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Machine Vision Group

Dep. of Electrical and Information Engineering
P.O. Box 4500, 90014 Univ. of Oulu, Finland

{erahtu, msa, jth}@ee.oulu.fi

Jan Flusser
Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic
182 08 Prague 8, Czech Republic

flusser@utia.cas.cz

Abstract

This paper introduces a new way of extracting affine in-
variant features from image functions. The presented ap-
proach is based on combining affine moment invariants
(AMI) with multiscale invariants, in particular multiscale
autoconvolution (MSA) and spatial multiscale affine invari-
ants (SMA). Our approach includes all of these invariants
as special cases, but also makes it possible to construct new
ones. According to the performed experiments the intro-
duced features provide discriminating information for affine
invariant object classification, clearly outperforming stan-
dard AMI, MSA, and SMA.

1 Introduction

Affine invariant descriptors are important tools in object
recognition problems. These techniques are commonly di-
vided into two main categories according to how they make
use of the image function. In so called local approaches the
objects are segmented to smaller elements and invariants are
computed separately for each of them. This class includes
differential invariants [1] and patch based approaches [2].
The advantage with these methods is that the recognition
can be carried out many times even if only a small part of
the object is visible in the image. The drawback on the other
hand is that the results become sensitive to the success of the
segmentation step, and it is not always easy to find segments
containing useful information about the image.

The second category consists of the global approaches,
where the features are computed directly from the whole
image intensity function. The advantage is that one does
not have the problem of dividing the object into segments,
and the features use information in the whole object instead
of just small subparts. The drawbacks are that a large oc-
clusion may disrupt the recognition and that the background
of the objects must be eliminated, which may be difficult.
Nevertheless, in many situations such as in industrial appli-
cations this can be done reliably. Also, it may be possible
to apply the global methods in local patches, which could

improve the performance in the presence of occlusions.
Several global invariants have been introduced in the lit-

erature. The first method is the affine invariant moments
(AMI) [3], [4], dating back to 1962. Later methods include
cross-weighted moments [5], affine invariant spectral sig-
natures [6], and trace transform [7]. However these appear
to be either computationally expensive or difficult to imple-
ment. In addition to these, recent approaches include mul-
tiscale autoconvolution (MSA) [8] and spatial multiscale
affine invariants (SMA) [9], where SMA is known to have
some nonuniqueness.

In this paper we propose a new method for affine in-
variant feature extraction. In this approach we combine the
basic ideas used in the AMI, MSA, and SMA methods, to
form new invariants which provide more information than
any of the methods separately. The presented formulation
gives rise to numerous possibilities in constructing affine in-
variants. The performed experiments indicate that the new
features enable reliable object recognition also under noisy
conditions.

2 Pure moment invariants

Let f ≥ 0 be an image intensity function on R2. We
want to consider affine invariants, which are functionals ap-
plied to image functions f and give the same value for f and
any affine transformed version f ◦A . Here A (x) = Ax+b
is any affine transformation, where A is a 2× 2 real nonsin-
gular matrix and b ∈ R2.

We define x̃ = x− µ(f) for x = (x1, x2)t ∈ R2, where

µ(f) =
1∫

R2 f(x) dx
(
∫
R2

x1f(x) dx,

∫
R2

x2f(x) dx)t

is the image centroid. The central moments mpq(f) are
given by

mpq(f) =
∫
R2

x̃p
1x̃

q
2f(x) dx.

We also define the cross product C(x, y) for x, y ∈ R2 by

C(x, y) = x1y2 − x2y1.



Affine moment invariants are functionals of the form

If =
1

‖f‖w+N
L1

∫
R2N

∏
1≤k<l≤N

C(x̃k, x̃l)nkl

N∏
i=1

f(xi) dxi

where N ≥ 2 and nkl ≥ 0 are integers, w =
∑

k,l nkl,
and there are N integrals over R2. This is affine invariant
because the cross products involve the shifted variables x̃,
and because C(Ax, Ay) = det(A)C(x, y) for a nonsingu-
lar matrix A. If w is odd one needs to take the absolute value
of If , but in this article w will always be even. Expanding
the expressions C(x̃k, x̃l)nkl shows that If is a polynomial
of the central moments mpq(f). The simplest example is
obtained when N = 2 and n12 = 2, so that If becomes

If =
2

‖f‖4
L1

(m20m02 − m2
11).

3 The new approach

Let G(f, x) be a function, defined for admissible image
functions f and points x in R2, which satisfies the condition

G(f ◦ A , x) = G(f, A (x)) (1)

for any affine transformation A . Given such a function G,
the new invariants are defined as follows.

Definition. If f is an image function, define

If =
1

‖f‖w+N
L1

∫
R2N

∏
1≤k<l≤N

C(x̃k, x̃l)nkl

N∏
i=1

G(f, xi) dxi

where N ≥ 2 and nkl ≥ 0 are integers, and w =
∑

k,l nkl.
If N = 1 the invariant is

If =
1

‖f‖L1

∫
R2

G(f, x) dx.

Using the same argument as with affine invariant mo-
ments, we see that the new expression is affine invariant:
I(f ◦A ) = If for any affine transformation A (again if w
is odd then |If | is invariant). Also, we define generalized
central moments by

mpq(G, f) =
∫
R2

x̃p
1x̃

q
2G(f, x) dx.

It follows by expanding the expressions C(x̃k, x̃l)nkl that
If is a polynomial of the generalized central moments. This
is very useful for the implementation of the new invariants,
since one may compute several invariants from a finite set of
generalized central moments. This also makes it possible to
obtain invariants by replacing the central moments in AMIs
by the generalized central moments, so one can use the well

developed theory for the AMIs as described in [10]. In fact,
we will use the following five invariants corresponding to
the ones in [10], where p, q ∈ {0, 1, 2, 3}. The mpq will
now be the generalized central moment mpq(G, f).

I0 = m00/‖f‖L1,

I1 = (m20m02 − m2
11)/‖f‖4

L1,

I2 = (−m2
30m

2
03 + 6m30m21m12m03 − 4m30m

3
12

−4m3
21m03 + 3m2

21m
2
12)/‖f‖10

L1,

I3 = (m20m21m03 − m20m
2
12 − m11m30m03

+m11m21m12 + m02m30m12 − m02m
2
21)/‖f‖7

L1,

I4 = (−m3
20m

2
03 + 6m2

20m11m12m03 − 3m2
20m02m

2
12

−6m20m
2
11m21m03 − 6m20m

2
11m

2
12

+12m20m11m02m21m12 − 3m20m
2
02m

2
21

+2m3
11m30m03 + 6m3

11m21m12 − 6m2
11m02m30m12

−6m2
11m02m

2
21 + 6m11m

2
02m30m21 − m3

02m
2
30)/‖f‖11

L1.

Next we discuss possible choices for the function G. The
easiest choice is G(f, x) = f(x), which leads to the stan-
dard AMIs.

Based on the multiscale approach and the results in [8],
another promising choice is G = Mαβ given by

Mαβ(f, x) =
1

‖f‖2
L1

f(x)(fα ∗ fβ ∗ fγ)(x)

where α, β ∈ R, γ = 1 − α − β, and fa(x) = a−2f(x/a)
for a �= 0 (and fa(x) = ‖f‖L1δ(x) if a = 0). This is
related to the MSA transform considered in [8], where it
is also shown that Mαβ satisfies (1). The generalized mo-
ments are given by

mpq(Mαβ, f) =
1

‖f‖2
L1

∫
R2

x̃p
1x̃

q
2f(x)(fα∗fβ∗fγ)(x) dx.

This triple integral is computationally expensive to evalu-
ate directly, but as in the case of MSA it is essential that
we may write the convolution in terms of the Fourier trans-
form f̂(ξ) =

∫
R2 e−2πix·ξf(x) dx. Writing hpq(x) =

x̃p
1x̃

q
2f(x), the generalized moment will take the form

mpq(Mαβ, f) =
1

‖f‖2
L1

∫
R2

ĥpq(−ξ)f̂(αξ)f̂ (βξ)f̂ (γξ) dξ.

The simplest invariant is

I0 =
m00

‖f‖L1
=

1
‖f‖3

L1

∫
R2

f̂(−ξ)f̂(αξ)f̂ (βξ)f̂ (γξ) dξ

which is exactly the MSA transform.



(a) (b)

Figure 1. (a) Samples of fish images. From left to right: original images, affine and Gaussian noise
distorted images (std 10 % of maximum intensity), and affine distorted and occluded images (occlu-
sion size 5 % of image side). (b) Samples of Coil-100 images at angle 0, 10, and 20 degrees.

The third choice corresponds to the spatial multiscale
affine invariants (SMA) introduced in [9]. Here G = Sαβ

is defined for α, β ∈ R by

Sαβ(f, x) = f(x)f(αx̃ + µ(f))f(βx̃ + µ(f)).

It is easily seen that Sαβ satisfies (1). The generalized cen-
tral moments become

mpq(Sαβ , f) =
∫
R2

x̃p
1x̃

q
2f(x)f(αx̃ + µ(f))f(βx̃ + µ(f)) dx

=
∫
R2

xp
1x

q
2f(x + µ(f))f(αx + µ(f))f(βx + µ(f)).

Again, I0 = m00/‖f‖L1 is just the SMA transform of f .

4 Experiments

Here we evaluate the proposed method in object classi-
fication tasks, comparing it to the traditional AMI, MSA,
and SMA. Our goal is to show that the new features offer a
good basis for affine invariant classification and that the new
approach provides better performance than AMI, MSA, or
SMA. We begin with implementational issues.

To evaluate the proposed features we need to construct
the affine invariant polynomials and compute the moments
mpq(Mαβ , f) and mpq(Sαβ , f) from the function f . The
affine invariant polynomials are exactly the same as in the
case of AMI, and in these experiments we have used the
five polynomials I0, I1, I2, I3, I4. Also the implementation
of mpq(Mαβ , f) and mpq(Sαβ , f) can be done directly fol-
lowing the same principles as in MSA [8] and SMA [9].
The implementation that we used can be retrieved from the
URL: http://www.ee.oulu.fi/research/imag/msa/.

For the AMI we computed the features using 4 and 40
first invariant moment polynomials from [10] (in the case of
AMIs I0 does not carry any information and we do not use
it). We will refer to these methods as AMI4 and AMI40,
respectively. For the SMA we used the 36 (α, β) values
given in [9] and for the MSA we took 37 (α, β) pairs from
triangle {(1/3, 1/3), (1, 0), (1, 1)} using uniform sampling.

We note that the chosen triangle is an equivalent to the one
given in [8]. For the new invariants based on mpq(Sαβ , f)
we used the same (α, β) pairs as in SMA case and similarly
for the mpq(Mαβ, f) based invariants we used those given
for MSA. This choice was done to see whether the new in-
variants really bring additional information compared to the
original methods. We denote the new invariants as SMA
moment and MSA moment, respectively.

As the first experiment we classified gray-scale images
of 94 different fish. We used these original 94 images
to train a nearest neighbor classifier for each method and
then classified distorted versions of the same images. The
distortions were obtained by first making a random affine
transformation and then adding one of the following non-
affine distortions: Gaussian noise, occlusion, and illumi-
nation distortion. In addition we also classified projective
transformed versions of the images. The distortions and
projective transformation were implemented as in [9], ex-
cept that with Gaussian noise the resulting values were not
limited between the minimum and maximum intensities of
the original image. Some samples of the original images
and the distorted versions are shown in Figure 1(a). The
classification error rates with different distortions and dis-
tortion strengths are illustrated in Figure 2. These clearly
demonstrate that the multiscale moment invariants offer dis-
criminative information for reliable classification.

In addition to the experiment with fish images we as-
sessed the methods in a recognition problem involving real
3D objects. For this purpose we took the Coil-100 image
database of Columbia University as a test set. Coil-100 con-
tains 100 different objects each viewed from 72 different
angles, i.e. every 5 degrees. For the details of the database
arrangements see the URL: http://www.cs.columbia.edu. In
this classification task we trained again the nearest neigh-
bor classifier using now the images taken at angle 0 and
also four random affine transformed versions of them. The
training set was made a bit larger in order to have some in-
sight about the absolute performance. With more samples
we were also able to use PCA decorrelation for the features.
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Figure 2. Classification error rates for (a) Gaussian noise, (b) occlusion, (c) illumination distortion,
and (d) projective transformation.

From the resulting decorrelated features we took 30 most
significant dimensions for MSA and MSA moments, 25 di-
mensions for SMA, SMA moments. The test set was taken
to include all the objects at angles from −25◦ to +25◦.
Samples of these images are given in Figure 1(b). Table
1 shows the error rates with different viewing angles. It can
be observed that the new approach provides reliable results
also with real view angle changes, clearly outperforming
corresponding MSA, SMA, and AMI invariants.

5 Conclusions

In this paper we have proposed a new framework for con-
structing affine invariant features from images. The method
combines multiscale representations with standard affine
moment invariants, and as specific instances of this we con-
structed new invariants based on the MSA and SMA trans-
forms. We assessed the invariants in object classification
tasks and compared them to other similar methods. The re-
sults clearly indicate that the new techniques offer discrim-
inating information also under strong nonaffine distortions
and in the case of real three dimensional objects. In addition
to the invariants considered in this paper, we expect that the
presented framework can be used for finding also other new
affine invariant constructions.

Table 1. Error rates for the Coil-100 classifi-
cation with different view angles.

MSA SMA
Angle mom. MSA mom. SMA AMI4 AMI40
−25◦ 8 % 16 % 24 % 28 % 54 % 39 %
−20◦ 4 % 8 % 11 % 13 % 53 % 28 %
−15◦ 1 % 3 % 8 % 8 % 45 % 16 %
−10◦ 0 % 0 % 3 % 4 % 28 % 9 %
−5◦ 0 % 0 % 0 % 0 % 17 % 2 %
5◦ 0 % 0 % 0 % 0 % 20 % 3 %
10◦ 0 % 1 % 3 % 4 % 47 % 9 %
15◦ 3 % 5 % 8 % 10 % 55 % 16 %
20◦ 8 % 8 % 20 % 18 % 64 % 24 %
25◦ 12% 17 % 32 % 34 % 68 % 30 %
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