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Abstract

In this paper we investigate the usage of random
ortho-projections in the compression of sparse feature
vectors. The study is carried out by evaluating the com-
pressed features in classification tasks instead of con-
centrating on reconstruction accuracy. In the random
ortho-projection method, the mapping for the compres-
sion can be obtained without any further knowledge of
the original features. This makes the approach favor-
able if training data is costly or impossible to obtain.
The independence from the data also enables one to
embed the compression scheme directly into the com-
putation of the original features. Our study is inspired
by the results in compressive sensing, which state that
up to a certain compression ratio and with high proba-
bility, such projections result in no loss of information.
In comparison to learning based compression, namely
principal component analysis (PCA), the random pro-
jections resulted in comparable performance already at
high compression ratios depending on the sparsity of
the original features.

1. Introduction

As computer vision problems are getting very di-
verse, there is an increasing need for powerful ways to
describe the variety of objects and appearances which
come up in applications [1, 7]. In many cases this has
resulted in high dimensional descriptor spaces. It is not
uncommon that the dimensionality of the feature space
for example in face recognition goes beyond 70 000 [1]
and in object recognition over 5 000 [7]. At the same
time these descriptors are increasingly finding new real-
time applications in hand held devices, where storage
and computing resources are significantly limited [5].

The problem of high dimensional feature vectors is
well known and several possible solutions have been
proposed. One approach has been to develop new de-
scriptors that capture the essential properties of some

effective method, but are low dimensional by design.
Some examples of such features include uniform pat-
tern LBP [9], speeded up robust features (SURF) [2],
and compressed histogram of gradients (CHoG) [5].
While these methods have been successful, this ap-
proach is generally difficult, because in each individual
case it requires intensive design effort and often there is
no natural low dimensional formulation.

Another solution is to apply general dimensional-
ity reduction methods like principal component analysis
(PCA), independent component analysis (ICA), kernel
PCA, and locally linear embedding (LLE) [11]. A com-
mon property of these methods is that they require a
training phase in order to learn the mapping function.
This requires training data, whose amount is related to
the number of dimensions in the compressed descrip-
tor. In the case of very long vectors, where one is likely
to need numerous dimensions in the compressed vector,
it can be time consuming and expensive to acquire the
needed representative training samples. In addition the
lack of canonical mapping requires one to store the orig-
inal features in addition to the compressed ones if these
are intended to be used in multiple tasks. This is partic-
ularly inconvenient for large multipurpose datasets.

In this paper we investigate dimensionality reduc-
tion of sparse descriptors using ideas from compressive
sensing theory [4]. In particular we apply projections
onto a set of random orthogonal vectors as our compres-
sion method. The theory in [4] states that up to certain
compression ratio and with high probability, such pro-
jections contain all information from the original fea-
tures. The maximum compression, allowing perfect re-
construction, depends on the sparsity of the features [4],
but our experiments indicate that the compressed de-
scriptors perform very well in applications also far be-
low this theoretical limit.

By sparsity we mean that feature vectors have large
values only in a small subset of the elements, which
may be different for each vector. More generally, the
theory also applies to feature vectors which are sparse
in some orthonormal basis. Sparse features are common



in computer vision methods like [1, 7, 3]. In [3] random
projections are used in a special case of signature fea-
tures, but in addition to that we are not aware of further
applications of this technique to vision problems such
as the ones presented here.

In this paper we will extend the study of random
ortho-projection compression from the case illustrated
in [3] into several common computer vision problems,
namely texture classification, face recognition, and cat-
egory recognition. The results are compared with spe-
cially designed low dimensional features and princi-
pal component analysis, which is by far the most pop-
ular learning based dimensionality reduction method.
Our experiments show that random projections result in
comparable performance already for high compression
ratios, depending on the sparsity of the original features.
The face recognition experiment also demonstrates the
problems with training data in PCA.

2. Compressive Sensing

In this section we briefly describe those theoretical
aspects of compressive sensing which are relevant for
this paper. We will follow the survey [4] and refer to
that article for further information and references.

In compressive sensing, one considers data which
are assumed to be sparse in some representation. The
goal is to find a way of compressing (or sampling) the
data so that the original data can often be reconstructed
from just a few samples. The point is that if the rep-
resentations which achieve sparsity and compression
are ’incoherent’, one expects good reconstructions from
fewer samples than required by classical results such as
the Nyquist sampling theorem.

The data can be taken to be a vector f in Rn. Con-
sider two orthonormal bases {ψ1, . . . , ψn} (the sparse
basis) and {ϕ1, . . . , ϕn} (the compression basis) in Rn,
and write Φ and Ψ for the orthogonal n × n matri-
ces with rows ϕT

j and columns ψj , respectively. We
say that f has an S-sparse representation in the basis
Ψ if f = Ψx where at most S of the coordinates in
x = (x1, . . . , xn)T are nonzero (that is, x is S-sparse).

One would like to compress the vector f by com-
puting inner products 〈f, ϕk〉 with vectors in the com-
pression basis, and by selecting y = (y1, . . . , ym)T to
consist of some subset of m of these values. In terms
of matrices, this can be written as y = Φ′f where Φ′ is
an m × n matrix obtained from Φ by selecting some m
rows (in practice these can be selected randomly).

From the above relations, one can write y = Ax
where A = Φ′Ψ. It follows from [4, Theorem 1] that
if the bases Φ and Ψ are ’incoherent’, one expects that
from relatively few samples one gets a good approxi-

mation to a sparse vector x (thus a good reconstruction
of the original signal f ) by solving the #1-optimization
problem

min
x̃∈Rn

‖x̃‖!1 subject to Ax̃ = y. (1)

Such problems can be solved rather efficiently by con-
vex optimization methods.

In the applications to computer vision, it is not al-
ways clear what a good sparsity basis Ψ could be. In
fact, below we will use the identity matrix Ψ = I as
the sparsity basis (then sparsity means exactly that the
vector f should have many components equal to zero).
However, it follows from the theory (see [4, Section V])
that regardless of the choice of Ψ, one obtains with high
probability a compression basis with the right incoher-
ence properties by just taking Φ to be a random orthog-
onal matrix. Such random matrices provide a ’universal
compression strategy’ since one does not even need to
know the sparsity basis Ψ to design a good data com-
pression scheme.

We summarize the above discussion in the following
(more precise) result, which follows from results in [4]:

Let Ψ be a fixed orthogonal n × n matrix, and let
Φ′ be an m × n matrix whose columns are obtained
by orthonormalizing a set of m unit vectors in Rn

which are chosen uniformly at random. Suppose that
f = Ψx where x is S-sparse, and let Ax = y. If
m ≥ C0S log(n/S), then the solution x∗ of the prob-
lem (1) satisfies x∗ = x with a high probability.

3. Random Ortho-projection Compression

In the applications below the feature vectors are
sparse as given, and hence we have Ψ = I . The re-
sult in Section 2 then means that for sufficient sparsity
and a reasonable amount of samples, the universal com-
pression scheme based on random orthogonal vectors is
lossless with high probability. Also, the original fea-
ture vectors can be reconstructed from the compressed
information by solving (1).

Assume that f represents the original sparse fea-
ture vector in Rn. Then the compressed features are
achieved according to Section 2 as y = Φ′f , where Φ′

is an m×n matrix whose rows are orthogonal. In prac-
tice Φ′ is constructed by applying the Gram-Schmidt
orthonormalization procedure to a set of m randomly
chosen unit vectors in Rn. In addition if one has Ψ &= I ,
then the compressed features are given by y = Φ′ΨT f .

Finally, we note that since the compression is linear,
it may be possible to embed the compression scheme
into the computation of the original features. This can
be done for instance in histogramming based methods.
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Figure 1. Examples of the test images.

Since the elements of the feature vector correspond to
different bins, one can directly compute the inner prod-
uct of the feature vector with some row ϕT

j of Φ′ by in-
crementing a running total according to the elements of
ϕT

j instead of incrementing the elements of the feature
vector by one. In this way one avoids having to store
the original features. A similar approach was also used
in [3] to achieve a fast and memory efficient implemen-
tation.

4. Experiments

We consider three common vision experiments in-
cluding texture classification, face recognition, and cat-
egory recognition. The results are compared with PCA
compression, uniform pattern LBP, and original de-
scriptors denoted as baseline. In texture and category
recognition the PCA basis is learned from the same im-
ages that are used to train the classifier. In face recog-
nition the learning is done using an extra training set
according to [10]. The random ortho-projection com-
pression is performed according to Section 3.

4.1 Texture Classification

We perform texture classification experiments using
the publicly available texture recognition datasets Outex
00 and 02 1. The first set contains 480 128×128 images
from 24 different texture types and the latter one 8832
32×32 images from the same texture types. Figure 1(a)
shows some examples from the dataset. The original
feature vectors were LBP [9] histograms, for which as
an average 53.5% of the bins were nonzero and 80% of
the sum was contained in 16.7% of the largest values.

The classification was performed using nearest
neighbor classifier with L2 distance and given 100 train-
test-splits. The results are reported as average classifi-
cation accuracy over all splits. Figures 2(a) and 2(b)
contain the measured results with different descriptor
lengths. The vertical lines represent the performances
of LBP and uniform pattern LBP.

The results with Outex 02 show that already with
80 dimensions the compressed methods work almost

1http://www.outex.oulu.fi/

as well as the baseline. For short lengths the learning
based PCA performs better, but at about 100 dimen-
sions random projections result in the same accuracy.
Comparing to uniform pattern LBP, which has 59 di-
mensions, both PCA and compressive sensing seem to
result in similar accuracy.

4.2 Face Recognition

As a second experiment we ran Face Recognition
Grand Challenge (FRGC) test 1.0.4 [10]. The test in-
volves three image sets, one for additional training, one
for training the classifier, and one for testing. These
contained 366, 152, and 608 registered face images, re-
spectively. Some examples are shown in Figure 1(b).
The descriptors are constructed as presented in [1]:
the preprocessed face image is divided into 304 non-
overlapping regions of equal size and LBP histogram is
computed from each of them. Finally, the obtained his-
tograms are concatenated to form a 77 824 dimensional
descriptor.

According to [10], the PCA basis can be learned us-
ing the additional training set. Since the basis is formed
by the eigenvectors of an empirical covariance matrix,
the maximum number of basis vectors is limited to 366.
Furthermore the compression may also be sensitive to
the actual training samples, since they occupy such a
small portion of the feature space. This illustrates the
difficulties encountered by learning based methods with
very large dimensional feature vectors.

As an average only 13.0% of the vector elements
were nonzero and 80% of the sum was contained in
the 8.1% of the largest values. Hence these feature
vectors are very sparse. The classification accuracies
using nearest neighbour classifier with L2 distance are
shown in Figure 2(c). The results are computed up to 10
000 dimensions, where the random projections already
achieve the baseline performance. We emphasize that
no training was required in the compression, but it was
enough to know that feature vectors are sparse.

4.3 Category Recognition

In the final experiment we applied compression
methods to category recognition using the VOC 2007
dataset [6]. We chose to classify the ”person” category,
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(d) Category recognition

Figure 2. Measured average classification accuracies. Notice the different scales.

since it contains the largest number of samples over the
other classes, i.e. 1025, 983, and 2008 positive images
in training, validation, and test sets respectively. Some
examples from the dataset are shown in Figure 1(c).

The images were first converted to gray scale and re-
sized to 320×240. We then extracted SIFT [8] on a reg-
ular grid with 10 pixel spacing and circular patches with
radius 4, 8, and 12. The descriptors were vector quan-
tized to 1000 visual words using K-means, and finally
histogrammed over the words. As an average 73.3% of
resulting 1000 bins were nonzero and 80% of the sum
was contained in the 39.3% of the largest values, which
makes these descriptors clearly the least sparse within
the conducted experiments.

The classification was performed by training an
SVM classifier with RBF-kernel, where the γ param-
eter was coarsely tuned using the validation set. Figure
2(d) contains the resulting average precision values for
original and compressed descriptors. Results show that
for very short lengths the learning based PCA performs
better as expected, but interestingly already with 250 di-
mensions the difference to random ortho-projections is
less than one percent.

5. Conclusions

In this paper we investigate the usage of random
ortho-projections in the compression of sparse feature
vectors. The method requires no further knowledge of
the original features, and is therefore very attractive to
applications where training data is costly or impossible
to obtain. The independence from the data also enables
one to embed the compression scheme into the compu-
tation of the original features in order to save time and
memory. In the experiments we compared the approach
to specifically designed low dimensional features and
learning based compression, namely principal compo-
nent analysis (PCA). The results indicate that already
from relatively high compression ratios the random pro-
jection method achieved similar accuracy to PCA and
even the original descriptors. This behavior was further
emphasized with very sparse feature vectors.
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