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Abstract. This article studies the inverse problem of recovering a nonlinearity in an elliptic
equation ∆u + a(x, u) = 0 from boundary measurements of solutions. Previous results based
on first order linearization achieve this under a sign condition on ∂ua(x, u), and results based on
higher order linearization recover the Taylor series of a(x, u) with respect to u. We improve these
results and show that a general nonlinearity, and not just its Taylor series, is uniquely determined
up to gauge near a fixed solution. Our method is based on constructing a good solution map that
locally parametrizes solutions of the nonlinear equation by solutions of the linearized equation.

1. Introduction

Motivation. Let Ω ⊆ Rn, n ≥ 2, be a bounded domain whose boundary is assumed to be C∞ for
simplicity, and let a ∈ Ck(R, C1,α(Ω)) where k ≥ 3 and 0 < α < 1. We write a = a(x, z) for x ∈ Ω
and z ∈ R, and consider equations of the form

(1.1) ∆u(x) + a(x, u(x)) = 0 in Ω.

In this article we study the inverse problem of identifying the function a(x, z) from certain boundary
measurements of solutions of (1.11.1). For example, the boundary measurements could be encoded by
a Dirichlet-to-Neumann (DN) map if the equation is well-posed, or more generally one could use
the (full) Cauchy data set

Ca := {(u|∂Ω, ∂νu|∂Ω) : u ∈ C2,α(Ω) solves ∆u+ a(x, u) = 0}.

That is, we wish to answer the question:

Does Ca determine a(x, z)?

For linear equations ∆u+q(x)u = 0, the question above is a version of Calderón’s inverse problem
and there is large literature (see e.g. the survey [Uhl14Uhl14]). There are also many results for nonlinear
equations. The first generation of such results was based on first order linearization, i.e. on studying
the (first) Fréchet derivative of the nonlinear DN map and using existing results for linear equations.
This method was introduced in [Isa93Isa93], and further results for determining a nonlinearity a(x, u) as
in (1.11.1) were given in [IS94IS94; IN95IN95; IY13IY13]. These results typically require assumptions such as

a(x, 0) = 0,(1.2)
∂ua(x, u) ≤ 0,(1.3)

which ensure well-posedness and a maximum principle. The assumption (1.31.3) was weakened in
[IN95IN95], and [Sun10Sun10] gave a result without assuming (1.21.2). The results show that one can recover
a(x, u) in (some subset of) the reachable set

Ea := {(x, z) : x ∈ Ω, z = u(x) for some solution u of ∆u+ a(x, u) = 0}.
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There are many related works for quasilinear and conductivity type equations. References may be
found in the survey articles [Sun05Sun05; Uhl09Uhl09].

The works [FO20FO20; LLLS21aLLLS21a] introduced a higher order linearization method in inverse problems
for nonlinear elliptic equations, motivated by the earlier work [KLU18KLU18] for hyperbolic equations.
This method applies to inverse problems for equations like (1.11.1) without any positivity assumptions
as in (1.31.3). Moreover, unlike in the first order linearization method that reduced matters to known
results for linear equations, in higher order linearization the nonlinearity is used as a tool that helps
in solving inverse problems. In this way, one can obtain results in partial data problems [LLLS21bLLLS21b;
KU20KU20; ST23ST23] or anisotropic problems [FO20FO20; LLLS21aLLLS21a; CFO23CFO23; FKO23FKO23] that are stronger than the
known results for corresponding linear equations.

However, the higher order linearization results for (1.11.1) start with the assumptions that

a(x, 0) = 0,(1.4)
0 is not a Dirichlet eigenvalue for ∆+ ∂ua(x, 0) in Ω.(1.5)

The first assumption ensures that u ≡ 0 is a solution of (1.11.1). The second assumption ensures that
the linearized equation is well-posed for small Dirichlet data, and hence there is a nonlinear DN map
Λa for (1.11.1) defined for small Dirichlet data. The additional assumption ∂ua(x, 0) = 0 also appears
in many results. The works [FO20FO20; LLLS21aLLLS21a] then show that Λa (defined for small Dirichlet data)
determines ∂jua( · , 0) for many j ≥ 0. If one additionally assumes that a(x, z) is real-analytic in z,
then this is sufficient for determining a(x, z) completely.

Results. Our aim is to consider inverse problems for (1.11.1) for general functions a ∈ Ck(R, C1,α(Ω)).
In particular, we wish to remove the assumptions (1.21.2)–(1.31.3) in the first order linearization method
and (1.41.4)–(1.51.5) in the higher order linearization method. This requires certain changes in the
problem setup. First of all, the results in [FO20FO20; LLLS21aLLLS21a] are based on looking at solutions of
(1.11.1) close to u ≡ 0 and on well-posedness for small data. Moreover, the linearized equation might
not be well-posed in general, but by Fredholm theory it is still well-posed for most Dirichlet data
(i.e. data that are L2-orthogonal to a finite dimensional space). It follows that there may not be a
Dirichlet-to-Neumann map to work with.

For these reasons, in the general case we consider an arbitrary but fixed solution w ∈ C2,α(Ω) of
∆w + a(x,w) = 0 and for δ > 0 we define the local Cauchy data set

Cw,δ
a := {(u|∂Ω, ∂νu|∂Ω) : u ∈ C2,α(Ω) solves ∆u+ a(x, u) = 0 and ∥w − u∥C2,α(Ω) ≤ δ}.

If w ≡ 0, this would be analogous to small Dirichlet data. By the Fredholm theory fact mentioned
above one expects that there are many solutions close to w, and we will prove a precise version of
such a result.

Our first main theorem shows that if two nonlinearities a1 and a2 admit a common solution w
and if their local boundary measurements satisfy the inclusion Cw,δ

a1 ⊆ C0,C
a2 , then a1 = a2 near the

common solution w.

Theorem 1.1. Let a1, a2 ∈ C3(R, C1,α(Ω)), and let w ∈ C2,α(Ω) solve ∆w + a1(x,w) = 0 and
∆w + a2(x,w) = 0 in Ω. If for some δ, C > 0 one has

Cw,δ
a1 ⊆ C0,C

a2 ,

then there is ε > 0 such that

a1(x,w(x) + λ) = a2(x,w(x) + λ), x ∈ Ω, |λ| ≤ ε.
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This theorem is based on using first order linearization and it is valid for general nonlinearities.
In particular, the sign condition (1.31.3) in the earlier results mentioned above is not needed. We note
that the higher order linearization method does not require the sign condition either, but the result
in [FO20FO20; LLLS21aLLLS21a] for the case w ≡ 0 was ∂jua1( · , 0) = ∂jua2( · , 0) for many j ≥ 0 which is clearly
weaker than the conclusion in Theorem 1.11.1. Moreover, if the linearizations of ∆u + aj(x, u) = 0
(linearized at the solution w) happen to be well-posed, then by the arguments in Section 22 there
are Dirichlet-to-Neumann maps Λaj defined for Dirichlet data close to w|∂Ω, and then by Theorem
1.11.1 one obtains a1 = a2 near points (x,w(x)) whenever Λa1 = Λa2 .

Remark 1.2. It is in order to explain the assumption Cw,δ
a1 ⊆ C0,C

a2 in the theorem. A more typical
way of stating a uniqueness result would be to say that Ca1 = Ca2 (i.e. the full Cauchy data sets of a1
and a2 agree) implies a1 = a2 somewhere. However, Ca1 = Ca2 implies our assumption Cw,δ

a1 ⊆ C0,C
a2

in many cases, e.g. when the equation ∆u+ a2(x, u) = 0 is well-posed for Dirichlet data near w|∂Ω
or when ∥∂ua2∥L∞(Ω×R) <∞ (the latter fact follows from the Cauchy data estimates in Section 33).

More precisely, the assumption Cw,δ
a1 ⊆ C0,C

a2 means that if u1 solves ∆u1 + a1(x, u1) = 0 with
∥u1 −w∥C2,α(Ω) ≤ δ, then there is u2 solving ∆u2 + a2(x, u2) = 0, having the same Cauchy data as
u1, and satisfying ∥u2∥C2,α(Ω) ≤ C. The existence of such a constant C is required in the proof to
make sure that if u1 is very close to w, then u2 will also be close to w and we can use a uniqueness
result to guarantee that u2 can be differentiated with respect to some parameters if the same is true
for u1.

If the nonlinearities a1 and a2 do not admit a common solution, then this inverse problem has a
gauge invariance as observed in [Sun10Sun10]. If a ∈ Ck(R, Cα(Ω)) is a nonlinearity and φ ∈ C2,α(Ω) is
any function satisfying φ|∂Ω = ∂νφ|∂Ω = 0, we define

(1.6) Tφa(x, u) := ∆φ(x) + a(x, u+ φ(x)).

Then u solves ∆u+ a(x, u(x)) = 0 if and only if v = u−φ solves ∆v+ Tφa(x, v(x)) = 0. It follows
that the solutions of these two equations have the same Cauchy data. Hence, if the Cauchy data sets
for a1 and a2 agree, one can only expect that a2(x, u) = Tφa1(x, u) for (x, u) in the reachable set.
There are a number of related works based on the first linearization, see e.g. [IS94IS94; IN95IN95; Sun10Sun10].
Recent works that involve a similar gauge invariance are given in [LL23LL23; KLL23KLL23]. We also mention
the examples in [IS94IS94; FKO23FKO23] showing that in general the reachable set is not all of Ω× R.

Our next result shows that if one knows the Cauchy data for a nonlinearity a and for solutions
close to a given solution w, then one can recover a near points (x,w(x)) precisely up to the gauge
mentioned above.

Theorem 1.3. Let a1, a2 ∈ C3(R, C1,α(Ω)), and let w1 ∈ C2,α(Ω) solve ∆w1 + a1(x,w1) = 0 in Ω.
If

Cw1,δ
a1 ⊆ C0,C

a2

for some δ, C > 0, then there is ε > 0 such that

a1(x,w1(x) + λ) = Tφa2(x,w1(x) + λ)

whenever x ∈ Ω and |λ| ≤ ε. Here φ := w2 − w1 where w2 ∈ C2,α(Ω) is the unique solution of
∆w2 + a2(x,w2) = 0 in Ω with w1|∂Ω = w2|∂Ω and ∂νw1|∂Ω = ∂νw2|∂Ω.

Again, Theorem 1.31.3 is valid for general nonlinearities. Note that Theorem 1.11.1 is a corollary of
Theorem 1.31.3 since w2 = w1 in that case.

3



Both Theorem 1.11.1 and 1.31.3 are based on first order linearization and they rely on the solution of
an inverse problem for the linearized equation. In contrast, many of the results based on higher
order linearization do not rely directly on the inverse problem for the linearized equation. In fact
in these results the equation often has a form where the unknown quantities only appear in higher
linearizations and not in the first linearization. For such equations, nonlinearity often helps and one
can obtain improved results in the presence of nonlinearity.

In the case of the higher order linearization method, we can remove the assumptions (1.41.4)–(1.51.5)
that were present in most of the earlier results. The following result is an example of what one can
prove.

Theorem 1.4. Let a1, a2 ∈ Ck+1(R, C1,α(Ω)) with k ≥ 2, let w1 ∈ C2,α(Ω) solve ∆w1+a1(x,w1) =
0 in Ω, and suppose that

Cw1,δ
a1 ⊆ C0,C

a2

for some δ, C > 0. Let w2 ∈ C2,α(Ω) be the unique solution of ∆w2 + a2(x,w2) = 0 in Ω with
w1|∂Ω = w2|∂Ω and ∂νw1|∂Ω = ∂νw2|∂Ω. Assume further that

(1.7) ∂lua1(x,w1) = ∂lua2(x,w2), 1 ≤ l ≤ k − 1.

Then ∫
Ω
(∂kua1(x,w1)− ∂kua2(x,w2))v1 . . . vk+1 dx = 0

for any vj solving the linear equation ∆vj + ∂ua1(x,w1)vj = 0 in Ω.

In other words, if Cw1,δ
a1 ⊆ C0,C

a2 and (1.71.7) holds, then ∂kua1(x,w1)− ∂kua2(x,w2) is L2-orthogonal
to products of k+1 solutions of the same linear equation. This is a typical conclusion in the higher
order linearization method. Under our current assumptions, Theorem 1.31.3, which is based on solving
the inverse problem for the linearized equation, already implies that ∂kua1(x,w1) = ∂kua2(x,w2). The
point is that as long as (1.71.7) holds (this is true e.g. for polynomial nonlinearities aj(x, u) = qj(x)u

k

and wj ≡ 0), Theorem 1.41.4 does not rely on solving the inverse problem for the linearized equation
and one can prove this without assuming (1.41.4)–(1.51.5). Theorem 1.41.4 remains valid for more general
equations such as ∆gu+ a(x, u) = 0 with a smooth Riemannian metric g, for which the linearized
case is not fully understood. For these more general equations one might be able to obtain improved
results in the nonlinear case as was done in [FO20FO20; LLLS21aLLLS21a] and subsequent works.

Methods. Let us next describe the methods for proving the above results. The first objective is to
show that near a solution w of ∆w + a(x,w) = 0, there are many solutions uv = w + v + O(∥v∥2)
of the same equation that are parametrized by small solutions v of the linearized equation

∆v + ∂ua(x,w)v = 0.

It will also be important that uv depends smoothly on v. We will prove this by a standard argument
using the implicit function theorem. This is slightly delicate since the linearized equation may not
be well-posed. In order to have a solution uv depending smoothly on v that is unique in a suitable
sense, one needs to use a solution operator for the linearized equation that takes into account the
finite dimensional obstructions to solvability coming from Fredholm theory.

One can recast the previous result in a different language. If q(x) = ∂ua(x,w(x)) and

Vq = {v ∈ C2,α(Ω) : ∆v + qv = 0 in Ω},
Wa = {u ∈ C2,α(Ω) : ∆u+ a(x, u) = 0 in Ω},
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then Vq is the solution space of ∆+q and Wa is a Banach manifold in C2,α(Ω) consisting of solutions
of the nonlinear equation. Then Vq is the tangent space of Wa at w, and our result shows that

Sa,w : v 7→ uv

is a bijective smooth map from a neighborhood of 0 in Vq onto a neighborhood of w in Wa with
DSa,w(0) = Id. Similar ideas appear e.g. in [Eel66Eel66; Pal68Pal68; Sun75Sun75].

Next, starting from the assumption Cw,δ
a1 ⊆ C0,C

a2 , we construct a solution u1,v as above for a1,
and use the inclusion of Cauchy data sets to conclude that there is a solution u2,v for a2 having
the same Cauchy data as u1,v. We know that u1,v depends smoothly on v, but this is not known
for u2,v. In order to show that also u2,v depends smoothly on v, we prove quantitative estimates
showing that solutions of both the linearized and nonlinear equations depend continuously on their
Cauchy data. For one of these results we invoke a standard Carleman estimate. Since u2,v depends
continuously on its Cauchy data, and since the Cauchy data of u2,v is the same as for u1,v and the
latter depends smoothly on v, we are able to show that also u2,v depends smoothly on v. This also
uses certain functional analytic arguments following [OSSU20OSSU20].

The first order linearization result, Theorem 1.11.1, is proved as follows. If Cw,δ
a1 ⊆ C0,C

a2 and if
u1,vt and u2,vt are as described above with vt = v + th, we differentiate the equations ∆uj,vt +
aj(x, uj,vt) = 0 with respect to t, subtract the resulting equations, and integrate against a solution
of ∆ṽ2 + ∂ua2(x, u2,v)ṽ2 = 0 to obtain∫

Ω
(∂ua1(x, u1,v)− ∂ua2(x, u2,v))ṽ1ṽ2 dx = 0

where ṽ1 = DSa1,w(v)h. Then we use the bijectivity of Sa,w above to conclude that any solution
ṽ1 of ∆ṽ1 + ∂ua1(x, u1,v)ṽ1 = 0 can be written as DSa1,w(v)h for some h. Density of products of
solutions as in the standard Calderón problem [SU87SU87; Buk08Buk08] implies that

∂ua1(x, u1,v) = ∂ua2(x, u2,v) for any small v ∈ Vq.

Next we show that φv := u2,v −u1,v is independent of v, by observing that the derivative of φv with
respect to v is identically 0, because it solves a linear elliptic equation and has zero Cauchy data.
Since φ0 = w − w = 0, we obtain

∂ua1(x, u1,v) = ∂ua2(x, u1,v) for any small v ∈ Vq.

(In the setting of Theorem 1.31.3 one has u2,v = u1,v+φ instead.) It then remains to show that for any
fixed x0, the values u1,v(x0) generate an interval [w(x0) − ε, w(x0) + ε] by varying v. This follows
since u1,v = w+ v +O(∥v∥2) and since one can generate linear solutions v with v(x0) ̸= 0 by using
Runge approximation. This concludes the outline of proof of Theorem 1.11.1. The proof of Theorem
1.31.3 is analogous, except that φ will be a nonzero function that is independent of v.

Finally, we use the higher order linearization method and differentiate k times the equations
∆uj,v +aj(x, uj,v) = 0 with respect to v. Subtracting the resulting equations, using the assumption
(1.71.7) and integrating against a solution vk+1, we arrive at Theorem 1.41.4.

The article is organized as follows. In Section 22 we construct a solution map for equation (1.11.1).
Section 33 is dedicated to quantitative uniqueness results for (1.11.1) and its linearization. The lin-
earization methods require two smooth solution maps and the second one is constructed in Section
44. In Section 55 we use first order linearization to prove Theorems 1.11.1 and 1.31.3. Finally, in Section
66 we give the proof of Theorem 1.41.4. At the end we have an AppendixAppendix where we give a Runge
approximation result for the first linearization of (1.11.1).
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2. A smooth solution operator

The linearization methods used in this work are based on constructing solutions u = uv of

(2.1) ∆u+ a(x, u) = 0 in Ω,

so that uv is close to a fixed solution w of (2.12.1) and depends smoothly on a small solution v of the
linearized equation

(2.2) ∆v + ∂ua(x,w)v = 0 in Ω.

In order to parametrize solutions of (2.12.1) on solutions of (2.22.2), we need to be able to single out
suitable solutions of the linearized equation which may not be well-posed. This is done in Lemma
2.12.1 by using the Fredholm alternative. We then construct solutions uv of (2.12.1) by solving a nonlinear
fixed point equation. This fixed point equation is solved in Lemma 2.32.3. The construction of the
smooth solution map v → uv for the equation (2.12.1) is completed in Lemma 2.42.4. Finally in Lemma
2.52.5 we show that the first Fréchet derivative of the solution operator is an isomorphism between
spaces of solutions to the linearized equation.

Before we proceed to the results of this section, let us define some spaces and mappings that
are used throughout. Let Ω ⊆ Rn with n ≥ 2 be a bounded open set with C∞ boundary, and
let q ∈ C1,α(Ω) be real valued where 0 < α < 1. First we have the kernel Nq of the operator
∆+ q : H1

0 (Ω) → H−1(Ω) and the space of Neumann data ∂νNq of the functions in Nq, i.e.

Nq = {ψ ∈ H1
0 (Ω) : (∆ + q)ψ = 0},

∂νNq = {∂νψ|∂Ω : ψ ∈ Nq}.

These spaces appear due to the use of the Fredholm alternative. These are finite dimensional
spaces, and since q ∈ C1,α(Ω), elliptic regularity [Bro62Bro62, Theorem 2.2] ensures that Nq ⊆ C3,α(Ω)

and ∂νNq ⊆ C2,α(∂Ω). The last fact is the only reason why we assume q ∈ C1,α(Ω) (otherwise
q ∈ Cα(Ω) would have been sufficient). We let {∂νψ1, . . . , ∂νψm} be an orthonormal basis of ∂νNq

with respect to the L2(∂Ω)-inner product.

We now show that even in the case when 0 is a Dirichlet eigenvalue of ∆+ q in Ω, the equation
(∆ + q)u = F has a solution u for any F and one can prescribe the Dirichlet data of u in the
L2(∂Ω)-orthocomplement of the finite dimensional space ∂νNq. Below, the notation ⊥ will always
mean L2-orthogonality.

Lemma 2.1. Let q ∈ C1,α(Ω). For any F ∈ Cα(Ω) and f ∈ C2,α(∂Ω), there is a unique function
Φ = Φ(F, f) ∈ ∂νNq such that the problem

(2.3)

{
∆u+ qu = F in Ω,

u = f − Φ on ∂Ω,

admits a solution u ∈ C2,α(Ω). The function Φ is given by

(2.4) Φ(F, f) =
m∑
j=1

(∫
Ω
Fψj dx+

∫
∂Ω
f∂νψj dS

)
∂νψj .
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Moreover, there is unique solution uF,f = Gq(F, f) such that uF,f ⊥ Nq. The solution uF,f depends
linearly on F and f and satisfies

(2.5) ∥uF,f∥C2,α(Ω) ≤ C(∥F∥Cα(Ω) + ∥f∥C2,α(∂Ω)),

where C is independent of F and f .

Proof. We first consider the case of solvability in H2(Ω) with zero Dirichlet data. If X = H2(Ω) ∩
H1

0 (Ω) equipped with the H2(Ω) norm, then by Fredholm theory [Eva10Eva10, Theorem 4 in Section
6.2.3] and elliptic regularity [Eva10Eva10, Theorem 4 in Section 6.3.2] the map

T : X → L2(Ω), T v = (∆+ q)v

is Fredholm, i.e. it has finite dimensional kernel Nq and its range Ran(T ) = {F ∈ L2(Ω) : F ⊥ Nq}
has finite codimension. It follows that the induced map

T1 : X/Nq → Ran(T )

is bounded and bijective, hence invertible by the open mapping theorem. The space X/Nq can be
identified with Y = {u ∈ X : u ⊥ Nq}, and T becomes an isomorphism from Y onto Ran(T ).
(To see this, let E : X → L2(Ω) be the restriction to X of the L2-orthogonal projection onto Nq.
Then X = Ran(E) ⊕ Ker(E) = Nq ⊕ Y [Con90Con90, Theorem 13.2 b)], and the map Y → X/Nq,
u 7→ [u] identifies Y with X/Nq.) It follows that for any F ∈ Ran(T ) there is a unique vF ∈ X with
vF ⊥ Nq such that T (vF ) = F . In other words, for any F ∈ L2(Ω) with F ⊥ Nq there is a unique
vF ∈ H2(Ω) ∩H1

0 (Ω) with vF ⊥ Nq that depends linearly on F and solves

(∆ + q)v = F in Ω, v|∂Ω = 0,

and one has

(2.6) ∥vF ∥H2(Ω) ≤ C∥F∥L2(Ω).

We can obtain a similar statement in Hölder spaces. Let F ∈ Cα(Ω) with F ⊥ Nq and let vF be
as above. By elliptic regularity, vF ∈ C2,α(Ω) and

(2.7) ∥vF ∥C2,α(Ω) ≤ C∥F∥Cα(Ω).

(More precisely, from [Bro62Bro62, Theorem 2.2] and [GT01GT01, Lemma 6.18 and Problem 6.2] we obtain
vF ∈ C2,α(Ω) and

(2.8) ∥vF ∥C2,α(Ω) ≤ C(∥vF ∥C(Ω) + ∥F∥Cα(Ω)).

From Theorem 8.15 and the remark around equation 8.38 in [GT01GT01] it follows that ∥vF ∥C(Ω) ≤
C∥vF ∥L2(Ω). Using this with (2.62.6) and (2.82.8) yields (2.72.7).)

We now consider (2.32.3). To study the uniqueness of u, we fix a bounded extension operator

Eq : C
2,α(∂Ω) → C2,α(Ω) with Eqh|∂Ω = h and Eqh ⊥ Nq for all h ∈ C2,α(∂Ω).

In fact it is enough to take Eq = (Id− PNq)E, where E is any bounded extension operator [Tri83Tri83,
Theorem 3.3.3 and eq. 1) on p. 51] and PNq is the L2(Ω)-orthogonal projection to Nq. We see that
u solves (2.32.3) iff u = Eq(f − Φ) + v, where v solves

(2.9)

{
∆v + qv = F̃ in Ω,

v = 0 on ∂Ω,
7



where we wrote F̃ = F − (∆ + q)Eq(f − Φ). We wish to find a function Φ ∈ ∂νNq such that
F̃ ⊥ L2(Ω). If ψ ∈ Nq, integrating by parts gives∫

Ω
F̃ψ dx =

∫
Ω
Fψ dx+

∫
∂Ω

(f − Φ)∂νψ dS.

Thus F̃ ⊥ Nq iff Φ satisfies for all ψ ∈ Nq the condition∫
∂Ω

Φ∂νψ dS =

∫
Ω
Fψ dx+

∫
∂Ω
f∂νψ dS.

This holds for Φ iff Φ = Φ(F, f) is given by (2.42.4). For this Φ, we let vF̃ ⊥ Nq be the solution of (2.92.9)
satisfying (2.62.6). Then uF,f := Eq(f − Φ(F, f)) + vF̃ ⊥ Nq satisfies the required estimate (2.52.5). □

Next we prove an auxiliary lemma which is used in several places in the remainder of the article.

Lemma 2.2. Let a ∈ Ck(R, Cα(Ω)) and f ∈ C(Ω) and let l ≤ k. Then

(2.10) ∥∂lua(x, f(x))∥Cα(Ω) ≤ ∥a∥Ck([−M,M ],Cα(Ω))

where M = ∥f∥C(Ω).

Proof. By manipulating the supremum in the definition of the norm we have

∥∂lua(x, f)∥Cα(Ω) =sup
x∈Ω

|∂lua(x, f(x))|+ sup
x,y∈Ω
x ̸=y

|∂lua(x, f(x))− ∂lua(y, f(y))|
|x− y|α

≤ sup
x∈Ω

∥∂lua(x)∥C([−M,M ]) + sup
x,y∈Ω
x̸=y

sup
η,θ∈[−M,M ]

|∂lua(x, η)− ∂lua(y, θ)|
|x− y|α

≤ sup
x∈Ω

∥a(x)∥Cl([−M,M ]) + sup
x,y∈Ω
x ̸=y

∥a(x)− a(y)∥Cl([−M,M ])

|x− y|α

=∥a∥Ck([−M,M ],Cα(Ω)). □

Next we study a fixed point equation related to the linearized equation. Below, we let

(2.11) Bδ = {u ∈ C2,α(Ω) : ∥u∥C2,α(Ω) < δ}.

Lemma 2.3. Let a ∈ C3(R, C1,α(Ω)) and w ∈ C2,α(Ω) be a solution of ∆w+ a(x,w) = 0 in Ω. Let
q = ∂ua(x,w) and let Gq(F, f) be the solution operator of{

∆u+ qu = F in Ω

u = f − Φ(F, f) on ∂Ω

provided by Lemma 2.12.1. Define Rv(r) = R(v + r) where R : C2,α(Ω) → Cα(Ω) is given by

(2.12) R(h)(x) :=

∫ 1

0
[∂ua(x,w(x) + th(x))− ∂ua(x,w(x))]h(x) dt.

For fixed v ∈ C2,α(Ω) define Tv : C2,α(Ω) → C2,α(Ω) by Tv(r) = −Gq(Rv(r), 0).

Under the above assumptions, there exists δ > 0 such that Tv|Bδ
: Bδ → Bδ is a contraction.

Furthermore,

(2.13) ∥Tv(h)∥C2,α(Ω) ≤ C∥v + h∥2
C2,α(Ω)

, h ∈ Bδ.
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Consequently there exists a unique r ∈ Bδ solving the fixed point equation r = Tv(r). The function
r is also the unique solution with r ⊥ Nq of

(2.14)

{
∆r + ∂ua(x,w)r = −R(v + r) in Ω

r|∂Ω ∈ ∂νNq on ∂Ω,

and necessarily r|∂Ω = Φ(R(v + r), 0).

Proof. We first show that Tv maps Bδ into itself when δ is small enough. Let v, r ∈ Bδ where
initially δ ≤ 1. By the mapping properties for G in Lemma 2.12.1 and the fundamental theorem of
calculus, we have

∥Tv(r)∥C2,α(Ω) ≤ C∥R(v + r)∥Cα(Ω)(2.15)

= C

∥∥∥∥∫ 1

0
[∂ua(x,w + t(v + r))− ∂ua(x,w)](v + r) dt

∥∥∥∥
Cα(Ω)

= C

∥∥∥∥∫ 1

0

∫ 1

0
∂2ua(x,w + st(v + r))t(v + r)2 ds dt

∥∥∥∥
Cα(Ω)

From Lemma 2.22.2 we get for s, t ∈ [0, 1] that

(2.16) ∥∂2ua(x,w + st(v + r))∥Cα(Ω) ≤ Cw,a.

Since v ∈ Bδ we have, by using (2.162.16) in (2.152.15), that

∥Tv(r)∥C2,α(Ω) ≤ C∥v + r∥2
Cα(Ω)

≤ C∥v + r∥2
C2,α(Ω)

≤ Cδ2.

The second inequality above proves (2.132.13). For δ small enough we get

∥Tv(r)∥Ck,α(Ω) ≤ δ

and conclude that Tv indeed maps Bδ into itself.

Next we show the contraction property of Tv. Let r1, r2 ∈ Bδ. Then, as in (2.152.15), we have

∥Tv(r1)− Tv(r2)∥C2,α(Ω) ≤ C∥Rv(r1)−Rv(r2)∥Cα(Ω).

Denote ui = v + ri, i = 1, 2. Then

Rv(r1)−Rv(r2) =

∫ 1

0
(∂ua(x,w + tu1)− ∂ua(x,w))u1 − (∂ua(x,w + tu2)− ∂ua(x,w))u2 dt

=

∫ 1

0
(∂ua(x,w + tu1)− ∂ua(x,w) + ∂ua(x,w + tu2)− ∂ua(x,w))(u1 − u2)

− (∂ua(x,w + tu2)− ∂ua(x,w))u1 + (∂ua(x,w + tu1)− ∂ua(x,w))u2 dt

=

∫ 1

0
(u1 − u2)

(
tu1

∫ 1

0
∂2ua(x,w + stu1) ds+ tu2

∫ 1

0
∂2ua(x,w + stu2) ds

)
− tu1u2

∫ 1

0
∂2ua(x,w + stu2) ds+ tu1u2

∫ 1

0
∂2ua(x,w + stu1) ds dt

=

∫ 1

0
(u1 − u2)

(
tu1

∫ 1

0
∂2ua(x,w + stu1) ds+ tu2

∫ 1

0
∂2ua(x,w + stu2) ds

+ t2u1u2

∫ 1

0

∫ 1

0
s∂3ua(x,w + ystu1 + (1− y)stu2) dy ds

)
dt.
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Let us estimate the norm of the last expression term by term. Since v, ri ∈ Bδ then ui ∈ B2δ for
i ∈ {1, 2}. Using this and (2.162.16) we have that∥∥∥∥tui ∫ 1

0
∂2ua(x,w + stui) ds

∥∥∥∥
Cα(Ω)

≤ t∥ui∥Cα(Ω)

∫ 1

0
∥∂2ua(x,w + stui)∥Cα(Ω) ds

≤ tδC.

Just as in (2.162.16) we get ∥∂3ua(x,w + h)∥Cα(Ω) ≤ Cw,a. Using this we estimate∥∥∥∥t2u1u2 ∫ 1

0

∫ 1

0
s∂3ua(x,w + ystu1 + (1− y)stu2) dy ds

∥∥∥∥
Cα(Ω)

≤ t2∥u1u2∥Cα(Ω)

∫ 1

0

∫ 1

0
s∥∂3ua(x,w + ystu1 + (1− y)stu2)∥Cα(Ω) dy ds

≤ t2δ2C

Finally, for small enough δ > 0 we have

∥Tv(r1)− Tv(r2)∥C2,α(Ω) ≤ Ca

∫ 1

0
∥u1 − u2∥Cα(Ω)(2tδC + t2δ2C) dt

≤ 1

2
∥u1 − u2∥C2,α(Ω)

=
1

2
∥r1 − r2∥C2,α(Ω).

Thus Tv is a contraction and the Banach fixed point theorem ensures existence and uniqueness of
solution to the equation r = Tv(r) in Bδ. The definition of Tv ensures that r also solves (2.142.14). □

We now construct the smooth solution map Sa,w, which maps small solutions v of the linearized
equation ∆v + ∂ua(x,w)v = 0 to solutions u of the nonlinear equation ∆u + a(x, u) = 0 that are
close to some fixed solution w. Below, if F : U → Y is a C1 map where X and Y are Banach spaces
and U ⊆ X is open, we will denote its Fréchet derivative by

DF (x) = F ′(x).

Recall that Bδ is given by (2.112.11).

Lemma 2.4. Let a ∈ Ck(R, C1,α(Ω)), k ≥ 3. Let w ∈ C2,α(Ω) be a solution of ∆w + a(x,w) = 0.
Let q(x) = ∂ua(x,w(x)). Then there exist δ, C > 0 and a Ck−1 map Q = Qa,w : Bδ → Bδ satisfying

Q(Bδ) ⊆ N⊥
q ,

Q(Bδ)|∂Ω ⊆ ∂νNq,

Q(0) = DQ(0) = 0

and

(2.17) ∥Q(v)∥C2,α(Ω) ≤ C∥v∥2
C2,α(Ω)

,

such that Sa : Bδ → C2,α(Ω) defined by u = Sa,w(v) = w + v +Q(v) is a Ck−1 map satisfying

(2.18) ∆u+ a(x, u) = ∆v + qv in Ω

with S′
a,w(0)v = v. In particular, if v solves ∆v+ qv = 0, then u = Sa,w(v) solves ∆u+a(x, u) = 0.
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Conversely, if δ is small enough, then given any solution u ∈ C2,α(Ω) of ∆u + a(x, u) = 0 with
∥u−w∥C2,α(Ω) ≤ δ there exists a unique solution v ∈ C2,α(Ω) of ∆v+ qv = 0 such that u = Sa,w(v).
The function v is explicitly given by

(2.19) v = PNq(u− w) +Gq(0, (u− w)|∂Ω),
and one has ∥v∥C2,α(Ω) ≤ C∥u− w∥C2,α(Ω).

Proof. We first construct the map Q. Let v ∈ Bδ. We look for a solution u of (2.182.18) having the
form u = w + v + r and formulate a fixed point equation for r. Taylor expansion gives

∆u+ a(x, u) = ∆(w + v + r) + a(x,w + v + r)

= ∆w +∆(v + r) + a(x,w) + ∂ua(x,w)(v + r) +Rv(r)

where Rv(r)(x) =
∫ 1
0 [∂ua(x,w(x) + t[v(x) + r(x)]) − ∂ua(x,w(x))][v(x) + r(x)] dt. Since w is a

solution of ∆w + a(x,w) = 0, we see that u solves ∆u+ a(x, u) = ∆v + qv if r satisfies

∆r + ∂ua(x,w)r +Rv(r) = 0.

For each v ∈ Bδ, Lemma 2.32.3 ensures existence and uniqueness of a solution r = rv in Bδ with
r ⊥ Nq and r|∂Ω ∈ ∂νNq. Hence the mapping v 7→ rv is well-defined for v ∈ Bδ. Next we use the
implicit function theorem to show that this mapping is Ck−1.

Let F : C2,α(Ω)× C2,α(Ω) → C2,α(Ω) be defined by

F (v, r) = r − Tv(r) = r +Gq(Rv(r), 0).

From the definition of Rv and Gq it follows that F (0, 0) = 0. Next, Rv is Ck−1 since ∂ua ∈
Ck−1,α(R;C1,α(Ω)). Consequently, F is Ck−1 since Gq is linear. Moreover

DrF |(0,0)(h)

= h+Gq

(∫ 1

0
∂2ua(x,w + t(v + r))(v + r) + ∂ua(x,w + t(v + r))− ∂ua(x,w) dt|(v,r)=(0,0), 0

)
= h

and this is a linear homeomorphism from C2,α(Ω) to itself. Thus the implicit function theorem
[HG27HG27, Theorem 4] ensures the existence of open balls Bδ1 , Bδ2 and a Ck−1 map Q : Bδ1 → Bδ2

such that
F (v,Q(v)) = 0.

Since rv found by Lemma 2.32.3 above is the unique solution of F (v, · ) = 0 in Bδ for v ∈ Bδ, we
conclude that for δ < min{δ1, δ2}, rv belongs to Bδ2 and hence Q(v) = rv. We have now shown that
for each v ∈ Bδ there is a unique rv ∈ Bδ with r ⊥ Nq and r|∂Ω ∈ ∂νNq such that uv = w + v + rv
is a solution of the equation ∆uv + a(x, uv) = ∆v + qv. Moreover, the map v 7→ uv = Sa,w(v) is
Ck−1.

Next we show that Q satisfies the other properties in the statement. The estimate (2.132.13) implies

∥r∥C2,α(Ω) = ∥Tv(r)∥C2,α(Ω) ≤ C∥v∥2
C2,α(Ω)

+ C∥r∥2
C2,α(Ω)

and from this we get that

∥v∥2
C2,α(Ω)

≥ ∥r∥C2,α(Ω) − C∥r∥2
C2,α(Ω)

≥ ∥r∥C2,α(Ω)(1− Cδ).

For δ small enough, and since Q(v) = r, we have

∥Q(v)∥C2,α(Ω) ≤ C∥v∥2
C2,α(Ω)

.
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This proves (2.172.17) and shows that Q(0) = 0. Using (2.172.17) together with Q(0) = 0 implies that
DQ(0) = 0. Since Q(v) = rv, we have Q(v) ∈ N⊥

q and Q(v)|∂Ω ∈ ∂νNq.

We now prove the converse statement. Suppose that u ∈ C2,α(Ω) solves ∆u + a(x, u) = 0 in Ω
and ∥u−w∥C2,α(Ω) ≤ δ. We write ũ = u−w and want to construct v solving ∆v+ qv = 0 such that
ũ = v + Q(v). Denote by PNq and P∂νNq the L2-orthogonal projections to the finite dimensional
spaces Nq and ∂νNq, respectively. Motivated by the conditions Q(Bδ) ⊆ N⊥

q and Q(Bδ)|∂Ω ⊆ ∂νNq

we define
ψ = PNq ũ,

and let φ to be the unique solution given by Lemma 2.12.1 of the problem

∆φ+ qφ = 0 in Ω, φ ⊥ Nq, φ|∂Ω = (Id− P∂νNq)(ũ|∂Ω).

Let v = φ + ψ, which means that v is given by (2.192.19). It follows that ∆v + qv = 0 and v|∂Ω =
(Id− P∂νNq)(ũ|∂Ω). We also have

∥v∥C2,α(Ω) ≤ C∥ũ∥C2,α(Ω) = C∥u− w∥C2,α(Ω).

It remains to show that r = ũ− v = u−w− v satisfies r = Q(v). By the above conditions we have
r ⊥ Nq and r|∂Ω ∈ ∂νNq, and r satisfies

(∆ + q)r = (∆+ q)(u− w) = −(a(x, u)− a(x,w)− q(u− w))

= −(a(x,w + v + r)− a(x,w)− q(v + r)) = −Rv(r).

The first part of the proof implies that r = Q(v) if δ is chosen small enough. This proves that
u = Sa,w(v). To show that v is unique suppose that u = Sa,w(ṽ) for another solution ṽ. Then the
definition of Sa,w gives

v − ṽ = Q(ṽ)−Q(v).

Thus v− ṽ ⊥ Nq and v− ṽ|∂Ω ∈ ∂νNq. Since (∆+ q)(v− ṽ) = 0, Lemma 2.12.1 implies v = ṽ showing
that v is unique. □

Lemma 2.5. In the setting of Lemma 2.42.4, if v is small and solves ∆v + qv = 0 for q = ∂ua(x,w),
define

qv = ∂ua(x, Sa,w(v)),

Vq̃ = {h ∈ C2,α(Ω) : ∆h+ q̃h = 0}

If v ∈ Vq is small, the map DSa,w(v) is an isomorphism from Vq onto Vqv .

Proof. Let v be a small solution of ∆v + qv = 0 and vt = v + th where h ∈ Vq. Then ut = Sa,w(vt)
solves

∆ut + a(x, ut) = 0.

Since ut is C1 in t, the function u̇0 = ∂tut|t=0 = DSa,w(v)h satisfies

∆u̇0 + ∂ua(x, Sa,w(v))u̇0 = 0.

Thus DSa,w(v) maps Vq into Vqv .

Now suppose that v ∈ Vq is small and h̃ ∈ Vqv . For t small define ut = Sa,Sa,w(v)(th̃). By the
converse part of Lemma 2.42.4, if v and t are small enough one has ut = Sa,w(vt) for a unique small
solution vt ∈ Vq, and vt is given by

vt = PNq(ut − w) +Gq(0, (ut − w)|∂Ω).
12



In particular, vt is C1 in t, and since Sa,w(v0) = u0 = Sa,Sa,w(v)(0) = Sa,w(v) uniqueness gives
v0 = v. Differentiating the identities ut = Sa,w(vt) and ut = Sa,Sa,w(v)(th̃) and using DS(0) = Id
gives

DSa,w(v)v̇0 = u̇0 = DSa,Sa,w(v)(0)h̃ = h̃.

This shows that DSa,w(v) : Vq → Vqv is surjective.

Finally, suppose that h ∈ Vq satisfies DSa,w(v)h = 0. Since Sa,w(v) = w + v +Qa,w(v), we have

h+DQa,w(v)h = 0.

But DQa,w(0) = 0, which implies that ∥DQa,w(v)∥ ≤ 1/2 when v is sufficiently small. Here we
used that Q is a Ck−1 map where k ≥ 3. This implies that ∥h∥ ≤ 1

2∥h∥, showing that h = 0.
Thus DSa,w(v) : Vq → Vqv is bijective and bounded, and by the open mapping theorem it is an
isomorphism. □

3. Estimates for solutions in terms of their Cauchy data

In this section we prove estimates for functions in terms of their Cauchy data and in particular
for solutions of the nonlinear equation

(3.1) ∆u+ a(x, u) = 0 in Ω.

The estimate for (3.13.1) is used in section 44 when constructing the second solution map required for
the linearization methods.

First we obtain an auxiliary regularity estimate that is then used to prove the quantitative results.

Lemma 3.1. Let Ω ⊆ Rn be a bounded open set with C∞ boundary and let q ∈ Cα(Ω). There is
C > 0 such that for any u ∈ C2,α(Ω) we have

∥u∥C2,α(Ω) ≤ C(∥u∥C2,α(∂Ω) + ∥(∆ + q)u∥Cα(Ω) + ∥u∥H1(Ω)).

Proof. Consider the Banach space X = C2,α(∂Ω)× Cα(Ω)×H1(Ω) with norm

∥(f, F, v)∥X = ∥f∥C2,α(∂Ω) + ∥F∥Cα(Ω) + ∥v∥H1(Ω).

We define the map
T : C2,α(Ω) → X, T (u) = (u|∂Ω, (∆ + q)u, j(u)),

where j is the inclusion C2,α(Ω) → H1(Ω). Then T is bounded, linear and injective. We claim
that T has closed range. To see this, suppose that uj ∈ C2,α(Ω) and T (uj) → (f, F, v) in X. Then
uj → v in H1(Ω), uj |∂Ω → f in C2,α(∂Ω) and (∆ + q)uj → F in Cα(Ω). On the other hand
(∆ + q)uj → (∆ + q)v in H−1(Ω) and uj |∂Ω → v|∂Ω in H1/2(∂Ω), and by uniqueness of limits one
has (∆ + q)v = F and v|∂Ω = f . By elliptic regularity, the weak solution v satisfies v ∈ C2,α(Ω).
Thus (f, F, v) = T (v) and Ran(T ) is closed.

We have proved that T : C2,α(Ω) → Ran(T ) is a bounded linear bijection between Banach spaces.
By the open mapping theorem it has a bounded inverse S : Ran(T ) → C2,α(Ω), and thus for any
u ∈ C2,α(Ω) one has

∥u∥C2,α(Ω) = ∥STu∥C2,α(Ω) ≤ C∥Tu∥X .
This proves the claim. □

Next we show a quantitative uniqueness result that follows by combining Lemma 3.13.1 with the
unique continuation principle. This is the used in Section 44 related to the first linearization of (3.13.1).
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Lemma 3.2. Let Ω ⊆ Rn be a bounded open set with C∞ boundary and let q ∈ Cα(Ω). There is
C > 0 such that for any u ∈ C2,α(Ω) we have

∥u∥C2,α(Ω) ≤ C(∥u∥C2,α(∂Ω) + ∥∂νu∥C1,α(∂Ω) + ∥∆u+ qu∥Cα(Ω)).

Proof. We argue by contradiction and assume that for any m there is um such that

(3.2) ∥um∥C2,α(Ω) > m(∥um∥C2,α(∂Ω) + ∥∂νum∥C1,α(∂Ω) + ∥(∆ + q)um∥Cα(Ω)).

On the other hand, Lemma 3.13.1 implies that

∥um∥C2,α(Ω) ≤ C(∥um∥C2,α(∂Ω) + ∥(∆ + q)um∥Cα(Ω) + ∥um∥H1(Ω)).

Normalize um so that ∥um∥H1(Ω) = 1. Then using (3.23.2) yields

∥um∥C2,α(Ω) ≤ C(
1

m
∥um∥C2,α(Ω) + 1)

Then ∥um∥C2,α(Ω) ≤ C uniformly when m is sufficiently large.

By Theorem 1.34 in [AF03AF03] the embedding C2,α(Ω) → C2(Ω) is compact. Hence there is a
subsequence, still denoted um, that converges in C2(Ω) to some u ∈ C2(Ω). On the other hand,
from (3.23.2) and the bound ∥um∥C2,α(Ω) ≤ C we see that

um|∂Ω → 0, ∂νum|∂Ω → 0, (∆ + q)um → 0

in the respective spaces. By uniqueness of limits we have u|∂Ω = 0, ∂νu|∂Ω = 0, and (∆ + q)u = 0.
Consequently, u ≡ 0 by unique continuation, which contradicts ∥u∥H1(Ω) = lim∥um∥H1(Ω) = 1. □

Finally, we invoke a Carleman estimate to show that solutions of semilinear equations of the form
(3.13.1) are uniquely and stably determined by their Cauchy data.

Lemma 3.3. Let a ∈ C2(R, Cα(Ω)), and let u0 ∈ C2,α(Ω) solve ∆u0 + a(x, u0) = 0 in Ω. If
u ∈ C2,α(Ω) is any other solution of ∆u+ a(x, u) = 0 in Ω and ∥u∥C2,α(Ω), ∥u0∥C2,α(Ω) ≤M , then

(3.3) ∥u− u0∥C2,α(Ω) ≤ C(M,a)(∥u− u0∥C2,α(∂Ω) + ∥∂ν(u− u0)∥C1,α(∂Ω)).

Proof. We use a standard Carleman estimate (see e.g. [Cho21Cho21, Theorem 4.1]): there are C, τ0 > 0
and φ ∈ C∞(Ω) such that when τ ≥ τ0, one has

∥eτφv∥L2(Ω) +
1

τ
∥eτφ∇v∥L2(Ω) ≤

C

τ3/2
∥eτφ∆v∥L2(Ω) + C∥eτφv∥L2(∂Ω) +

C

τ
∥eτφ∇v∥L2(∂Ω)

for any v ∈ C2(Ω). We apply this with v = u− u0 and use the fact that

(3.4) −∆v = a(x, u)− a(x, u0) =

[∫ 1

0
∂ua(x, (1− t)u0 + tu) dt

]
v.

Since |u|, |u0| ≤M , we get from Lemma 2.22.2 that

(3.5) |∆v(x)| ≤ C(M,a)|v(x)|.
Thus, choosing τ = τ(M,a) large but fixed, we get

1

2
∥eτφv∥L2(Ω) +

1

τ
∥eτφ∇v∥L2(Ω) ≤ C(∥eτφv∥L2(∂Ω) + ∥eτφ∇v∥L2(∂Ω)).

Since c(M,a) ≤ eτφ ≤ C(M,a), we have

(3.6) ∥v∥H1(Ω) ≤ C(M,a)(∥v∥H1(∂Ω) + ∥∂νv∥L2(∂Ω)).
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We still need to estimate ∥v∥C2,α(Ω). First, Lemma 3.13.1 gives

∥v∥C2,α(Ω) ≤ C
(
∥v∥C2,α(∂Ω) + ∥∆v∥Cα(Ω) + ∥v∥H1(Ω)

)
.

From (3.43.4) we observe that

∥∆v∥Cα(Ω) ≤ C

[∫ 1

0
∥∂ua( · , (1− t)u0( · ) + tu( · ))∥Cα(Ω) dt

]
∥v∥Cα(Ω).

By using Lemma 2.22.2 to estimate the integral from above by a constant depending on a, u and u0
we have

∥∆v∥Cα(Ω) ≤ C∥v∥Cα(Ω).

Thus we get

(3.7) ∥v∥C2,α(Ω) ≤ C
(
∥v∥C2,α(∂Ω) + ∥v∥Cα(Ω) + ∥v∥H1(Ω)

)
.

Next, we have by the Sobolev embedding [AF03AF03, Theorem 4.12 Part 2] that W 1,s ⊆ Cα where
s = n

1−α . Using this and [AF03AF03, Theorem 5.2 (3)] we obtain that

∥v∥Cα(Ω) ≤ C∥v∥W 1,s(Ω) ≤ C∥v∥1/2
W 2,s(Ω)

∥v∥1/2Ls(Ω).

Then we use interpolation of Lp-spaces (see for example [Eva10Eva10, Appendix B]) to get

∥v∥Ls(Ω) ≤ C∥v∥λL2(Ω)∥v∥
1−λ
Lr(Ω)

for some r > s. Estimating the Lr- and W 2,s-norms by the C2,α-norm we have

∥v∥Cα(Ω) ≤ C∥v∥(2−λ)/2

C2,α(Ω)
∥v∥λ/2

L2(Ω)
.

Using Young’s inequality with ε for p = 2/λ and q = p/(p− 1) gives

∥v∥Cα(Ω) ≤ C(ε∥v∥q(2−λ)/2

C2,α(Ω)
+ Cε∥v∥L2(Ω)) = (ε∥v∥C2,α(Ω) + Cε∥v∥L2(Ω))

since q = 2
2−λ . Using this in (3.73.7) and choosing ε > 0 sufficiently small finally gives

∥v∥C2,α(Ω) ≤ C
(
∥v∥C2,α(∂Ω) + ∥v∥H1(Ω)

)
.

Combining the last estimate with (3.63.6) proves the result. □

4. A smooth solution map with prescribed Cauchy data

As mentioned previously, in order to prove the main results, we need to construct two smooth
solution maps for the nonlinear equations

(4.1) ∆u+ ai(x, u) = 0 in Ω

for i = 1, 2. In Section 22 we constructed the first one. One reason why we cannot use the solution
map Sai,wi for both i ∈ {1, 2} is that we need to control the Cauchy data. If u1 = Sa1,w1(v1) then
we would need to find a solution u2 = Sa2,w2(v2) such that u1, u2 have the same Cauchy data. But
the solution maps Sai,wi don’t provide enough control of the Neumann data to guarantee that this
is possible. Another issue, in particular when identifying the first derivatives ∂uai(x,wi), is that
the method of linearization relies on differentiating both solution maps Sa1,w1 , Sa2,w2 in the same
direction v. But in order to use the same parameter v for both operators, v needs to solve both
linearized equations

(4.2) ∆v + ∂uai(x,wi)v = 0 in Ω
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for i ∈ {1, 2}. However, before having identified the first derivatives, ∂ua1(x,w1) = ∂ua2(x,w2), we
don’t know that such functions v exist. So the goal of this section is to construct a new solution map
Tai,wi that resolves these two issues. That is, we aim to construct a smooth solution map Ta2,w2 for

(4.3) ∆u+ a2(x, u) = 0 in Ω

parametrized on solutions v of
∆v + ∂ua1(x,w1)v = 0 in Ω

such that Ta2,w2(v) and Sa1,w1(v) have the same Cauchy data.

Before constructing Tai,wi , we establish some preliminary results. The construction of Tai,wi is
based on the implicit function theorem. In order to properly define the function to which the implicit
function theorem is applied, we require the existence of a certain projection mapping and existence
of a bounded inverse of the Schrödinger operator ∆ + q. We first establish these two results and
then proceed to construct Tai,wi .

Lemma 4.1. Let q ∈ Cα(Ω). Then the spaces

Y = {u ∈ C2,α(Ω): u|∂Ω = ∂νu|∂Ω = 0}
Z = {(∆ + q)u : u ∈ Y }

are Banach spaces.

Proof. It follows from the continuity of the mappings C2,α(Ω) ∋ u 7→ u|∂Ω ∈ C2,α(∂Ω) and
C2,α(Ω) ∋ u 7→ ∂νu|∂Ω ∈ C1,α(∂Ω) that Y is a Banach space. To see that Z is a Banach space, let
vn = ∆wn + qwn ∈ Z be a sequence converging to some v ∈ Cα(Ω). Using Lemma 3.23.2, we have

∥wn − wm∥C2,α(Ω) ≤ C∥∆wn + qwn −∆wm − qwm∥Cα(Ω),

so that wn is a Cauchy sequence in Y . Hence there is some w ∈ Y with wn → w in C2,α(Ω). Next,

∥∆wn + qwn −∆w − qw∥Cα(Ω) ≤ C∥wn − w∥C2,α(Ω)

So for v = ∆w + qw, we have vn → v in Cα(Ω) and Z is a Banach space. □

The following result shows that there is a bounded projection P : C2,α(Ω) → Z. If C2,α(Ω)
were a Hilbert space, the existence of a projection would follow from an orthogonal decomposition
C2,α(Ω) = Z ⊕W . Since Z is the image of ∆+ q acting on functions whose Cauchy data vanishes,
the orthocomplement W would be the set of suitable functions w with (∆ + q)w = 0. Thus any
u ∈ C2,α(Ω) could be written as u = (∆ + q)y + w, where y ∈ Y and (∆ + q)w = 0. This shows
that y needs to satisfy (∆ + q)2y = (∆ + q)u. This formal argument turns out to work also in our
case.

Lemma 4.2. Let q ∈ Cα(Ω) and let Y and Z be as in Lemma 4.14.1. Then there exists a bounded
projection P : C2,α(Ω) → Z such that P (u) = (∆+ q)y where y ∈ C4,α(Ω) is the unique solution of{

(∆ + q)2y = (∆+ q)u in Ω

y = ∂νy = 0 on ∂Ω.

Proof. We first show that there is a unique solution y ∈ C4,α(Ω). If y and ỹ are solutions, then
(∆ + q)2(y − ỹ) = 0, and integrating this equation against y − ỹ gives (∆ + q)(y − ỹ) = 0. Since
y − ỹ has vanising Cauchy data, we see that y = ỹ and solutions are unique. Existence of weak
solutions y ∈ H2

0 (Ω) for the equation (∆ + q)2y + γy = F ∈ H−2(Ω), where γ > 0 is a constant
chosen sufficiently large depending on q, follows by using the Riesz representation theorem with the
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coercive bilinear form B(y, w) = ((∆ + q)y, (∆ + q)w)L2(Ω) + γ(y, w)L2(Ω) for y, w ∈ Y . Fredholm
theory shows that there is a countable set of eigenvalues where unique solvability could fail, but our
uniqueness argument above shows that one has solvability for (∆ + q)2y = F . Elliptic regularity
shows that for u ∈ C2,α(Ω), one has y ∈ C4,α(Ω).

Now that we know that the equation is uniquely solvable, let u ∈ C2,α(Ω), and let y ∈ C4,α(Ω)
be the solution. Then P (u) = (∆ + q)y. Then P (P (u)) = P ((∆ + q)y) = (∆ + q)v for the unique
solution v of {

(∆ + q)2v = (∆+ q)2y in Ω

v = ∂νv = 0 on ∂Ω.
Since y has 0 Cauchy data, w = v − y satisfies{

(∆ + q)2w = 0 in Ω

w = ∂νw = 0 on ∂Ω.

The unique solution to this equation is w = 0. It follows that v = y. Thus P (P (u)) = P (u) and P
is indeed a projection. □

Lemma 4.3. Let q ∈ Cα(Ω) and let Y and Z be as in Lemma 4.14.1. Then ∆+ q : Y → Z is bounded
and bijective and has a bounded inverse G : Z → Y .

Proof. By definition of Z, ∆+ q is surjective. To see injectivity, suppose u, v ∈ Y and (∆ + q)u =
(∆+ q)v. Then w = v − u satisfies 

(∆ + q)w = 0 in Ω

w = 0 on ∂Ω
∂νw = 0 on ∂Ω.

It follows by the unique continuation principle that w = 0. Hence ∆ + q is injective. Lastly, we
have

∥(∆ + q)u∥Cα(Ω) ≤ ∥∆u∥Cα(Ω) + ∥qu∥Cα(Ω) ≤ C∥u∥C2,α(Ω)

so that ∆ + q is bounded. Now it follows from the open mapping theorem that there exists a
bounded inverse G of ∆+ q. □

Below we will use the ball Vq,δ in the space of solutions,

Vq,δ = {v ∈ C2,α(Ω) : ∆v + qv = 0 and ∥v∥C2,α(Ω) < δ}.

Lemma 4.4. Let a1, a2 ∈ Ck+1(R, C1,α(Ω)) with k ≥ 2 and let w1, w2 have the same Cauchy data
and solve ∆wi+ai(x,wi) = 0 in Ω. Write qi = ∂uai(x,wi). Let Sa1 : Vq1,δ1 → C2,α(Ω) be the solution
map from Lemma 2.42.4, for some δ1 > 0. Suppose u1,v = Sa1(v) and that Cw1,δ

a1 ⊆ C0,C
a2 . Then there

exists a δ2 > 0 and a Ck map Ta2 : Vq1,δ2 → C2,α(Ω), Ta2(v) = u2,v, where u2,v has the same Cauchy
data as u1,v and solves ∆u2,v + a2(x, u2,v) = 0. Moreover, when ∂ua1(x,w1) = ∂ua2(x,w2) then
T ′
a2(0)v = v.

Proof. First we use Cw1,δ
a1 ⊆ C0,C

a2 to find, for any v ∈ Vq1,δ1 , a function u2,v with the same Cauchy
data as u1,v and solving ∆u2,v + a2(x, u2,v) = 0. Note that u1,0 = w1. Moreover, both u2,0 and w2

solve the equation ∆u + a2(x, u) = 0 and they have the same Cauchy data, so by Lemma 3.33.3 one
has u2,0 = w2. By (2.172.17) we have

(4.4) ∥u1,v − w1∥C2,α(Ω) ≤ C∥v∥C2,α(Ω),
17



Using this, Lemma 3.33.3, (u2,v − w2)|∂Ω = (u1,v − w1)|∂Ω, ∂ν(u2,v − w2)|∂Ω = ∂ν(u1,v − w1)|∂Ω and
the fact that ∥u2,v∥C2,α(Ω) ≤ C, we have

(4.5) ∥u2,v − w2∥C2,α(Ω) ≤ C∥v∥C2,α(Ω).

Let rv = u1,v − u2,v. Then rv satisfies

(∆ + q2)rv = q2rv + a2(x, u2,v)− a1(x, u1,v) = q2rv + a2(x, u1,v − rv)− a1(x, u1,v).

Let G be the inverse of ∆ + q2 : Y → Z provided by Lemma 4.34.3. Then rv solves the fixed point
equation

(4.6) rv = G(q2rv + a2(x, u1,v − rv)− a1(x, u1,v)).

We would like to show that rv depends smoothly on v by applying the implicit function theorem
to (4.64.6). However, for a general function r the expression q2r+a2(x, u1,v−r)−a1(x, u1,v) might not
be in the domain of G. For this reason we introduce the projection P : C2,α(Ω) → Z from Lemma
4.24.2. Now define the map F : Vq1,δ1 × C2,α(Ω) → C2,α(Ω) by

F (v, r) = r −GP (q2r + a2(x, u1,v − r)− a1(x, u1,v)).

Next we compute F (0, w1 − w2) and DrF (0, w1 − w2;h) and find

F (0, w1 − w2) = w1 − w2 −GP (q2(w1 − w2) + a2(x,w1 − (w1 − w2))− a1(x,w1))

= w1 − w2 −GP (q2(w1 − w2) + ∆(−w2 + w1))

= w1 − w2 −GP ((∆ + q2)(w1 − w2))

= w1 − w2 −G((∆ + q2)(w1 − w2)) = 0

and
DrF (0, w1 − w2;h) = h−GP (q2h− ∂ua2(x,w2)h) = h.

Since h 7→ DrF (0, w1 − w2;h) is bijective, it follows from the implicit function theorem [HG27HG27,
Theorem 4] that there exists a δ2 with 0 < δ2 ≤ δ1 and a Ck map R : Vq1,δ2 → C2,α(Ω) such that
r̃ = R(v) is the unique solution to

(4.7) r̃ = GP (q2r̃ + a2(x, u1,v − r̃)− a1(x, u1,v)).

for r̃ close to w1−w2. Choosing v ∈ Vq1,δ2 in u1,v = Sa1(v), we find that rv is in the range of R and
that rv satisfies (4.74.7). Moreover, by (4.44.4) and (4.54.5) we also have

∥rv − (w1 − w2)∥C2,α(Ω) ≤ C∥v∥C2,α(Ω).

By the uniqueness of r̃ = R(v) near w1 −w2 we have rv = R(v) for v ∈ Bδ2 . Thus the map v 7→ rv
is indeed Ck.

Since rv = u1,v − u2,v we can define the Ck map

Ta2(v) := Sa1(v)−R(v).

It remains to show that T ′
a2(0)v = v, provided ∂ua1(x,w1) = ∂ua2(x,w2). To do this, we use the

implicit function theorem to compute R′(0),

R′(0)v = −[DrF (0, R(0))]
−1DvF (0, R(0))v.

Since DrF (0, R(0))v = v and DvF (0, R(0))v = 0 it follows that R′(0)v = 0. Now we have

T ′
a2(0)v = S′

a1(0)v +R′(0)v = S′
a1(0)v = v. □
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5. First linearization

Throughout this section, we let a1, a2 ∈ C3,α(R, C1,α(Ω)) and let w ∈ C2,α(Ω) be a fixed solution
of ∆w + a1(x,w) = 0 in Ω. Write q = ∂ua1(x,w) and consider the sets

Vq = {v ∈ C2,α(Ω) : ∆v + qv = 0 in Ω},
Vq,δ = {v ∈ Vq : ∥v∥C2,α(Ω) < δ}.

Assume Cw,δ
a1 ⊆ C0,C

a2 . For any v ∈ Vq,δ with δ small, we let u1,v = Sa1,w(v) and u2,v = Ta2,w(v) be
the solutions of ∆uj,v + aj(x, uj,v) = 0 given by Lemmas 2.42.4 and 4.44.4.

Lemma 5.1. Suppose that Cw,δ
a1 ⊆ C0,C

a2 . There is δ1 > 0 such that for any v ∈ Vq,δ1 one has

∂ua1(x, u1,v(x)) = ∂ua2(x, u2,v(x)), x ∈ Ω.

Proof. Let v ∈ Vq,δ and let vt = v + th where h solves ∆h + qh = 0 and t is small. Consider the
solutions u1,vt = Sa1,w(vt) and u2,vt = Ta2,w(vt) of

∆uj,vt + aj(x, uj,vt) = 0.

The solutions uj,vt are C2 with respect to t and have the same Cauchy data. Differentiating the
above equation in t and writing u̇j = ∂tuj,vt |t=0, we obtain

∆u̇j + ∂uaj(x, uj,v)u̇j = 0.

Subtracting the equations for j = 1, 2 and rewriting yields

(5.1) (∆ + ∂ua2(x, u2,v))(u̇1 − u̇2) + (∂ua1(x, u1,v)− ∂ua2(x, u2,v))u̇1 = 0.

Suppose that ṽ2 solves (∆ + ∂ua2(x, u2,v))ṽ2 = 0. Integrating (5.15.1) against ṽ2 and using that
u̇1 − u̇2 has zero Cauchy data gives∫

Ω
(∂ua1(x, u1,v)− ∂ua2(x, u2,v))u̇1ṽ2 dx = 0.

It remains to study u̇1 = DSa1,w(v)h. By Lemma 2.52.5, when v ∈ Vq is sufficiently small any solution
ṽ1 of (∆ + ∂ua1(x, u1,v))ṽ1 = 0 can be written as DSa1,w(v)h for a suitable h. It follows that∫

Ω
(∂ua1(x, u1,v)− ∂ua2(x, u2,v))ṽ1ṽ2 dx = 0

for any solutions ṽj of (∆ + ∂uaj(x, uj,v))ṽj = 0. Now it follows from the density of products of
solutions as in the standard Calderón problem (see [SU87SU87] for n ≥ 3 and [Buk08Buk08; BTW20BTW20] for n = 2)
that ∂ua1(x, u1,v) = ∂ua2(x, u2,v). □

Lemma 5.2. In the setting of Lemma 5.15.1, the function

φv = u2,v − u1,v

is independent of v ∈ Vq,δ1.

Proof. Write ψt = φtv. The function ψt is C2 in t, has zero Cauchy data on ∂Ω, and satisfies

∆ψt = a1(x, u1,tv)− a2(x, u2,tv).

Thus the derivative zt = ∂tψt satisfies

∆zt = ∂ua1(x, u1,tv)∂tu1,tv − ∂ua2(x, u2,tv)∂tu2,tv.

Combining this with Lemma 5.15.1 yields

∆zt = −∂ua1(x, u1,tv)zt.
19



Since zt has zero Cauchy data, it follows that zt = 0 and consequently ψt is independent of t. In
particular, φv = φ0. □

We can now give the proofs of Theorem 1.11.1 and 1.31.3.

Proof of Theorem 1.31.3. Let w1 solve ∆w1 + a1(x,w1) = 0 and assume that Cw1,δ
a1 ⊆ C0,C

a2 . Using
Lemma 5.25.2, we have

∆φ = ∆u2,v −∆u1,v = a1(x, u1,v)− a2(x, u2,v)

= a1(x, u1,v)− a2(x, u1,v + φ).

This can be rewritten as
a1(x, u1,v(x)) = Tφa2(x, u1,v(x)).

It is enough to show that there is ε > 0 such that for any x̄ ∈ Ω and λ ∈ [−ε, ε], one can find a
small solution v such that

(5.2) u1,v(x̄) = w1(x̄) + λ.

Fix x0 ∈ Ω, and use Runge approximation (Lemma A.1A.1) to generate a solution v = vx0 of
∆v + ∂ua1(x,w1)v = 0 with v(x0) = 4. Let Ux0 be a neighborhood of x0 so that v(x) ≥ 2 for
x ∈ Ux0 ∩ Ω. In the notation of Lemma 2.42.4 one has

u1,tv = w1 + tv +Qa1,w1(tv)

where
∥Qa1,w1(tv)∥ ≤ Ca1,w1t

2∥v∥2
C2,α(Ω)

.

Thus for x ∈ Ux0 ∩ Ω one has

|u1,tv(x)− w1(x)| ≥ 2|t| − Ca1,w1t
2∥v∥2

C2,α(Ω)
.

Set εx0 = 1/(Ca1,w1∥v∥2C2,α(Ω)
). Then for |t| ≤ εx0

|u1,tv(x)− w1(x)| ≥ |t|.

The next step is to use compactness to find a finite cover {Ux1 , . . . , UxN } of Ω and to set

ε = min{εx1 , . . . , εxN , δ0}.

Here δ0 is chosen so that ∥tvxj∥C2,α ≤ δ whenever |t| ≤ δ0 and 1 ≤ j ≤ N .

Now fix any x̄ ∈ Ω and λ ∈ [−ε, ε], and choose j so that x̄ ∈ Uj . Define

η(t) = u1,tvxj (x̄)− w1(x̄).

Then η : [−ε, ε] → R is continuous with η(ε) ≥ ε and η(−ε) ≤ −ε. By continuity, there is
t̄ ∈ [−ε, ε] such that η(t̄) = λ. This proves that one has (5.25.2) for some choice of v, which proves the
theorem. □

Proof of Theorem 1.11.1. Since w is a common solution for nonlinearities a1 and a2, we have w1 =
w2 = w in Theorem 1.31.3. Consequently φ = 0 and Tφa2 = a2. The result now follows from Theorem
1.31.3. □
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6. Higher order linearization

In this section we prove theorem 1.41.4. We use the higher order linearization method with the
smooth solution maps from Sections 22 and 44. Essentially the method is to show that the derivatives
of order k of the solution maps satisfy a certain partial differential equation and have the same
Cauchy data, provided ∂lua1(x,w1) = ∂lua2(x,w2) for l ≤ k − 1. Then Theorem 1.41.4 follows from an
integration by parts argument. We start by proving that the derivatives of order k of the solution
maps satisfy a certain differential equation in the following Lemma.

Lemma 6.1. Let a1, a2 ∈ Ck+2,α(R;C1,α(Ω)) with k ≥ 1. Let Sa1 , Ta2 be the solution operators
∆u+ ai(x, u) = 0 from Lemma 2.42.4 and Lemma 4.44.4. Suppose that ∂lua1(x,w1) = ∂lua2(x,w2) for all
1 ≤ l ≤ k, then f := Dk+1Sa1(0; v1, . . . , vk+1)−Dk+1Ta2(0; v1, . . . , vk+1) satisfies

∆f + qf = [∂k+1
u a2(x,w2)− ∂k+1

u a1(x,w1)]
∏k+1

i=1 vi in Ω

f = 0 on ∂Ω

∂νf = 0 on ∂Ω

for any solutions vi of ∆v + qv = 0 where q = ∂ua1(x,w1) = ∂ua2(x,w2).

Proof. We start with the boundary conditions. We have by construction that Sa1(v)|∂Ω = Ta2(v)|∂Ω.
Let ι : C2,α(Ω) → C2,α(∂Ω) be the natural injection. Then the operator v 7→ ι(Sa1(v) − Ta2(v)) is
identically equal to 0. Hence its derivatives are also 0, DlSa1(0; v1, v2)|∂Ω = DlTa2(0; v1, v2)|∂Ω for
all l ∈ N, or equivalently f |∂Ω = 0. Similarly, ∂νf |∂Ω = 0

The proof for the differential equation is by induction on k and we start with the base case k = 1,
where we assume that ∂ua1(x,w1) = ∂ua2(x,w2). Since Sa1(v) and Ta2(v) are solution maps for
∆u+ a1(x, u) = 0 and ∆u+ a2(x, u) = 0, respectively, the operators v 7→ ∆Sa1(v) + a1(x, Sa1(v))
and v 7→ ∆Ta2(v) + a2(x, Ta2(v)) are identically equal to 0. Hence their derivatives are also 0. The
second derivatives being 0 can be rewritten as

∆D2Sa1(0; v1, v2) + qD2Sa1(0; v1, v2) = −∂2ua1(x, Sa2(0))DSa1(0; v1)DSa1(0; v2) in Ω

and

∆D2Ta2(0; v1, v2) + qD2Ta2(0; v1, v2) = −∂2ua2(x, Ta2(0))DTa2(0; v1)DTa2(0; v2) in Ω

From ∂ua1(x,w1) = ∂ua2(x,w2) we get DSa1(0; v) = DTa2(0; v) = v. Using this and Sa1(0) = w1,
Ta2(0) = w2 we get, by subtracting the equations, that

∆f + qf = [∂2ua2(x,w1)− ∂2ua2(x,w2)]v1v2 in Ω

where f := D2Sa1(0; v1, v2) −D2Ta2(0; v1, v2). Now suppose that, for some m ≥ 2, the statement
holds for k = m − 1. That is, suppose for l ≤ m − 1 that ∂lua1(x,w1) = ∂lua2(x,w2) and that
f := DmSa1(0; v1, . . . , vm)−DmTa2(0; v1, . . . , vm) solves

(6.1)


∆f + qf = [∂mu a2(x,w2)− ∂mu a1(x,w1)]

∏m
i=1 vi in Ω

f = 0 on ∂Ω
∂νf = 0 on ∂Ω.

To show that it holds also for k = m assume additionally that ∂mu a1(x,w1) = ∂mu a2(x,w2). Then
(6.16.1) simplifies to 

∆f + qf = 0 in Ω

f = 0 on ∂Ω
∂νf = 0 on ∂Ω
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and we conclude that f = 0. Let F (v) := Sa1(v)− Ta2(v), so that DmF (0; v1, . . . , vm) = f = 0 and
let g = Dm+1F (0; v1, . . . , vm+1). Let δij denote the Kronecker delta. Then we have by differentiating
(6.16.1) in direction vm+1 that

∆g + qg =− ∂2ua1(x,w1)D
mF (0; v1, . . . , vm)︸ ︷︷ ︸

=0

vm+1

+ [∂mu a2(x,w2)− ∂mu a1(x,w1)]︸ ︷︷ ︸
=0

m∑
i=1

D2Sa1(0; vi, vm+1)
m∏
j=1

(1− δij)vj

+ [∂m+1
u a2(x,w2)− ∂m+1

u a1(x,w1)]
m+1∏
i=1

vi

=[∂m+1
u a2(x,w2)− ∂m+1

u a1(x,w1)]
m+1∏
i=1

vi

and this proves the lemma. □

Proof of Theorem 1.41.4. Let l ≥ 2 be an arbitrary integer and suppose that ∂jua1(x,w1) = ∂jua2(x,w2)
for 1 ≤ j ≤ l − 1. Then we have from Lemma 6.16.1 that

(6.2)


∆f + qf = [∂lua2(x,w2)− ∂lua1(x,w1)]

∏l
i=1 vi in Ω

f = 0 on ∂Ω
∂νf = 0 on ∂Ω

where vj solve ∆vj+∂ua1(x,w1)vj = 0 for j ∈ {1, . . . , l}. Let vl+1 solve ∆vl+1+∂ua1(x,w1)vl+1 = 0.
Multiplying the differential equation (6.26.2) by vl+1 and integrating by parts twice gives∫

Ω
[∂lua2(x,w2)− ∂lua1(x,w1)]

l+1∏
i=1

vi dx = 0. □

Appendix A. Runge approximation

In the proof of Theorem 1.31.3 we need to find a solution of the linearized equation which is nonzero in
some fixed but arbitrary point of the domain. A few ways to achieve this are described in [LLLS21bLLLS21b,
Remark 2.2]. For the sake of completeness, we give a proof based on Runge approximation that is
valid in our situation following [LLS20LLS20].

Lemma A.1. Let Ω ⊆ Rn be a bounded open set and let q ∈ Cα(Ω). For any x0 ∈ Ω, there is
u ∈ C2,α(Ω) solving (−∆+ q)u = 0 in Ω with u(x0) ̸= 0.

Proof. Let Ω2 be a large ball with Ω ⊆ Ω2, and extend q as a function in Cα
c (Ω2). We may choose

Ω2 in such a way that 0 is not a Dirichlet eigenvalue of −∆ + q in Ω2 (see e.g. [Ste90Ste90, Lemma
3.2]). Now by [BJS64BJS64, Theorem 1 in Section 5.4], there is a small ball Ω1 centered at x0 and a
function u0 ∈ C2,α(Ω1) solving (−∆ + q)u0 = 0 in Ω1 with u0(x0) = 1. By Runge approximation
(see Lemma A.3A.3 below), there is u ∈ C2,α(Ω2) solving (−∆+ q)u = 0 in Ω2 with u(x0) arbitrarily
close to u0(x0) = 1. This concludes the proof. □

It remains to prove the Runge approximation result. Since the approximation is in the C(Ω1)
norm, we need a notion of suitable weak solutions with measure data in the duality argument. Let
Ω ⊆ Rn be a bounded open set with smooth boundary, let q ∈ L∞(Ω), and assume that 0 is not
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a Dirichlet eigenvalue of −∆ + q in Ω. If µ is a bounded linear functional on C(Ω) (i.e. µ is a
measure), we say that u ∈ L1(Ω) is a very weak solution of

(A.1) (−∆+ q)u = µ in Ω, u|∂Ω = 0,

if ∫
Ω
u(−∆+ q)φdx = µ(φ)

for any φ ∈ C2(Ω) ∩H1
0 (Ω).

Proposition A.2. For any p < n
n−1 there is C > 0 such that for any bounded linear functional µ

on C(Ω), there is a unique very weak solution u ∈W 1,p(Ω) of (A.1A.1) satisfying

∥u∥W 1,p(Ω) ≤ C∥µ∥,
where ∥µ∥ = sup∥φ∥C(Ω)=1 |µ(φ)|.

Proof. If q ≥ 0 this follows from [Sta65Sta65, Theorem 9.1]. In general we may replace q by q + γ where
γ > 0 is a large constant, and use the part of [Sta65Sta65, Theorem 9.1] where λ is away from the
spectrum. □

We can now prove the Runge approximation result.

Lemma A.3. Let Ω1, Ω ⊆ Rn be bounded open sets so that Ω1 ⊆ Ω, Ω \ Ω1 is connected, and Ω
has smooth boundary. Suppose that q ∈ Cα

c (Ω) and that 0 is not a Dirichlet eigenvalue of −∆+ q
in Ω. Consider the sets

S1 = {u ∈ C2,α(Ω1), (−∆+ q)u = 0 in Ω1},
S = {u ∈ C2,α(Ω), (−∆+ q)u = 0 in Ω}.

For any u ∈ S1 and any ε > 0, there is v ∈ S with ∥u− v|Ω1∥C(Ω1)
≤ ε.

Proof. By the Hahn-Banach theorem [Con90Con90, Corollary 3.15], it is enough to show that any con-
tinuous linear functional on C(Ω1) that vanishes on S|Ω1 must also vanish on S1. Thus, let µ be a
continuous linear functional on C(Ω1) that satisfies

(A.2) µ(v|Ω1
) = 0 for all v ∈ S.

We consider the extension defined by

µ̄ : C(Ω) → R, µ̄(u) = µ(u|Ω1
).

By the Riesz representation theorem, µ̄ is a measure in Ω with supp(µ̄) ⊆ Ω1.

We use Proposition A.2A.2 to find a very weak solution w ∈W 1,p(Ω) of the problem

(A.3) (−∆+ q)w = µ̄ in Ω, w|∂Ω = 0.

We use the assumption (A.2A.2) and the unique continuation principle to prove that

(A.4) w = 0 in Ω \ Ω1.

Assuming (A.4A.4), the proof can be concluded as follows. Since supp(w) ⊆ Ω1, there exist wj ∈
C∞
c (Ω1) with wj → w in W 1,p(Ω). Given any u ∈ S1, we let ū be some function in C2,α

c (Ω) with
ū|Ω1

= u and compute

µ(u) = µ̄(ū) =

∫
Ω
w(−∆+ q)ū dx = lim

∫
Ω
wj(−∆+ q)ū dx = lim

∫
Ω1

wj(−∆+ q)u dx = 0.
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Thus µ|S1 = 0 as required.

It remains to prove (A.4A.4). We begin by studying the regularity of w near ∂Ω. Choose a ball Ω2

with Ω ⊆ Ω2 so that 0 is not a Dirichlet eigenvalue, and a very weak solution w̃ of

(−∆+ q)w̃ = µ̃ in Ω2, w̃|∂Ω2 = 0,

where µ̃ is the extension of µ̄ by zero to Ω2. Using the definition of very weak solutions and the
facts that q ∈ Cα

c (Ω) and supp(µ̄) ⊆ Ω1, we see that ∆w̃ = 0 near ∂Ω in the sense of distributions.
Hence w̃ is C∞ near ∂Ω. Let g ∈ C2,α(Ω) be the solution of

(−∆+ q)g = 0 in Ω, g|∂Ω = −w̃|∂Ω.
Then both w and w̃|Ω + g are very weak solutions of (A.3A.3), and by uniqueness one has

w = w̃|Ω + g.

It follows that w is C2,α near ∂Ω. Moreover, since w is a W 1,p solution of (−∆+ q)w = 0 in Ω \Ω1,
it follows from [HR72HR72, see section 4. Concluding remarks] that w is W 1,2 and consequently C2,α in
Ω \ Ω1.

We now let v ∈ S and choose χ ∈ C∞
c (Ω) such that χ = 1 near Ω1 and w is C2,α in supp(1−χ)∩Ω.

Then ∫
Ω
w(−∆+ q)v dx =

∫
Ω
w(−∆+ q)(χv) dx+

∫
Ω
w(−∆+ q)((1− χ)v) dx.

We use the definition of very weak solutions in the first term, and since w is regular in supp(1− χ)
we may integrate by parts in the second term. This yields∫

Ω
w(−∆+ q)v dx = µ̄(χv) +

∫
∂Ω

(∂νw)v dS = µ(v|Ω1
) +

∫
∂Ω

(∂νw)v dS.

Since v ∈ S, we have µ(v|Ω1
) = 0 by the assumption (A.2A.2). Since we can vary the Dirichlet data of

v ∈ S, it follows that ∂νw|∂Ω = 0. Thus w in particular satisfies

(−∆+ q)w = 0 in Ω \ Ω1, w|∂Ω = ∂νw|∂Ω = 0.

Since w is C2,α in Ω \ Ω1 and this set is connected, the unique continuation principle yields (A.4A.4).
This finishes the proof. □
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