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Abstract. We address the question of �nding global solutions of the Helmholtz equation
that are positive in a given set. This question arises in inverse scattering for penetrable
obstacles. In particular, we show that there are solutions that are positive on the boundary
of a bounded Lipschitz domain.

1. Introduction

The objective in this short note is to consider the following problem.

Question 1.1. Let k > 0 and let E be a subset of Rn (n ≥ 2). Does there exist a solution
of (∆ + k2)u = 0 in Rn with u|E > 0?

Note that any solution of the Helmholtz equation (∆ + k2)u = 0 is C∞, and thus the
condition u|E > 0 can be understood pointwise. There is a substantial literature on zero
sets of solutions of elliptic equations and eigenfunctions, as discussed in the review [LM20].
In our setting, any real valued solution of (∆ + k2)u = 0 in Rn must have a zero in any
closed ball of radius jn−2

2
,1k

−1 where jn−2
2

,1 is the �rst zero of the Bessel function Jn−2
2

(see

e.g. [SS21, Lemma 3.1]). Question 1.1 above is related to producing a global solution whose
zero set avoids a given set E.
Our motivation comes from inverse scattering theory and the works [CV21, SS21, KLSS22].

In these works, one considers a bounded open set D ⊂ Rn (penetrable obstacle) together with
a coe�cient h ∈ L∞(Rn) with |h| ≥ c > 0 a.e. near ∂D (contrast), and asks whether it is
possible to �nd a solution u0 ̸≡ 0 of (∆ + k2)u0 = 0 in Rn (incident wave) such that the
obstacle D with contrast h does not produce any scattering response. The last condition can
be precisely formulated as the existence of a function u solving

(∆ + k2 + hχD)u = 0 in Rn,

u = u0 outside some ball.

If this happens for some contrast h, then the obstacle D is called a non-scattering domain

and it will be invisible with respect to probing with the incident wave u0.
It was proved in [SS21, Theorem 2.1] that if D has real-analytic boundary and if there is

an incident wave u0 with u0|∂D > 0, then D is a non-scattering domain. Similarly, the work
[KLSS22] introduced the notion of quadrature domains for the Helmholtz operator ∆ + k2

and proved that if D is such a domain, and if there is an incident wave u0 with u0|∂D > 0,
then D is a non-scattering domain. On the other hand, the works [CV21, SS21] show that
under a nonvanishing condition for u0 on ∂D, the boundary of a non-scattering domain can
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be interpreted as a free boundary in an obstacle-type problem and hence such a domain must
be either regular or have thin complement near any boundary point.
It was also proved in [SS21] that one may be able to �nd incident waves that are positive on

the boundary of a bounded C1 domain (Lipschitz if n = 2, 3). Our �rst main result extends
this to Lipschitz domains in any dimension.

Theorem 1.1. Let D ⊂ Rn (n ≥ 2) be a bounded Lipschitz domain such that Rn \ D is

connected. Suppose that k2 > 0 is not a Dirichlet eigenvalue of −∆ in D. Then there exists

a Herglotz wave function u0 (see De�nition 2.1) satisfying

(∆ + k2)u0 = 0 in Rn and u0|∂D > 0.

The proof of Theorem 1.1 is done in two steps. One �rst constructs a solution v of
(∆ + k2)v = 0 in D with v|∂D > 0 by solving a Dirichlet problem. Then one approximates
v in D by a suitable Herglotz wave u0 in Rn via a Runge approximation argument. This
approximation needs to be done in a suitable norm to obtain the pointwise condition u0|∂D >
0, but since D only has Lipschitz boundary the solution v is not very regular and this limits
the choice of possible norms. We will work with fractional Sobolev spaces Hs,p and invoke
the theory of boundary value problems in Lipschitz domains.1

We remark that the assumption in Theorem 1.1 that k2 is not an eigenvalue is necessary,
at least when D is a ball (see Example 2.5). For the �rst eigenvalue this was pointed out in
[SS21, Remark 3.2].
Another instance of subsets E ⊂ Rn where one can arrange u0|E > 0 is given in the

following result.

Theorem 1.2. Let k > 0, and let D ⊂ Rn (n ≥ 2) be a bounded Lipschitz domain such that

Rn \ D is connected and |D| ≤ |Br| where r = jn−2
2

,1k
−1. If E ⊂ D is compact, then there

exists a Herglotz wave function u0 (see De�nition 2.1) satisfying

(1.1) (∆ + k2)u0 = 0 in Rn and u0|E > 0.

The proof is similar to that of Theorem 1.1, except that in the �rst step we use the
Faber-Krahn inequality to produce a solution v that is positive near E.

Remark 1.3. If E is su�ciently nice and low dimensional, it may be possible to use Theorem
1.2 to �nd solutions that are positive on E. For example, let E be a smooth compact
manifold with dim (E) = m ≤ n− 2 embedded in Rn, which is homeomorphic to a compact
submanifold E1 of Rn−1 ∼= Rn−1 × {0} ⊂ Rn. This holds e.g. when m < n/2 by the Whitney
embedding theorem, or when E is homeomorphic to Sm. Since Rn \ E1 is connected, by
[MT97, Corollary 7.9] one sees that Rn \ E is (pathwise) connected. One can construct a
tubular neighborhood D = {x ∈ Rn : d(x,E) < ϵ} of E having smooth boundary ∂D
and arbitrarily small measure [MT97, Theorem 9.23 and Remark 9.24] (see also [Lee13,
Theorem 6.24]). Since Rn \ E is connected, one can connect any two points in Rn \D by a
curve γ in Rn \ E. By considering the curve F (γ) where F is a continuous map on Rn that
�xes Rn \D and collapses D \E to ∂D, we see that Rn \D is connected. Since D has smooth
boundary, also Rn \D is connected. (See [CF77, pages 61�62] for a related discussion.) Thus
we may apply Theorem 1.2 to �nd a Herglotz wave function u0 satisfying (1.1). Note that
the connectedness of Rn \ E can fail when E has dimension n− 1.

1This is one of the areas where Carlos Kenig has made pioneering contributions.



ON POSITIVITY SETS FOR HELMHOLTZ SOLUTIONS 3

2. Solutions satisfying the positivity condition

In this section we will prove Theorems 1.1 and 1.2. We begin with some preparations.

2.1. Fractional Sobolev spaces. For each s ∈ R and 1 < p < ∞, the fractional Sobolev
space Hs,p(Rn) is the Banach space equipped with the norm

∥u∥Hs,p(Rn) := ∥⟨D⟩su∥Lp(Rn),

where ⟨D⟩s is the the Bessel potential of order s, i.e. the Fourier multiplier corresponding
to ⟨ξ⟩s = (1 + |ξ|2) s

2 . In particular when s = k ≥ 1 is an integer, we also have Hk,p(Rn) =
W k,p(Rn), where

W k,p(Rn) =
{

u ∈ Lp(Rn) Dαu ∈ Lp(Rn) for all multi-indices α with |α| ≤ k
}
.

From [BL76, Corollary 6.2.8], we have the duality statement

(2.1) (Hs,p(Rn))∗ = H−s,p′(Rn) for all s ∈ R and 1 < p < ∞,

where (p′)−1 + p−1 = 1. We also recall the Sobolev embedding ([BL76, Theorem 6.5.1]):

(2.2) Hs,p(Rn) ⊂ Hs1,p1(Rn)

whenever 1 < p ≤ p1 < ∞, −∞ < s1 ≤ s < ∞, and s− n
p
= s1 − n

p1
.

Let D be an open set in Rn. We de�ne

Hs,p(D) :=
{

u|D u ∈ Hs,p(Rn)
}

for all s ∈ R and 1 < p < ∞.

This is a Banach space equipped with the quotient norm

∥v∥Hs,p(D) := inf
{
∥u∥Hs,p(Rn) u|D = v

}
.

When D is a bounded Lipschitz domain, from [JK95, Theorem 2.3] we know that there exists
a bounded linear extension operator

(2.3) E : Hs,p(D) → Hs,p(Rn) with Eu = u in D for all u ∈ Hs,p(D).

If F ⊂ Rn is closed, we de�ne

Hs,p
F (Rn) :=

{
u ∈ Hs,p(Rn) supp(u) ⊂ F

}
.

If D is a bounded Lipschitz domain, the following result can be found in [JK95, Remark 2.7]:

(2.4) C∞
c (D) is dense in Hs,p

D
(Rn) for each s ∈ R and 1 < p < ∞.

2.2. Runge-Herglotz approximation. The next objective is to prove a result stating that
solutions in Hs,p(D) can be approximated in D by Herglotz waves. We �rst give a de�nition.

De�nition 2.1. Let k > 0 and consider the operator Pk : C
∞(Sn−1) → C∞(Rn) de�ned by

(Pkf)(x) :=

∫
Sn−1

eikx·ẑf(ẑ) dẑ, x ∈ Rn.

The functions u = Pkf with f ∈ C∞(Sn−1) are called Herglotz waves, and they are particular
solutions of (∆ + k2)u = 0 in Rn.
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Proposition 2.2. Let k > 0, 0 < s ≤ 1, 1 < p < ∞, and let D ⊂ Rn (n ≥ 2) be a bounded

Lipschitz domain such that Rn \D is connected. Given any v ∈ Hs,p(D) with (∆ + k2)v = 0
in D, there exist Herglotz waves uj ∈ C∞(Rn) such that

∥uj − v∥Hs,p(D) → 0 as j → ∞.

If v is real-valued, then so are uj.

The proof of Proposition 2.2 is very similar to [SS21, Proposition 3.4] that considered
approximation in W 1,p(D). Here we need to work with fractional Sobolev spaces instead.

Proof. In view of the Hahn-Banach theorem, it is enough to prove that any bounded linear
functional ℓ : Hs,p(D) → C that vanishes on

{
Pkf |D f ∈ C∞(Sn−1)

}
must also vanish

on
{

v ∈ Hs,p(D) −(∆ + k2)v = 0 in D
}
. Let ℓ be such a linear functional, and de�ne a

bounded linear functional ℓ1 : Hs,p(Rn) → C by ℓ1(u) := ℓ(u|D). By duality (2.1), there
exists a unique µ ∈ H−s,p′(Rn) such that

ℓ1(u) = (u, µ) for all u ∈ Hs,p(Rn),

where (·, ·) is the sesquilinear distributional pairing in Rn. It is easy to see that µ = 0 in
Rn \D, and the condition ℓ(Pkf |D) = 0 for all f ∈ C∞(Sn−1) implies that

(2.5) (Pkf, µ) = 0 for all f ∈ C∞(Sn−1).

We now de�ne the distribution w := Φk ∗ µ, where

(2.6) Φk(x) =
ik

n−2
2

4(2π)
n−2
2

|x|−
n−2
2 H

(1)
n−2
2

(k|x|)

is the outgoing fundamental solution of the Helmholtz operator −(∆ + k2) and H
(1)
α is the

Hankel function (see [Yaf10, �1.2.3]). Then w is a distributional solution of

(2.7) −(∆ + k2)w = µ in Rn.

Elliptic regularity yields w ∈ H2−s,p′

loc (Rn), and since supp(µ) ⊂ D we also have that w is C∞

in Rn \D.
Given any f ∈ C∞(Sn−1), we write u = Pkf ∈ C∞(Rn). Using (2.5) and the fact that µ

has compact support, we have

(2.8) 0 = (u, µ) = lim
r→∞

(u, µ)Br ,

where (·, ·)Br is the sesquilinear distributional pairing in the ball Br. We now consider a
cut-o� function χ ∈ C∞

c (Rn) satisfying 0 ≤ χ ≤ 1 and χ = 1 near D. Using (2.7), we can
write (2.8) as

0 = lim
r→∞

[
(χu, (∆ + k2)w)Br + ((1− χ)u, (∆ + k2)w)Br

]
= lim

r→∞

[
((∆ + k2)(χu), w)Br + ((∆ + k2)((1− χ)u), w)Br

+

∫
∂Br

(u∂|x|w − (∂|x|u)w) dS

]
= lim

r→∞

∫
∂Br

(u∂|x|w − (∂|x|u)w) dS,(2.9)
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where ∂|x| = x̂ ·∇ denotes the radial derivative. Here we also used the fact that (∆+k2)u = 0
in Rn.
Using [Mel95, Lemma 1.2 and equation (1.18)], we know that the Herglotz function u = Pkf

has the following asymptotics as |x| → ∞:

u(x) = c′n,k|x|−
n−1
2

(
eik|x|f(x̂) + in−1e−ik|x|f(−x̂)

)
+O(|x|−

n+1
2 ),(2.10a)

∂|x|u(x) = c′n,k|x|−
n−1
2 ik

(
eik|x|f(x̂)− in−1e−ik|x|f(−x̂)

)
+O(|x|−

n+1
2 ),(2.10b)

where c′n,k = k
n−1
2 e

π(n−1)i
4 (2π)−

n−1
2 . On the other hand, from [Yaf10, equation (2.27)], we

know that w has the asymptotics

w(x) = c′′n,k|x|−
n−1
2 eik|x|µ̂(kx̂) +O(|x|−

n+1
2 ) as |x| → ∞,(2.10c)

∂|x|w(x) = c′′n,k|x|−
n−1
2 ikeik|x|µ̂(kx̂) +O(|x|−

n+1
2 ) as |x| → ∞,(2.10d)

where c′′n,k = 2−1e−
π(n−3)i

4 (2π)−
n−1
2 k

n−3
2 and µ̂ ∈ C∞(Rn) is the Fourier transform of the

compactly supported distribution µ.
Combining (2.9) with (2.10a)�(2.10d), we obtain∫

Sn−1

f(x̂)µ̂(kx̂) dx̂ = 0.

By the fact that f ∈ C∞(Sn−1) was arbitrary, we conclude µ̂(kx̂) = 0 for all x̂ ∈ Sn−1.
Consequently, (2.10c) becomes

w(x) = O(|x|−
n+1
2 ) as |x| → ∞.

In other words, the far-�eld pattern of w is vanishing. By the Rellich uniqueness theorem
[CK19, Hör73], the unique continuation principle and the connectedness of Rn \ D, we
conclude that

(2.11a) w = 0 in Rn \D.

Since w ∈ H2−s,p′

loc (Rn), we also conclude that w ∈ H2−s,p′

D
(Rn).

Now let v ∈ Hs,p(D) be any solution of (∆ + k2)v = 0 in D, and let ṽ ∈ Hs,p(Rn) be such
that ṽ|D = v. We see that

ℓ(v) = ℓ1(ṽ|D) = (ṽ, µ) = (ṽ, (∆ + k2)w).

From (2.4), we know that there are wj ∈ C∞
c (D) with wj → w in H2−s,p′(Rn). Since

(∆ + k2)ṽ = 0 in D, we �nally conclude that

ℓ(v) = lim
j→∞

(ṽ, (∆ + k2)wj) = lim
j→∞

((∆ + k2)ṽ, wj) = 0,

which is our desired result. □
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2.3. Proof of the main result. Theorem 1.1 is an immediate consequence of the following
result:

Theorem 2.3. Let D be a bounded Lipschitz domain in Rn (n ≥ 2) such that Rn \ D is

connected. Suppose that k2 > 0 is not a Dirichlet eigenvalue of −∆ in D. Given any

constant c0 ∈ R, there exist Herglotz wave functions uj ∈ C∞(Rn) solving (∆ + k2)uj = 0 in

Rn such that

lim
j→∞

∥uj − c0∥L∞(∂D) = 0.

Before we prove Theorem 2.3 we need the following result, which is a special case of [JK95,
Theorems 1.1 & 1.3].

Proposition 2.4. Let D be a bounded Lipschitz domain in Rn (n ≥ 2). If 2 ≤ p < ∞ and

f ∈ Hs−2,p(D) where
1

p
< s <

3

p
,

then there exists a unique u ∈ Hs,p(D) satisfying −∆u = f in D and u = 0 on ∂D.

Proof. We �rst consider the case when n ≥ 3. Let p0 be as in [JK95, Theorem 1.1] (with
Ω = D). If p′0 ≤ p < ∞, the result follows from [JK95, Theorem 1.1(c)]. On the other hand,
if 2 ≤ p < p′0, the result follows from [JK95, Theorem 1.1(a)] since s < 3

p
≤ 1 + 1

p
. The

case when n = 2 can be proved using identical reasoning using [JK95, Theorem 1.3] and the
observation 3

p
≤ 2

p
+ 1

2
. □

Proof of Theorem 2.3. Since k2 is not a Dirichlet eigenvalue in D, there exists a unique
solution v ∈ H1,2(D) such that

(∆ + k2)v = 0 in D and v = c0 on ∂D.

If v ∈ Hs,p(D) for some 0 < s ≤ 1 and p > n/s, using Proposition 2.2, we know that there
exist Herglotz waves uj ∈ C∞(Rn) such that

∥uj − c0∥L∞(∂D) = ∥uj − v∥L∞(∂D) ≤ ∥uj − v∥C(D) ≤ C∥uj − v∥Hs,p(D) → 0,

where we used the Sobolev embedding.
It remains to show that v ∈ Hs,p(D) for some s, p with s > n/p, and this follows from a

standard bootstrap argument based on Proposition 2.4. We claim that

(2.12) v ∈ H
2
pj

,pj
(D) for 0 ≤ j <

n− 2

4
,

where
1

pj
=

1

2
− j

2

n− 2
.

The case j = 0 follows since v ∈ H1,2(D). We argue by induction and assume that this holds
for j. De�ne w := v − c0 and note that w solves

−∆w = k2v ∈ H
2
pj

,pj
(D), w|∂D = 0.

We next use the Sobolev embedding H
2
pj

,pj
(D) ⊂ H

2
q
−2,q(D) where 2

pj
> 2

q
− 2 and

2

pj
− n

pj
=

2

q
− 2− n

q
.
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It follows that q = pj+1 and then indeed 2
pj

> 2
q
− 2. In particular −∆w ∈ H

2
pj+1

−2,pj+1
(D)

with w|∂D = 0, and we may use Proposition 2.4 to conclude that w ∈ H
2

pj+1
,pj+1

(D). This
completes the induction step and proves (2.12).

We have proved that v ∈ H
2
pj

,pj
(D) where j is the largest integer < n−2

4
. Using the

above notation, we have ∆w ∈ H
2
pj

,pj
(D) and w|∂D = 0. By Sobolev embedding we have

∆w ∈ Hs−2,p(D) whenever p ≥ pj and

2

pj
− n

pj
= s− 2− n

p
.

The last condition implies that

s− n

p
= 2 +

2− n

pj
= 2 +

2− n

2
+ 2j ≥ 0

since j ≥ n−2
4

− 1. If j > n−2
4

− 1, using Proposition 2.4 once again we obtain that w and
hence v is in Hs,p for some s > n/p. On the other hand, if j = n−2

4
− 1 we iterate the

argument once more to get v ∈ Hs,p for some s > n/p. This concludes the proof. □

The next simple example shows that the condition that k2 is not an eigenvalue is necessary
at least for balls.

Example 2.5. Let v(x) := |x| 2−n
2 Jn−2

2
(|x|). We see that v ∈ C∞(Rn) and (∆ + 1)v = 0 in

Rn. Suppose that u1 is a real-valued function satisfying (∆ + 1)u1 = 0 in Rn. Since

v(x) = 0 when |x| = jn−2
2

,m for any m ≥ 1,

where jn−2
2

,m denotes the mth positive zero of Jn−2
2
, we have∫

|x|=jn−2
2 ,m

u1
∂v

∂r
dS =

∫
|x|<jn−2

2 ,m

(u1∆v − v∆u1) dx = 0.

Since

(−1)m
∂v

∂r
(x) > 0 when |x| = jn−2

2
,m,

it follows that u1 must change sign on |x| = jn−2
2

,m.

Similarly, if R > 0 and if u0 solves (∆+ k2
m)u0 = 0 in Rn where km = R−1jn−2

2
,m, de�ne u1

via the rescaling

u0(x) = u1(R
−1jn−2

2
,mx) for x ∈ Rn.

We see that (∆ + 1)u1 = 0 in Rn. The above discussion shows that u0 must change sign on
∂BR.

The following strong maximum principle can be found in [KLSS22, Appendix A]. However,
for readers' convenience, here we exhibit the statement as well as its proof.

Lemma 2.6 (Strong maximum principle). Let D be a bounded Lipschitz domain in Rn

(n ≥ 2), and let k2 < λ1(D), where λ1(D) > 0 denotes the smallest H1
0 (D)-eigenvalue of

−∆. If the solution u ∈ H1(D) satis�es

(∆ + k2)u = 0 in D, u ≥ 0 on ∂D,
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then for each open component G of D we have either u ≡ 0 in G or u > 0 in G (note that

u ∈ C∞(G) by elliptic regularity).

Proof. It is easy to see that for each component G of D we have k2 < λ1(G) and

(∆ + k2)u = 0 in G, u ≥ 0 on ∂G.

Testing the equation above by u− ∈ H1
0 (G) and using Poincaré inequality, we have∫

G

|u−|2 dx ≤ 1

λ1(G)

∫
G

|∇u−|2 dx =
k2

λ1(G)

∫
G

|u−|2 dx.

Since k2

λ1(G)
< 1, then u− ≡ 0 in G, that is,

(2.13) u ≥ 0 in G.

Let x0 ∈ G such that u(x0) = 0. The mean value theorem for Helmholtz equation (see e.g.
[KLSS22, Appendix A]) gives that

(2.14)

∫
Bϵ(x0)

u(x) dx = 0

for all su�ciently small ϵ > 0 so that Bϵ(x0) ⊂ G. Since u is continuous in G, combining
(2.13) and (2.14) we know that u = 0 in Bϵ(x0), and this shows that

{
x ∈ G u(x) = 0

}
is

both open and closed in G. Since G is connected, then we have either{
x ∈ G u(x) = 0

}
= G or

{
x ∈ G u(x) = 0

}
= ∅,

which concludes our lemma. □

Finally, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Since |D| ≤ |Br| where r = jn−2
2

,1k
−1, the Faber-Krahn inequality (see

e.g. [Cha01, Theorem III.3.1]) implies that each connected component G of D satis�es

λ1(G) ≥ λ1(Br) = k2.

Case 1. If λ1(G) = k2, we choose v to be an eigenfunction corresponding to the �rst
eigenvalue with v > 0 in G, i.e. v solves (∆+ k2)v = 0 in G with v ∈ H1

0 (G), see e.g. [Eva10,
Theorem 2(ii) in Section 6.5.1].

Case 2. If λ1(G) > k2, then there exists a unique solution v ∈ H1(G) such that

(∆ + k2)v = 0 in G, v = 1 on ∂G.

Using the strong maximum principle in Lemma 2.6, we know that v > 0 in G.

Next we choose a bounded Lipschitz domain D1 that satis�es E ⊂ D1, D1 ⊂ D, and
Rn \D1 is connected. The function v|D1 is in H1,p(D1) for any p > n and satis�es v|D1

> 0.
The approximation result in Proposition 2.2 yields a sequence of Herglotz waves uj satisfying

∥uj|D1 − v∥H1,p(D1) → 0 as j → ∞.

If j is su�ciently large, the Sobolev embedding ensures that uj|E > 0. □
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