30.0 % 2.0 % 4.0 %



Fig. 5. Examples of illumination distorted images. With the images on first row the
underexposure is 1.5 apertures and on the second row 3 apertures.

able to achieve better recognition, but with a significantly larger computational
load.

We continued by introducing more distortions to the image. First we added
illumination distortions by taking a new set of 125 test photos, underexposing
them first by 1.5, and then by 3 aperture steps of the camera. The changes in the
viewing angle were kept quite small in this experiment. Some examples of the
new test sets are shown in Figure 5. The results of this experiment are illustrated
in Table 2. We omitted the MSA5, MSA histogram, SMA10, and AMI methods
from this experiment due to their high error rates in the first experiment. It
can be observed that all the tested methods, except SMA36, are very tolerant to
illumination changes. As expected, MSA with 19 invariants works quite robustly,
but similar results are achieved with HS and HM with only a small fraction of
the required computational load. In the case of HS there was also no need to
perform illumination normalization, which simplifies the overall procedure.

As a final illustration we created one more test set of 50 images, by under-
exposing by 2 aperture steps and increasing the sensitivity (ISO) value of the
camera to 3200. The resulting images were severely distorted by noise. The re-
sults of this experiment are shown in Table 3. The new methods, which are based
on comparison operations, react to the substantial changes in gray-scale values
more strongly than MSA and SMA which use product operations. In many cases,
reactivity is a desirable feature of the method, but in this experiment robustness
leads to better results. The experiment clearly illustrates the trade-off between
robustness and discriminability.

6 Conclusions

In this paper we introduced a novel way of creating affine invariants from the
multiscale framework by applying comparison operations and binary coding. The
application of these nonlinear operations offered a new way to increase the dis-
criminability of the invariants. The simplicity of the new operations made the
proposed methods efficient to evaluate. The experiments performed indicated



that using already a few scales in the construction of the invariants can outper-
form similar approaches with linear functionals. The amount of features in the
traditional methods had to be drastically increased to achieve even comparable
results. In addition to the two examples provided here, we expect that similar
nonlinear constructions can be applied to other multiscale invariants.
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