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the inverse Schrödinger potential problem. Noticing that both linearization approaches can
be numerically approximated, we provide several reconstruction algorithms for the quadratic
and general power type nonlinearity terms, where one of these algorithms is designed based
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on the efficiency of our proposed algorithms.
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1. Introduction

1.1. Background

The inverse Schrödinger potential problem arises from electrical impedance tomography
(EIT) [9] and has attracted much attention both theoretically and computationally. In a
general setting, we can formulate the following Schrödinger equation{

∆u+ k2u− c(x)u = 0 in Ω ⊂ Rn,

u = g0 on ∂Ω,
(1.1)

where, throughout the article, Ω ⊂ Rn is assumed to be a bounded open domain with smooth
boundary ∂Ω and dimension n ≥ 2. The inverse Schrödinger potential problem is to identify
the unknown potential function c(x) from many boundary measurements or the Dirichlet-to-
Neumann map defined below. A classical result in [1] shows that if the wavenumber k = 0

in (1.1) the stability of the inverse Schrödinger potential problem is logarithmic. When the
wavenumber is sufficiently large, increasing stability with respect to the wavenumber k has
been observed and well documented, starting with [15] and with many further results given in
[19, 17, 18] for (1.1) or its linearized form. These results are often stated as stability estimates
involving a Hölder term and a logarithmic term which goes to zero as the wavenumber goes to
infinity. An alternative way to observe increasing stability is to note that one can determine
the Fourier transform of the unknown coefficient in a stable way for a range of frequencies,
and that this range increases with the wavenumber. We note that these increasing stability
results have also been verified both theoretically and numerically in other inverse source,
obstacle or medium problems where we refer to [5, 7, 26, 2, 3, 4, 11, 16, 6, 8] and references
therein.

There have also been several recent works on inverse problems for nonlinear elliptic
equations. In such problems, it has been observed that higher order linearizations of the
nonlinear Dirichlet-to-Neumann map carry information about the unknown coefficients. This
method allows one to exploit nonlinear effects in order to obtain better results than those
that are currently known for corresponding linear equations. The higher order linearization
method goes back to [21] in the hyperbolic case and to [13, 23] in the elliptic case. The
method has been further applied to more general equations and partial data problems. See
[22, 20, 25, 10, 24] for a selection of recent results.

This article studies possible improvements in stability properties of inverse problems
for nonlinear Schrödinger type equations with a large wavenumber. More specifically, we
study the inverse Schrödinger potential problem with an arbitrary power type nonlinearity
term and discuss its unique determination, increasing stability and numerical reconstruction
algorithms. In particular, we consider the problem of recovering the potential function c(x),
defined in Ω ⊂ Rn, in the following nonlinear Schrödinger equation, with an integer m ≥ 2
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denoting the nonlinearity index,{
∆u+ k2u− c(x)um = 0 in Ω,

u = g0 on ∂Ω,
(1.2)

from many boundary measurements. Here, we assume that the squared wavenumber k2 is
sufficiently large and 0 is not a Dirichlet eigenvalue of ∆+ k2 in Ω. Meanwhile, by assuming
that c(x) is compactly supported in Ω, the well-posedness of the forward problem (1.2) can
be verified following the variational framework developed in [12, Theorem 1]. Thus, the
boundary measurements can be given by the nonlinear Dirichlet-to-Neumann (DtN) map

Λc : g0 7→ ∂νu on ∂Ω. (1.3)
The precise definition of Λc and its two linearized forms Dm

0 Λc, Λ′
c will be specified later.

1.2. Linearization approaches

To solve the nonlinear inverse Schrödinger potential problem stably, we implement
linearization approaches and discuss recovery of the potential function by the linearized
DtN maps accordingly. In this subsection, we briefly overview two linearization approaches
with respect to small boundary data and small potential function, which have been studied
in linear and nonlinear elliptic inverse problems, for instance in [9, 23], when k = 0 in (1.1)
or (1.2).

To treat elliptic equations with power type nonlinearities, a novel linearization approach
with respect to small boundary data has recently been discussed in [13, 23]. We briefly
introduce its extension to the nonlinear Schrödinger potential problem (1.2) below. Assume
that c ∈ Cα(Ω) for some α with 0 < α < 1, and 0 is not a Dirichlet eigenvalue of ∆ + k2

in Ω. By [25, Proposition 2.1], we can find a constant δ > 0 such that for any Dirichlet
boundary value f in Uδ := {f ∈ C2,α(∂Ω) : ‖f‖C2,α(∂Ω) ≤ δ}, there is a unique small
solution u ∈ C2,α(Ω) and u|∂Ω = f . The nonlinear DtN map in the Hölder spaces is defined
by

Λc : Uδ ⊂ C2,α(∂Ω) → C1,α(∂Ω), f 7→ ∂νu|∂Ω.
Let ε = (ε1, . . . , εm) where each εj > 0 is small, and consider the solution uε corresponding
to the Dirichlet boundary value

fε = ε1f1 + . . .+ εmfm.

By [25, Proposition 2.1] the solution uε depends smoothly on the parameters εj. We may
thus differentiate the equation

∆uε + k2uε − c(x)um
ε = 0 in Ω, uε|∂Ω = fε (1.4)

with respect to the parameters εj. Writing vj = ∂εjuε|ε=0, we observe that vj is the unique
solution of

∆vj + k2vj = 0 in Ω, vj|∂Ω = fj.
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Similarly, applying ∂ε1 · · · ∂εm to the equation (1.4) and setting ε = 0, we can define
w = ∂ε1 · · · ∂εmuε|ε=0 which solves the equation

∆w + k2w = (m!)c(x)v1 · · · vm in Ω, w|∂Ω = 0. (1.5)
Moreover, the Neumann boundary data can be obtained in form of

∂νw|∂Ω = ∂ε1 · · · ∂εm(∂νuε|∂Ω)|ε=0 = ∂ε1 · · · ∂εmΛc(fε)|ε=0

= Dm
0 Λc(f1, . . . , fm)

where Dm
0 denotes the mth Fréchet derivative at 0 considered as an m-linear form. If we

integrate the equation (1.5) against another function vm+1 solving
∆vm+1 + k2vm+1 = 0 in Ω, vm+1|∂Ω = fm+1,

we obtain a Calderón type identity

(m!)

∫
Ω

c(x)v1 · · · vmvm+1 dx =

∫
∂Ω

Dm
0 Λc(f1, . . . , fm)fm+1 dS (1.6)

which will be revisited later.
Noticing that the mth Fréchet derivative Dm

0 Λc(f1, . . . , fm) is numerically hard to
obtain, we further consider the case when c(x) is small compared to the wavenumber and
study the linearization approach with respect to the potential function as investigated in the
linear Schrödinger potential problem in [18]. Taking the asymptotic expansion with respect
to the potential function c(x), we have

u = u0 + u1 + u2 + . . . (1.7)
where the remaining “. . .” denotes the “higher” order term and following subproblems are
satisfied such that

∆u0 + k2u0 = 0,

∆u1 + k2u1 = c(x)um
0 ,

∆u2 + k2u2 = mc(x)um−1
0 u1.

This shows that u0 satisfies the Helmholtz equation ∆u0 + k2u0 = 0 in Ω and the first-order
expansion term u1 satisfies

∆u1 + k2u1 = c(x)um
0 in Ω. (1.8)

When u0|∂Ω = g0 and u1|∂Ω = g1 ≡ 0, the linearized DtN map Λ′
c is formally defined by

Λ′
c : g0 7→ ∂νu1 on ∂Ω. (1.9)

Multiplying the above equation (1.8) from both sides with another φ solving ∆φ+ k2φ = 0

in Ω, we thus obtain another Calderón type identity∫
Ω

c(x)um
0 φ dx =

∫
∂Ω

∂νu1φ dS, (1.10)

which will also be revisited later.
In current article, we consider the following problem:
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Recover the potential function c(x) from the linearized DtN map Dm
0 Λc

or Λ′
c.

The first main result shows that from the knowledge of the mth Fréchet derivative
Dm

0 Λc, one can determine the Fourier transform F [c](ξ) in a stable way for frequencies
|ξ| ≤ (m+ 1)k. Thus the range of frequencies that can be determined stably increases both
with respect to the wavenumber k and the nonlinearity index m. However, determining
Dm

0 Λc from Λc becomes numerically very difficult when m increases. The second main result
considers the case where the potential function is small compared to the wavenumber. In
this case we consider the linearization Λ′

c. We show that in the quadratic case where m = 2,
from the knowledge of Λ′

c one can stably determine F [c](ξ) for frequencies |ξ| ≤ 3k. This
is in contrast with the linear case where one can only determine frequencies |ξ| ≤ 2k stably
[18]. Thus in both main results above, the nonlinearity leads to improved stability properties
in a certain sense. The theoretical stability results are confirmed by numerical results given
in the end of the article.

The article is organized as follows. In Section 2 we show that the linearized DtN map
Dm

0 Λc provides a uniform increasing stability where the range of frequencies that can be
determined stably increases with respect to k and m. On the other hand, Λ′

c only yields
the uniqueness of the potential function c(x) in the general setting m ≥ 2. In Section 3 we
further explore the linearized DtN map Λ′

c for the inverse Schrödinger potential problem with
a quadratic nonlinearity term. By calibrating the Calderón type identity (1.10) carefully, we
verify an improved increasing stability for the specific inverse Schrödinger potential problem
with a quadratic nonlinearity term. The obtained increasing stability is better than the
standard one in the linear Schrödinger potential problem which highlights the advantage of
the nonlinearity term in solving inverse problems. Noticing that both linearized DtN maps
Dm

0 Λc and Λ′
c can be numerically approximated, we extend the reconstruction algorithm in

[18] to the inverse Schrödinger potential problem with quadratic and general nonlinearity
terms in Section 4, respectively. We note that one of these reconstruction algorithms is
realized by the linearized DtN map Λ′

c with multiple wavenumbers. In the same Section 4
we provide some numerical examples and extended discussion verifying the efficiency of our
proposed algorithms.

2. Linearized inverse Schrödinger potential problem with an arbitrary power
type nonlinearity term

In this section, we investigate the linearized inverse Schrödinger potential problem with an
arbitrary power type nonlinearity term provided with the linearized DtN map Dm

0 Λc or Λ′
c.

The analysis is based on the Calderón type identities (1.6) and (1.10).
For the map Dm

0 Λc, [23] has verified that by linearizing the small boundary data, the
stability estimate for the inverse potential problem is logarithmic, which is consistent with
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the classical result in EIT [1]. In the current section, we verify that by constructing an
appropriate set of complex exponential solutions, there will be improved stability when the
wavenumber is large.

Recall the Calderón type identity (1.6),

(m!)

∫
Ω

c(x)v1 · · · vmvm+1 dx =

∫
∂Ω

Dm
0 Λc(f1, . . . , fm)fm+1 dS.

Here vj solve ∆vj + k2vj = 0 in Ω with vj|∂Ω = fj. To derive the stability estimate, we rely
on the above identity and observe that∣∣∣∣∫

Ω

c(x)v1 · · · vmvm+1 dx

∣∣∣∣ ≤ ϵ

m!

(
m∏
j=1

‖fj‖C2,α(∂Ω)

)
‖fm+1‖L2(∂Ω) (2.1)

where we define ϵ := sup∥fj∥C2,α(∂Ω)≤1 ‖Dm
0 Λc(f1, . . . , fm)‖L2(∂Ω). Thus (2.1) further yields the

inequality ∣∣∣∣∫
Ω

c(x)v1 · · · vm+1 dx

∣∣∣∣ ≤ ϵ

m!

m+1∏
j=1

‖vj‖C2,α(Ω). (2.2)

Let F [c](ξ) denote the Fourier transform of c (extended by zero outside Ω) at a frequency
ξ ∈ Rn. The following result shows that frequencies |ξ| ≤ (m + 1)k can be recovered in a
Lipschitz stable way from the knowledge of the linearized map Dm

0 Λc.

Theorem 2.1. Let m ≥ 2 be an integer, let k ≥ 1, and assume that |ξ| ≤ (m+ 1)k. Then

|F [c](ξ)| ≤ ϵ

m!

(
3(1 + k6)

)m+1
2 .

Proof. We first claim that if ℓ ≥ 2 is an integer, then for any η ∈ Rn with |η| ≤ ℓ there are
unit vectors ω1, . . . , ωℓ ∈ Rn such that

ℓ∑
j=1

ωj = η.

This can be proved by induction. When ℓ = 2 and |η| ≤ 2, we may choose

ω1 =
η

2
+

√
1− |η|2

4
ω, ω2 =

η

2
−
√
1− |η|2

4
ω,

where ω is any unit vector orthogonal to η. We make the induction hypothesis that the
claim holds for some ℓ ≥ 2. Let η be a vector with |η| ≤ ℓ + 1. We can write η = η0 + ω

where η0 and ω are parallel to η and |η0| ≤ ℓ, |ω| = 1. Applying the induction hypothesis
to η0 gives unit vectors ω1, . . . , ωℓ that add up to η0. The induction step is completed by
setting ωℓ+1 = ω.

To prove the theorem we choose special solutions of ∆vj + k2vj = 0 in Ω having the
form

vj = eiζj ·x
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where ζj ∈ Cn satisfy ζj · ζj = k2. Since | ξ
k
| ≤ m+1, the claim above shows that we can find

unit vectors ω1, . . . , ωm+1 such that
m+1∑
j=1

ωj =
ξ

k
.

Thus, choosing ζj = kωj, we have
m+1∑
j=1

ζj = ξ.

It follows that v1 · · · vm+1 = eiξ·x. Now (2.2) shows that

|F [c](ξ)| ≤ ϵ

m!

m+1∏
j=1

‖vj‖C3(Ω).

The proof is completed upon observing that ‖vj‖2C3(Ω)
≤ 3(1 + k6) when k ≥ 1.

The assumption |ξ| ≤ (m+ 1)k ensured that we could choose solutions vj = eiζj ·x with
ζj purely real in the proof. When |ξ| > (m + 1)k this will no longer be possible, and there
will be a logarithmic component in the increasing stability estimate. We will next prove
such an estimate for the linearized DtN map Dm

0 Λc by making a more careful choice of the
vectors ζj. Without loss of generality we assume that 0 ∈ Ω and denote D := 2 supx∈Ω |x|.

Theorem 2.2. Let D ≤ 1, ‖c‖C1(Ω) ≤ M1, and k > 1, ϵ < 1, then the following estimate
holds true

‖c‖2L2(Ω) ≤ Ckn+6(m+1)ϵ2 + CEn+6(m+1)ϵ+
M2

1

1 +m2k2 + E2

for the linearized system (1.5) with E = − ln ϵ and the constant C depending on the domain
Ω, the nonlinearity index m and the dimensionality n.

Proof. To prove the stability estimate, we shall choose the complex exponential solutions vj in
(2.2) carefully. Let ξ ∈ Rn with ξ 6= 0 and choose an orthonormal base

{
e1 :=

ξ
|ξ| , e2, . . . , en

}
of Rn, n ≥ 2. Let vj = eiζj ·x be a solution of the Helmholtz equations where the complex
vectors ζj ∈ Cn, j = 1, 2, . . . ,m+ 1 satisfy ζj · ζj = k2 and

∑m+1
j=1 ζj = ξ.

We carry out the proof by choosing the nonlinearity index m differently.
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Case 1: even m. The complex exponential solutions vj = eiζj ·x are constructed below by

ζ1 =
1

m
(−k + |ξ|)e1 +

1

m

√
(m2 − 1)k2 + 2k|ξ| − |ξ|2e2,

ζ2 =
1

m
(−k + |ξ|)e1 −

1

m

√
(m2 − 1)k2 + 2k|ξ| − |ξ|2e2,

ζ3 = ζ1,

ζ4 = ζ2,

. . .

ζm−1 = ζ1,

ζm = ζ2,

ζm+1 = ke1.

(2.3)

Denote Ξ :=
√

|ξ|2 − 2k|ξ| − (m2 − 1)k2. If k ≥ |ξ|
m+1

and k > 1, then we obtain

‖vj‖2C3(Ω)
≤ 3(1 + k6), j = 1, . . . ,m+ 1.

If k < |ξ|
m+1

and k > 1, for j = 1, . . . ,m, we derive

‖vj‖2C3(Ω)
≤ 3(1 + k6) sup |eiζj ·x|2

≤ 3(1 + k6)eD
Ξ
m

and for j = m+ 1

‖vm+1‖2C3(Ω)
≤ 3(1 + k6).

Recalling the identity (1.6) and the inequality (2.2) we have

|F [c](ξ)|2 =
∣∣∣∣∫

Ω

c(x)v1 · · · vm+1 dx

∣∣∣∣2 ≤ ϵ2

(m!)2

m+1∏
j=1

‖vj‖2C3(Ω)
.

Thus it is straightforward to obtain, for k ≥ |ξ|
m+1

and k > 1, that

|F [c](ξ)|2 ≤ 3m+1

(m!)2
ϵ2(1 + k6)m+1

and for k < |ξ|
m+1

, that

|F [c](ξ)|2 ≤ 3m+1

(m!)2
ϵ2(1 + k6)m+1eDΞ.

Now we let E = − ln ϵ > 0 by assuming ϵ < 1 and consider two situations such that
a) k > E (i.e. ϵ = e−E > e−k) and
b) k ≤ E (i.e. ϵ = e−E ≤ e−k).
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In the situation of a), we directly obtain, with a generic constant C := C(Ω,m, n),

‖c‖2L2(Ω) =

∫
|F [c](ξ)|2 dξ =

∫
k≥ |ξ|

m+1

|F [c](ξ)|2 dξ +

∫
k<

|ξ|
m+1

|F [c](ξ)|2 dξ

≤ 3m+1

(m!)2
(1 + k6)m+1(m+ 1)nknϵ2 +

M2
1

1 + (m+ 1)2k2

≤ Ckn+6(m+1)ϵ2 +
M2

1

1 +m2k2 + E2
.

In the situation of b), we let ρ := k+
√
m2k2 +

(
E
D

)2 such that
√

ρ2 − 2kρ− (m2 − 1)k2 =
E
D

and split

‖c‖2L2(Ω) =

∫
k≥ |ξ|

m+1

|F [c](ξ)|2 dξ +

∫
k<

|ξ|
m+1

< ρ
m+1

|F [c](ξ)|2 dξ

+

∫
ρ≤|ξ|

|F [c](ξ)|2 dξ.

(2.4)

Meanwhile, we bound, noticing ρ ≤ (m+ 1)k + E
D

and k ≤ E,∫
k<

|ξ|
m+1

< ρ
m+1

dξ = σn (ρ
n − (m+ 1)nkn)

≤ σn
En

Dn

[(
1 + (m+ 1)k

D

E

)n

−
(
(m+ 1)k

D

E

)n]
≤ σn

En

Dn
[(1 + (m+ 1)D)n − ((m+ 1)D)n]

(2.5)

where σn is the volume of an unit ball in Rn. Then the first two terms in (2.4) can be
bounded by ∫

k≥ |ξ|
m+1

|F [c](ξ)|2 dξ ≤ Ckn+6(m+1)ϵ2 ≤ CEn+6(m+1)ϵ2,

∫
k<

|ξ|
m+1

< ρ
m+1

|F [c](ξ)|2 dξ ≤ Ck6(m+1)ϵ2eE
∫
k<

|ξ|
m+1

< ρ
m+1

dξ

≤ CEn+6(m+1)ϵ,

noticing
∫
k<

|ξ|
m+1

< ρ
m+1

dξ ≤ CEn by (2.5) and k ≤ E. We thus obtain

‖c‖2L2(Ω) ≤ CEn+6(m+1)ϵ2 + CEn+6(m+1)ϵ+
M2

1

1 +m2k2 + E2

D2

≤ CEn+6(m+1)ϵ+
M2

1

1 +m2k2 + E2

since ρ ≥
√
m2k2 +

(
E
D

)2, ϵ < 1 and D ≤ 1.
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Case 2: odd m. In this case, we could construct

ζ1 =
1

m+ 1
|ξ|e1 +

1

m+ 1

√
(m+ 1)2k2 − |ξ|2e2,

ζ2 =
1

m+ 1
|ξ|e1 −

1

m+ 1

√
(m+ 1)2k2 − |ξ|2e2,

. . .

ζm = ζ1,

ζm+1 = ζ2.

(2.6)

The analysis is similar to Case 1 by replacing Ξ :=
√

|ξ|2 − (m+ 1)2k2 and ρ :=√
(m+ 1)2k2 +

(
E
D

)2. If k > E, we obtain

‖c‖2L2(Ω) =

∫
k≥ |ξ|

m+1

|F [c](ξ)|2 dξ +

∫
k<

|ξ|
m+1

|F [c](ξ)|2 dξ

≤ C(1 + k6)m+1(m+ 1)nknϵ2 +
M2

1

1 + (m+ 1)2k2

≤ Ckn+6(m+1)ϵ2 +
M2

1

1 +m2k2 + E2
.

If k ≤ E and D ≤ 1, we have

‖c‖2L2(Ω) =

∫
k≥ |ξ|

m+1

|F [c](ξ)|2 dξ +

∫
k<

|ξ|
m+1

< ρ
m+1

|F [c](ξ)|2 dξ

+

∫
ρ≤|ξ|

|F [c](ξ)|2 dξ

≤ CEn+6(m+1)ϵ2 + CEn+6(m+1)ϵ+
M2

1

1 + (m+ 1)2k2 + E2
.

Remark 2.3. We shall mention that treatment of the identity (1.6) in current work is quite
different from that in [23]. More precisely, in [23], the authors consider an inverse problem
for elliptic equations where vj are solutions of Laplace equations. Since any constant is a
trivial solution there, the uniqueness in [23] can be obtained based on the classic arguments
in [9]. On the other hand, in current work, vj represent the solutions of Helmholtz equations
and we have to choose them very carefully as shown in the above proof.

Despite the profound theoretical justification by the linearized DtN map Dm
0 Λc, it

is somehow not easy to approximate such a linearized DtN map numerically which will
be shown in Section 4.3. In particular, the small boundary data yields a solution with
small values which is easily contaminated by noise. To further study the linearized inverse
Schrödinger potential problem of (1.2), it is worthwhile to consider the linearized DtN map
Λ′

c corresponding to the case where c is small compared to the wavenumber k. In particular,
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we prove the uniqueness for the linearized inverse Schrödinger potential problem with an
arbitrary power type nonlinearity term below given the linearized DtN map Λ′

c at a fixed
wavenumber k > 0.

Theorem 2.4. Let c1 and c2 be two functions in L∞(Ω). If the two linearized DtN maps in
(1.9) obey Λ′

c1
= Λ′

c2
, then c1 = c2 in Ω.

Proof. The proof is similar to the seminal work by Calderón [9] but one needs to choose
appropriate complex exponential solutions. To this end, we let ξ ∈ Rn with ξ 6= 0 and
choose an orthonormal base

{
e1 :=

ξ
|ξ| , e2, . . . , en

}
of Rn, n ≥ 2. Then we can define the

following vectors µℓ ∈ Cn, ℓ = 1, 2 such that
µ1 =

+(m2 − 1)k2 + |ξ|2

2m|ξ|
e1 −

√
−(m2 − 1)2k4 + 2(m2 + 1)k2|ξ|2 − |ξ|4

2m|ξ|
e2,

µ2 =
−(m2 − 1)k2 + |ξ|2

2|ξ|
e1 +

√
−(m2 − 1)2k4 + 2(m2 + 1)k2|ξ|2 − |ξ|4

2|ξ|
e2.

(2.7)

We end the proof by assigning, in (1.10),

u0(x) = eiµ1·x, φ(x) = eiµ2·x, (2.8)

such that um
0 (x)φ(x) = eiξ·x.

Remark 2.5. For m = 1, namely, when the power-type nonlinearity term reduces to a
linear one, the complex exponential solutions in (2.8) are exactly those solutions used in
[18]. Nevertheless, it is somehow disappointing that when m ≥ 2, (2.8) does not easily give
a stability estimate. More precisely, the failure is exactly induced by the behavior of the
complex vectors in (2.7). It is easy to verify that

− (m2 − 1)2k4 + 2(m2 + 1)k2|ξ|2 − |ξ|4

= −(|ξ|+ (m+ 1)k)(|ξ|+ (m− 1)k)(|ξ| − (m− 1)k)(|ξ| − (m+ 1)k) ≥ 0,

for |ξ| ∈ [(m−1)k, (m+1)k]. If |ξ| ∈ (0, (m−1)k) or |ξ| > (m+1)k, the complex exponential
solution u0(x) = eiµ1·x or φ(x) = eiµ2·x blows up at e2 (or −e2) direction when |x| increases.

Though it is not straightforward to obtain an increasing stability by the linearized DtN
map Λ′

c for an arbitrary choice of the nonlinearity index m, as shown in Remark 2.5, we
could still stably reconstruct the Fourier coefficients of the unknown potential function c(x)

within an interval given any fixed wavenumber k > 0. This observation allows us to design a
reconstruction algorithm if the linearized DtN map Λ′

c of multiple wavenumbers are provided.
We will discuss this in Section 4.

On the other hand, if one chooses a specific power-type nonlinearity term, for instance
a quadratic one with m = 2, we could regain the increasing stability by calibrating the
Calderón type identity (1.10) carefully. This result will be given in the coming Section 3.
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3. Linearized inverse Schrödinger potential problem with a quadratic
nonlinearity term

To obtain a stability estimate of the linearized inverse Schrödinger potential problem with a
power type nonlinearity term by the linearized DtN map Λ′

c, the construction of the complex
exponential solutions is essential and the standard approach in Section 2 fails in view of the
discussion in Remark 2.5. To successfully prove the stability estimate, we may have to treat
the nonlinearity term separately and the linearized inverse Schrödinger potential problem
with a quadratic nonlinearity term (m = 2) will be extensively investigated in current section.
For the situation of a general nonlinearity index m > 2, we consider it as a future work and
will report the result elsewhere.

To proceed further, we are inspired by the idea of small boundary data discussed above
and consider three solutions of (1.2) which are denoted by u, v and w with appropriate
Dirichlet boundary conditions. By assuming that the potential function c(x) is small or
the squared wavenumber k2 is sufficiently large, and recalling the asymptotical expansion of
these solutions as in (1.7), we have

u = u0 + u1 + . . . ,

v = v0 + v1 + . . . ,

w = w0 + w1 + . . . ,

where the remaining “. . .” are the higher order terms of these solutions. In fact, we can
obtain that {

∆u0 + k2u0 = 0, ∆u1 + k2u1 = c(x)u2
0 in Ω,

∆v0 + k2v0 = 0, ∆v1 + k2v1 = c(x)v20 in Ω,
(3.1)

for u, v and for w,

∆w0 + k2w0 = 0, ∆w1 + k2w1 = c(x)w2
0 in Ω. (3.2)

The linearized DtN map Λ′
c can be defined accordingly for these three solution as in (1.9).

Denoting the Dirichlet boundary condition of u0, v0 by u0|∂Ω and v0|∂Ω, we define the
boundary condition of w0 by

w0|∂Ω := u0|∂Ω + v0|∂Ω.

By the linearity of the Helmholtz equation, we know

w0 = u0 + v0 in Ω.

We now take a close look of the asymptotical expansion of w = w0 + w1 + . . . in (3.2)
and choose φ to be another solution of the Helmholtz equation ∆φ + k2φ = 0 in Ω, then,
while w1 = 0 on ∂Ω, we have∫

Ω

c(x)w2
0φ dx =

∫
∂Ω

∂νw1φ dS.

12



Noticing that w2
0 = u2

0 + v20 + 2u0v0 in Ω, we thus obtain

2

∫
Ω

c(x)u0v0φ dx =

∫
Ω

c(x)w2
0φ dx−

(∫
Ω

c(x)u2
0φ dx+

∫
Ω

c(x)v20φ dx

)
.

Recalling the asymptotical expansion of u and v, as u1 = 0 and v1 = 0 on ∂Ω, we derive

2

∫
Ω

c(x)u0v0φ dx =

∫
∂Ω

∂νw1φ dS −
(∫

∂Ω

∂νu1φ dS +

∫
∂Ω

∂νv1φ dS

)
. (3.3)

The identity (3.3) then allows us to carry out the stability estimate and reconstruction
algorithm of the linearized inverse Schrödinger potential problem with a quadratic
nonlinearity term.

Similar to Theorem 2.2, we again assume 0 ∈ Ω, D = 2 supx∈Ω |x| and denote the same
variable ϵ to be the operator norm of Λ′

c : H
1
2 (∂Ω) → H− 1

2 (∂Ω) defined in (1.9). The main
stability estimate is presented below.

Theorem 3.1. Let D ≤ 1, ‖c‖H1(Ω) ≤ M1, and k > 1, ϵ < 1, then the following estimate
holds true

‖c‖2L2(Ω) ≤ C
(
kn+4 + En+4

)
ϵ2 + CEn+3ϵ

3
2 +

M2
1

1 + 4k2 + E2

for the linearized system (3.1), (3.2) with E = − ln ϵ and the constant C depending on the
domain Ω and the dimensionality n.

Proof. Let ξ ∈ Rn with ξ 6= 0 and choose an orthonormal base
{
e1 :=

ξ
|ξ| , e2, . . . , en

}
of Rn,

n ≥ 2. Then we can choose the following ζℓ ∈ Cn, ℓ = 1, 2, 3 such that
ζ1 =

1

2
(−k + |ξ|)e1 −

1

2

√
3k2 + 2k|ξ| − |ξ|2e2,

ζ2 =
1

2
(−k + |ξ|)e1 +

1

2

√
3k2 + 2k|ξ| − |ξ|2e2,

ζ3 = ke1.

We assign

u0(x) = eiζ1·x, v0(x) = eiζ2·x, φ(x) = eiζ3·x. (3.4)

Then

u0v0φ = eiξ·x

and the identity (3.3) yields

2F [c](ξ) = 2

∫
Ω

c(x)eiξ·x dx =

∫
∂Ω

∂νw1φ dS −
(∫

∂Ω

∂νu1φ dS +

∫
∂Ω

∂νv1φ dS

)
.

Noticing the fact that |ζℓ|2 = k2, ℓ = 1, 2, 3, we thus obtain, if k ≥ |ξ|
3

,

‖u0‖2H1(Ω) = ‖v0‖2H1(Ω) = ‖φ‖2H1(Ω) ≤
(
1 + k2

)
Voln(Ω).
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If k < |ξ|
3

, by denoting Ξ :=
√

|ξ|2 − 2k|ξ| − 3k2 we then derive the following bounds

‖φ‖2H1(Ω) ≤
(
1 + k2

)
Voln(Ω),

‖u0‖2H1(Ω) = ‖v0‖2H1(Ω) ≤
(
1 + k2

) ∫
Ω

e−Ξe2·x dx

≤
(
1 + k2

)
Voln−1(Ω)

e
1
2
DΞ − e−

1
2
DΞ

Ξ
.

By the trace theorem, we obtain for u0, v0 and φ with a constant C(Ω),

‖u0‖H 1
2 (∂Ω)

≤ C(Ω)‖u0‖H1(Ω), ‖v0‖H 1
2 (∂Ω)

≤ C(Ω)‖v0‖H1(Ω),

‖φ‖
H

1
2 (∂Ω)

≤ C(Ω)‖φ‖H1(Ω).

Hence we obtain, noticing w0 = u0 + v0 in Ω,

|F [c](ξ)|2 ≤ 1

4

(
‖∂νw1‖2

H− 1
2 (∂Ω)

‖φ‖2
H

1
2 (∂Ω)

+ ‖∂νu1‖2
H− 1

2 (∂Ω)
‖φ‖2

H
1
2 (∂Ω)

+ ‖∂νv1‖2
H− 1

2 (∂Ω)
‖φ‖2

H
1
2 (∂Ω)

)
≤ 1

4
ϵ2C4(Ω)

(
‖w0‖2H1(Ω) + ‖u0‖2H1(Ω) + ‖v0‖2H1(Ω)

)
‖φ‖2H1(Ω)

≤ 3

4
ϵ2C4(Ω)

(
‖u0‖2H1(Ω) + ‖v0‖2H1(Ω)

)
‖φ‖2H1(Ω)

≤ 3

2
ϵ2C4(Ω)‖u0‖2H1(Ω)‖φ‖2H1(Ω).

For k ≥ |ξ|
3

, there holds

|F [c](ξ)|2 ≤ 3

2
ϵ2C4(Ω)

(
1 + k2

)2
(Voln(Ω))

2 ,

and for k < |ξ|
3

,

|F [c](ξ)|2 ≤ 3

2
ϵ2C4(Ω)

(
1 + k2

)2
Voln(Ω)Voln−1(Ω)

e
1
2
DΞ − e−

1
2
DΞ

Ξ
.

Let E := − ln ϵ > 0 and k > 1, ϵ < 1, we again consider two cases

a) k > E (i.e. ϵ = e−E > e−k), and
b) k ≤ E (i.e. ϵ = e−E ≤ e−k).

In the case a), we have

‖c‖2L2(Ω) =

∫
|F [c](ξ)|2 dξ =

∫
k≥ |ξ|

3

|F [c](ξ)|2 dξ +

∫
k<

|ξ|
3

|F [c](ξ)|2 dξ

≤ 3

2
C4(Ω)

(
1 + k2

)2
(Voln(Ω))

2 σn(3k)
nϵ2 +

M2
1

1 + (3k)2

≤ C1k
n+4ϵ2 +

M2
1

1 + 8k2 + E2
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where σn is the volume of an unit ball in Rn, and the constant C1 := 6C4(Ω) (Voln(Ω))
2 σn3

n.
In the case b), we let ρ := k +

√
4k2 +

(
E
D

)2 such that
√
ρ2 − 2kρ− 3k2 = E

D
and split

‖c‖2L2(Ω) =

∫
k≥ |ξ|

3

|F [c](ξ)|2 dξ +

∫
k<

|ξ|
3
< ρ

3

|F [c](ξ)|2 dξ

+

∫
ρ≤|ξ|

|F [c](ξ)|2 dξ.

(3.5)

The first term in the right-hand side of (3.5) can be bounded by∫
k≥ |ξ|

3

|F [c](ξ)|2 dξ ≤ C1(Ω)k
n+4ϵ2 ≤ C1(Ω)E

n+4ϵ2,

noticing k ≤ E.
We focus on the second term in the right-hand side of (3.5) and estimate∫

k<
|ξ|
3
< ρ

3

|F [c](ξ)|2 dξ

≤ 3

2
ϵ2C4(Ω)

(
1 + k2

)2
Voln(Ω)Voln−1(Ω)

(∫
k<

|ξ|
3
< ρ

3

e
1
2
DΞ − e−

1
2
DΞ

Ξ
dξ

)
.

Similar to [18], by implementing the fact that
ey − e−y

y
= 2

(
1 +

y2

3!
+ . . .+

y2n

(2n+ 1)!
+ . . .

)
increases while y > 0 and hence we obtain

e
1
2
DΞ − e−

1
2
DΞ

Ξ
≤

D
(
e

E
2 − e−

E
2

)
E

since k < |ξ|
3
≤ ρ

3
. Meanwhile, we bound, noticing ρ ≤ 3k + E

D
and k ≤ E,∫

k<
|ξ|
3
< ρ

3

dξ = σn (ρ
n − (3k)n)

≤ σn
En

Dn

[(
1 + 3k

D

E

)n

−
(
3k

D

E

)n]
≤ σn

En

Dn
[(1 + 3D)n − (3D)n]
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where σn is the volume of an unit ball in Rn. The above inequalities yields∫
k<

|ξ|
3
< ρ

3

|F [c](ξ)|2 dξ

≤ 3

2
ϵ2C4(Ω)

(
1 + k2

)2
Voln(Ω)Voln−1(Ω)

D
(
e

E
2 − e−

E
2

)
E

(∫
k<

|ξ|
3
< ρ

3

dξ

)

≤ 3

2
ϵ2C4(Ω)

(
1 + k2

)2
Voln(Ω)Voln−1(Ω)

D
(
e

E
2 − e−

E
2

)
E

σn
En

Dn
[(1 + 3D)n − (3D)n]

≤ C2(Ω)E
n+3ϵ

3
2

with C2(Ω) := 6C4(Ω)Voln(Ω)Voln−1(Ω)σn [(1 + 3D)n − (3D)n]D1−n. Furthermore, since
ρ >

√
4k2 +

(
E
D

)2, we bound the third term in the right-hand side of (3.5) by∫
ρ≤|ξ|

|F [c](ξ)|2 dξ ≤ M2
1

1 + ρ2
≤ M2

1

1 + 4k2 + E2

D2

.

We thus prove for both cases the proposed bound.

Remark 3.2. We emphasize that the stability estimate O(ϵ
3
2 ) in above Theorem 3.1 is better

than the stability rate O(ϵ) in [18, Theorem 2.1] where a linear elliptic equation is investigated
ibid, i.e. {

∆u+ k2u− c(x)u = 0 in Ω,

u = g0 on ∂Ω.

It can be viewed as the advantage of the quadratic nonlinearity term when we solve the
nonlinear inverse problems (1.2) with m = 2. A clear numerical evidence will be provided in
Section 4 and one can stably recover the Fourier coefficients with |ξ| ≤ 3k whereas in [18] one
can only recover those with |ξ| ≤ 2k. Such advantages highly depend on the sophisticatedly
selected complex exponential functions and the modified Calderón identity (3.3) considered
above.

4. Reconstruction algorithm and numerical examples

In this section, we provide two reconstruction algorithms stably recovering the unknown
potential function by the linearized DtN map Λ′

c and a vanilla reconstruction algorithm
by the linearized DtN map Dm

0 Λc. In view of the quadratic nonlinearity term, we rely
on the theoretical discussion in Section 3 and deliver the first algorithm where boundary
measurements of a single (large) wavenumber could offer a high resolution. Meanwhile, the
second algorithm focuses on the high-order nonlinearity term discussed in Section 2 and the
linearized DtN map Λ′

c of multiple wavenumbers is included to recover sufficiently many
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Fourier coefficients of the unknown potential function. Finally a vanilla reconstruction
algorithm by the (approximated) linearized DtN map Dm

0 Λc is presented to verify the
feasibility of the proposed linearization which, to the best of our knowledge, is the first
attempt to realize the linearized DtN map Dm

0 Λc numerically.

4.1. Reconstruction algorithm by Λ′
c for a quadratic nonlinearity term

Noticing that the linearized DtN map Λ′
c can be numerically approximated, see [18, Eq.(4.3)],

we present the first reconstruction algorithm based on the identity (3.3). As an illustration,
we focus on the two-dimensional space n = 2.

By selecting the complex exponential solutions (3.4) in the proof of Theorem 3.1, we
know that the left-hand side of (3.3) reflects a Fourier coefficient of the potential function
c(x). Then by choosing ξ ∈ Rn and recalling Remark 3.2, we aim to recovering all the Fourier
coefficients F [c](ξ) of the potential function c(x) satisfying |ξ| ≤ 3k. The larger wavenumber
k, the more Fourier coefficients can be recovered.

To further address the reconstruction algorithm, we need the following discrete sets of
lengths and angles of the vectors in the phase space. The discrete and finite length set is
defined by

{κi}Ii=1 ⊂ (0, Lk ] for any fixed k.

Here we choose L ≥ 3 and Lk is the maximum length of the vector ξ. Two angle sets are
defined by

{ŷs}Ss=1 ⊂ Sn−1 and {ẑs}Ss=1 ⊂ Sn−1,

which satisfy ŷs · ẑs = 0.
The vector ξ⟨i;s⟩ := κiŷs and following vectors ζ

⟨i;s⟩
ℓ ∈ Cn, ℓ = 1, 2, 3 are chosen

ζ
⟨i;s⟩
1 :=

1

2
(−k + κi)ŷs −

1

2

√
3k2 + 2kκi − κ2

i ẑs,

ζ
⟨i;s⟩
2 :=

1

2
(−k + κi)ŷs +

1

2

√
3k2 + 2kκi − κ2

i ẑs,

ζ
⟨i;s⟩
3 := kŷs,

which further assign to the complex exponential solution as in (3.4) below

u0(x) = eiζ
⟨i;s⟩
1 ·x, v0(x) = eiζ

⟨i;s⟩
2 ·x, φ(x) = eiζ

⟨i;s⟩
3 ·x

for i = 1, 2, · · · , I and s = 1, 2, · · · , S. More precisely, the superscript notation ·⟨i;s⟩ will be
referred to a vector ξ⟨i;s⟩ with the ith length κi and the sth angle ŷs. Finally, for the inverse
Fourier transform, a numerical quadrature rule can be constructed by a suitable choice of
the weights σ⟨i;s⟩ according to these points ξ⟨i;s⟩.

We summarize our reconstruction algorithm below, which is similar to that in [18] but
one has to solve the nonlinear Schrödinger potential problem three times at each iteration
because of the quadratic nonlinearity term.

17



Algorithm 1: Reconstruction Algorithm for the Linearized Schrödinger Potential
Problem, the quadratic nonlinearity term

Input: k, {κi}Ii=1, {ŷs}Ss=1, {ẑs}Ss=1 and σ⟨i;s⟩;
Output: Approximated Potential c⟨I+1;1⟩.

1: Set c⟨1;1⟩ := 0;
2: For i = 1, 2, · · · , I (length updating)
3: For s = 1, 2, · · · , S (angle updating)
4: Choose u0 := exp{iζ⟨i;s⟩1 · x}, v0 := exp{iζ⟨i;s⟩2 · x} and w0 := u0 + v0;
5: Measure the Neumann boundary data ∂νu, ∂νv, ∂νw of the forward problem (1.2)

while the Dirichlet boundary data u0|∂Ω, v0|∂Ω, w0|∂Ω are given;
6: Calculate the approximated linearized Neumann boundary data

g ′
u := (∂νu− ∂νu0)|∂Ω, g ′

v := (∂νv − ∂νv0)|∂Ω, g ′
w := (∂νw − ∂νw0)|∂Ω;

7: Choose φ := exp{iζ⟨i;s⟩3 · x} and γ := [u0v0φ]
−1 = exp{−iξ⟨i;s⟩ · x};

8: Compute F [c](ξ⟨i;s⟩) ≈ 1
2

∫
∂Ω
(g ′

w − g ′
u − g ′

v)φ dS;
9: Update c⟨i;s+1⟩ := c⟨i;s⟩ + F [c](ξ⟨i;s⟩) γσ⟨i;s⟩, if κi ≤ 3k;

10: End;
11: Set c⟨i+1;1⟩ := c⟨i;S+1⟩;
12: End.

In fact, the linearized Neumann boundary data ∂νw1 depends on the unknown potential
function c(x) referring to (3.2). As mentioned in [18, Eq.(4.3)], we utilize

g ′
w := (∂νw − ∂νw0)|∂Ω (4.1)

to approximate the non-measurable data ∂νw1|∂Ω. The similar approximation g ′
u and g ′

v are
employed for the linearized Neumann data ∂νu1|∂Ω and ∂νv1|∂Ω, respectively.

As one can observe, the computational cost of Algorithm 1 is quite high because of
the nonlinearity term in the forward problem, see e.g. [14, 27, 28, 29]. In particular in Steps
5-6 of Algorithm 1, we must solve the nonlinear elliptic equation (1.2) three times in order
to derive their Neumann traces which are necessary to compute the Fourier coefficient in
Step 8.

To numerically test Algorithm 1, we consider the domain Ω = B0.5(0) in a square
[0.5, 0.5]2. To avoid the inverse crime, we use a fine grids (100× 100 equal-distance points)
for the forward problem and a coarse grid (90× 90 equal-distance points) for the inversion.
The sampling points ξ = (ξ1, ξ2) in frequency domain are shown in Figure 1, marked by
blue “∗” near which all the Fourier coefficients will be recovered. In Figure 2, the horizontal
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Figure 1. The sampling points ξ = (ξ1, ξ2) in frequency domain.

axis shows the length |ξ| of all ξ, and the vertical axis shows the absolute value |F [c](ξ)| of
Fourier coefficients near the sampling points. By comparing the exact (Top) and recovered
(Bottom) Fourier coefficients in each sub-figure of Figure 2: (a) k = 5 and (b) k = 10, we
conclude that, while k is larger, the more Fourier modes can be recovered stably, i.e. F [c](ξ)

with |ξ| ≤ 3k.
Then, by using all the recovered Fourier coefficients F [c](ξ) with |ξ| ≤ 3k, we implement

the inverse Fourier transform in Step 9 to reconstruct the potential function c(x). In Figure 3,
we present the exact and reconstructed potential functions c(x) with different wavenumbers:
(a) k = 5 and (b) k = 10, respectively. These numerical results verify the increasing stability
in Theorem 3.1 while k becomes large.
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Quadratic case:
(a) k = 5

(b) k = 10

Figure 2. The exact (Top) and recovered (Bottom) Fourier coefficients F [c](ξ) in each
sub-figure: (a) k = 5 and (b) k = 10. Here, the horizontal axis shows the length |ξ| of ξ;
the vertical axis shows the absolute value |F [c](ξ)| of Fourier coefficients.
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Quadratic case:
(a) k = 5

(b) k = 10

Figure 3. The exact (Left) and recovered (Right) potential c(x) with (a) k = 5 and (b)
k = 10. Here, we use the Fourier coefficients F [c](ξ) with |ξ| ≤ 3k.
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4.2. Reconstruction algorithm by Λ′
c for high-order nonlinearity terms with multiple

wavenumbers

In this subsection, we show that the uniqueness result Theorem 2.4 in Section 2 indeed could
provide a stable reconstruction algorithm for the nonlinear inverse Schrödinger potential
problem whose nonlinearity index is an arbitrary finite integer m ≥ 2, if the linearized DtN
map Λ′

c of multiple wavenumbers is provided.
As highlighted in Remark 2.5, the complex exponential solutions constructed in the

proof of Theorem 2.4 has a stable interval [(m−1)k, (m+1)k] for any fixed k. Suppose that
the same discrete (phase space) length and angle sets of the vectors in Section 4.1 could be
used, i.e. {κi}Ii=1, {ŷs}Ss=1, {ẑs}Ss=1 and the following vectors µ

⟨i;s⟩
ℓ ∈ Cn, ℓ = 1, 2 are chosen

µ
⟨i;s⟩
1 :=

+(m2 − 1)k2 + κ2
i

2mκi

ŷs −
√

−(m2 − 1)2k4 + 2(m2 + 1)k2κ2
i − κ4

i

2mκi

ẑs,

µ
⟨i;s⟩
2 :=

−(m2 − 1)k2 + κ2
i

2κi

ŷs +

√
−(m2 − 1)2k4 + 2(m2 + 1)k2κ2

i − κ4
i

2κi

ẑs,

similar to Algorithm 1, we summarize a plain reconstruction algorithm for high-order
nonlinearity terms with a fixed wavenumber k, according to the identity (1.10).

Algorithm 2: Reconstruction Algorithm for the Linearized Schrödinger Potential
Problem, the high-order nonlinearity term

Input: k, m, {κi}Ii=1, {ŷs}Ss=1, {ẑs}Ss=1 and σ⟨i;s⟩;
Output: Approximated Potential c⟨I+1;1⟩.

1: Set c⟨1;1⟩ := 0;
2: For i = 1, 2, · · · , I (length updating)
3: For s = 1, 2, · · · , S (angle updating)
4: Choose u0 := exp{iµ⟨i;s⟩

1 · x};
5: Measure the Neumann boundary data ∂νu of the forward problem (1.2)

while the Dirichlet boundary data u0|∂Ω are given;
6: Calculate the approximated linearized Neumann boundary data

g ′
u := (∂νu− ∂νu0)|∂Ω;

7: Choose φ := exp{iµ⟨i;s⟩
2 · x} and γ := [um

0 φ]
−1 = exp{−iξ⟨i;s⟩ · x};

8: Compute F [c](ξ⟨i;s⟩) ≈
∫
∂Ω

g ′
u φ dS;

9: Update c⟨i;s+1⟩ := c⟨i;s⟩ + F [c](ξ⟨i;s⟩) γσ⟨i;s⟩, if κi ∈ [(m− 1)k, (m+ 1)k];
10: End;
11: Set c⟨i+1;1⟩ := c⟨i;S+1⟩;
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12: End.

Furthermore, if we could measure the boundary data by appropriate multiple
wavenumbers, we could reconstruct sufficiently many Fourier coefficients of the unknown
potential function. More precisely, by choosing k1 small and a threshold value K as the
maximum wavenumber, we choose a discrete set of multiple wavenumbers, namely

{kj}Jj=1 ⊂ (0, K ], (4.2)
which satisfies kj+1 = m+1

m−1
kj. Below we present an updated reconstruction algorithm of

Algorithm 2 for the linearized Schrödinger potential problem with a high-order nonlinearity
term, i.e. the nonlinearity index m ≥ 2, if the linearized DtN map Λ′

c of multiple wavenumbers
can be obtained.

Algorithm 2*: Reconstruction Algorithm for the Linearized Schrödinger
Potential Problem with a high-order nonlinearity term (Multiple wavenumbers)

Input: {kj}Jj=1, {κi}Ii=1, {ŷs}Ss=1, {ẑs}Ss=1 and σ⟨i;s⟩;

Output: Approximated Potential cinv :=
J∑

j=1

c
⟨I+1;1⟩
j .

1: For j = 1, 2, · · · , J (wavenumber updating)
2: Compute the approximated potential c⟨I+1;1⟩

j by using Algorithm 2 and a fixed kj;
3: End.

As an illustration, we consider the linearized Schrödinger potential problem with a cubic
nonlinear term (m = 3). The wavenumber set in (4.2) is set with k1 = 1.25 and K = 10

where we recover the Fourier coefficients F [c](ξ) with 4 wavenumbers k ∈ {1.25, 2.5, 5, 10}.
In Figure 4, the red region indicates the Fourier coefficients within (2k1, 4k1), the green region
indicates the Fourier modes within (2k2, 4k2), the blue region indicates the Fourier modes
within (2k3, 4k3), and the cyan region indicates the Fourier coefficients within (2k4, 4k4).

By using Fourier coefficients F [c](ξ) within |ξ| ∈
⋃J

j=1 [(m − 1)kj, (m + 1)kj) =

[(m − 1)k1, (m + 1)kJ), we implement the inverse Fourier transform to reconstruct the
potential function c(x). In Figure 5, we present the exact and reconstructed potential
functions c(x) with 4 wavenumbers k ∈ {1.25, 2.5, 5, 10}. It can be seen that, by including
the boundary measurements of four wavenumbers, we have obtained a good approximation
of the unknown potential function in (1.2) with a cubic nonlinear term m = 3.

4.3. Vanilla reconstruction algorithm for Dm
0 Λc

Noticing that the linearized DtN map Λ′
c can be approximated by ignoring the high order

terms, i.e. (4.1), we are allowed to adopt this idea and design a vanilla reconstruction
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Cubic case:
multiple wavenumbers k ∈ {1.25, 2.5, 5, 10}

Figure 4. (Cubic case, m = 3) The exact (Top) and recovered (Bottom) Fourier coefficients
F [c](ξ) with multiple wavenumbers k ∈ {1.25, 2.5, 5, 10}. Here, the horizontal axis shows
the length |ξ| of ξ; the vertical axis shows the absolute value |F [c](ξ)| of Fourier coefficients.

Cubic case:
multiple wavenumbers k ∈ {1.25, 2.5, 5, 10}

Figure 5. (Cubic case, m = 3) The exact (Left) and recovered (Right) potential c(x) with
multiple wavenumbers k ∈ {1.25, 2.5, 5, 10}.
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algorithm for another linearized DtN map Dm
0 Λc.

As shown in Section 1.2, the Calderón type identity (1.6) plays a key role in recovering
the unknown potential function c(x) with respect to the small boundary data fε. More
precisely, it relies on the boundary data ∂νw|∂Ω = Dm

0 Λc(f1, . . . , fm) sensitively. Thus in this
subsection, we provide some numerical tests to study the consequence by the linearized DtN
map Dm

0 Λc, and the following formulae are employed to approximate the Fréchet derivative
Dm with m = 2 and 3, such that

∂ε1∂ε2Λc(fε) ≈ 1

ε1ε2

(
Λc(ε1f1 + ε2f2)− Λc(ε2f2)− Λc(ε1f1) + Λc(0)

)
,

∂ε1∂ε2∂ε3Λc(fε) ≈
1

ε1ε2ε3

(
Λc(ε1f1 + ε2f2 + ε3f3)

− Λc(ε1f1 + ε2f2)− Λc(ε1f1 + ε3f3)− Λc(ε2f2 + ε3f3)

+ Λc(ε3f3) + Λc(ε2f2) + Λc(ε1f1)− Λc(0)
)

(4.3)

if each εi, i = 1, 2, 3 is small enough and chosen appropriately. Here we mention that
Λc(0) = 0.

We note that one can modify Algorithm 1 carefully to design a reconstruction
algorithm for the linearized DtN map Dm

0 Λc if appropriate complex exponential solutions
(2.3) or (2.6) in the proof of Theorem 2.2 are chosen and the above derivative approximation
schemes (4.3) are implemented. To save the space, we skip the pseudocode of the algorithm
but present the reconstructed potential c(x) and its Fourier coefficients F [c](ξ) in Figure 6
for different nonlinearity index with m = 2, 3. In both cases, we have chosen εi = 0.1,
i = 1, 2, 3 as illustration. In principle, one can extend the derivative approximation formulae
(4.3) to more general case with m > 3 and tune the small parameters εi carefully to obtain
better resolution. This is beyond the scope of current work and will be considered as future
work.

25



Quadratic case:

Cubic case:

Figure 6. Left: The recovered Fourier coefficients F [c](ξ) with k = 10 by linearized DtN
map Dm

0 Λc. Right: The recovered potential c(x) with k = 10 by linearized DtN map Dm
0 Λc.

Here m = 2 (above) and m = 3 (bottom).
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