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Abstract

This paper presents two new algorithms for computing a planar homography
from conic correspondences. Firstly, we propose a linear algorithm for com-
puting the homography when there are three or more conic correspondences.
In this case, we get an overdetermined set of linear equations and the solu-
tion that minimizes the algebraic distance is obtained by the singular value
decomposition. Secondly, we propose another algorithm for determining the
homography from only two conic correspondences. Unlike the previous al-
gorithms our approach uses only linear algebra and does not require solving
high-degree polynomial equations. Hence, the proposed formulation leads
to an algorithm that is efficient and easy to implement. In addition, our ap-
proach incorporates the computation of the two projective invariants for a
pair of conics. These invariants provide a condition for the existence of a
homography between the pairs of conics. We evaluate the characteristics and
robustness of the proposed algorithms in experiments with synthetic and real
data.

1 Introduction
It is well known that under perspective imaging a plane is mapped to the image by a
planar projective transformation. This transformation is called a homography and it is
used in many areas of computer vision [3]. Most often the homography between two
planes is determined from point correspondences. In this case, at least four correspon-
dences are required and there are several algorithms that have been thoroughly studied
[3]. However, in this paper, we study the problem of determining the homography from
conic correspondences which is a less explored problem.

In computer vision, conics are widely accepted as one of the most fundamental im-
age features together with points and lines [8]. Like points and lines, conics are invariant
under planar projective transformations. This means that a perspective image of a plane
conic is still a conic. The motivation for studying the geometry of conics arises from the
fact that sometimes point or line correspondences are not available or could be noisy while
higher order curves, such as conics, can still be identified robustly. In addition, many com-
mon man-made objects contain conics as characteristic features. Though there are fewer
articles dealing with conics than those dealing with points and lines, several procedures



have been proposed for pose estimation, structure recovery and camera calibration that
are based on conics, for instance [2, 8, 5, 9, 12].

In [2], the projective invariants for pairs of conics were applied in object recognition
and an algorithm was developed to determine the relative pose of a scene plane from two
conic correspondences. This problem is equivalent to determining the homography be-
tween the scene plane and image plane for a calibrated camera but the solution presented
in [2] requires quartics that cannot be solved in closed form. Algorithms for projective
and metric reconstruction of plane conics from two views were presented in [8] assuming
known camera projection matrices. The estimation of epipolar geometry from conic cor-
respondences was discussed in [5] and [6]. In [9], it was shown that, given the epipolar
geometry, the homography induced by the plane of a conic can be determined by observ-
ing the conic in both views (one correspondence). In camera calibration, the procedure
proposed in [12] uses conic correspondences to determine the homography between the
calibration plane and its image. However, this approach requires concentric conics.

The closest works to that which we report here are [11] and [7]. In [11] a linear
algorithm was proposed for solving the homography from conic correspondences. The
algorithm is based on considering conics as points in the projective space P

5 and the
homography is determined from the corresponding conic-based transformation which is
a linear mapping from P

5 to P
5. This approach requires at least seven correspondences

while the linear algorithm presented in this paper requires only three. At the minimum
only two conic correspondences are enough for solving the homography as described in
[7]. However, the algorithm in [7] has several steps and requires solutions of polynomial
equations while we present a direct algorithm using linear algebra.

This paper is organized as follows. In Section 2 we describe the mathematical back-
ground. The proposed algorithms, both for the minimal and general case, are described
in Section 3. The experiments are reported in Section 4.

2 Properties of Conics
A conic is a second-degree curve in the plane. In homogeneous coordinates, a general
conic section can be expressed as

x>Cx = 0, (1)

where C is a real symmetric 3× 3 matrix containing the conic coefficients [10]. If C
is indefinite and has full rank the conic is an ellipse, hyperbola or parabola. The conic
is called degenerate if C has rank 1 or 2. The degenerate conics include a single point
(rank 2), two lines (rank 2) and a repeated line (rank 1) [3]. Under the point homography
x′ = Hx a conic C transforms to C′ = H−>CH−1 [3]. All full rank indefinite conics are
projectively equivalent to a circle, i.e., every such conic can be transformed to a circle
with a homography [3].

Assume that we have a pair of corresponding conics, C and C′, between two planes.
The homography H between the planes is unknown. The conics satisfy

C′ ∼ H−>CH−1, (2)

where ∼ denotes equality up to scale. Since there are 8 degrees of freedom in H (homo-
geneous 3× 3 matrix) and equation (2) provides only 5 constraints (symmetric matrices



equal up to scale) it is not possible to solve the homography from one pair of correspond-
ing conics. This is also clear from the above discussion since all indefinite full rank conics
are projectively equivalent. However, in general, if we have two conic correspondences,
C1 ↔ C′

1 and C2 ↔ C′
2, we get 10 constraints from which we may solve H.

3 Algorithms
3.1 General Case
Assume that we have identified the conic correspondences Ci ↔ C′

i, i = 1, . . . ,n, between
two planes which are related by a homography represented with a non-singular 3 × 3
matrix H. Further, assume that the conics are non-degenerate so that detCi 6= 0, detC′

i 6= 0.
The transformation rule (2) gives

s1C1 = H>C′
1H

...
... (3)

snCn = H>C′
nH,

where we have explicitly written out the scale factors si so that we get a set of inhomoge-
neous equations. This implies that s3

i detCi = detC′
i (detH)2 for all i. Since the matrix H

is defined only up to scale we may fix (detH)2 = 1 which gives

si =

(

detC′
i

detCi

)1/3
. (4)

Hence, without any loss of generality, we may normalize the conics Ci so that detCi =
detC′

i and it is enough to consider the inhomogeneous equations Ci = H>C′
iH, i = 1, . . . ,n.

Consider any two of these equations

Ci = H>C′
iH (5)

C j = H>C′
jH (6)

from which we get
C−1

i C j = H−1C′−1
i C′

jH. (7)

This shows the “only if” part of the following result, and the “if” part will be shown in
the following section.

Lemma 1 There is a projective transformation which maps the non-degenerate plane
conics C1 and C2 to C′

1 and C′
2, respectively, if and only if there exists δ ∈ R so that

δC−1
1 C2 and C′−1

1 C′
2 are similar matrices.

We proceed by writing (7) in the form

C′−1
i C′

jH−HC−1
i C j = 0 (8)

which is a set of linear equations in the elements of H, i.e.

Mi jh = 0, (9)



where h is a 9×1 vector containing the elements of H and Mi j is a 9×9 matrix determined
by the conics. Thus, the solution h belongs to the null space of Mi j. However, in general,
the dimension of the null space of Mi j is greater than 1. This is because (7) does not
determine H uniquely. Nevertheless, if n ≥ 3 we may choose other two equations to
get another set of linear constraints. By considering all ordered pairs, we have in total
n(n− 1) pairs of equations and by stacking the matrices Mi j we get an overdetermined
set of 9n(n−1) equations

Mh = 0 (10)

so that the null space is usually one dimensional. We found that, in general, already three
conic correspondences allow to solve h from (10). In practice, M may have full rank due
to measurement errors in the conic coefficients but in this case the solution minimizing
||Mh|| with ||h|| = 1 is obtained as the singular vector corresponding to the smallest
singular value of M [3]. We get the solution h up to scale and, if desired, we may scale
the elements so that detH = 1. Thus, we have a linear algorithm for solving H from n
conic correspondences when n ≥ 3.

3.2 Minimal Case: Two Correspondences
Given two conic correspondences, the transformation rule (2) gives a pair of quadratic
matrix equations for H, as discussed above. The solvability of these equations was ad-
dressed in Lemma 1. In fact, it is well known that for a pair of plane conics C1,C2 the
eigenvalues of C−1

1 C2 are projectively invariant up to scale [2]. Thus, these invariants
provide a necessary and sufficient condition for the existence of a solution. However,
since the solution is not unique, i.e. not unique even up to scale, the linear algorithm of
the previous section may not provide a good solution. Hence, we propose here another
algorithm.

We may proceed as in the previous section and fix (detH)2 = 1 and detCi = detC′
i for

i = 1,2, so that we obtain the inhomogeneous equations

C1 = H>C′
1H, (11)

C2 = H>C′
2H. (12)

Next, we will use the following factorization for symmetric matrices.

Lemma 2 If C is a real symmetric matrix then C = FF> for some matrix F which may
be complex. If C is invertible and C = FF> = F1F>

1 , then F1 = FR where R is a complex
orthogonal matrix, R>R = I.

Proof: In the appendix. �

We use this factorization and write (11) as

F1F>
1 = H>F′

1F′>
1 H, (13)

which gives F1 = H>F′
1R where R>R = I. Thus H = F′−>

1 RF>
1 , and substituting this to

(12) gives a pair of equations which is equivalent to the original one:

R>R = I, (14)
R>AR = B, (15)



where A = F′−1
1 C′

2F′−>
1 and B = F−1

1 C2F−>
1 are complex symmetric matrices. Now, if

(14), (15) has a solution then A is similar to B. Conversely, if A is similar to B then by
[4, Section 4.4] the matrices are similar via a complex orthogonal matrix, which shows
that (14), (15) has a solution. By noticing that A is similar to C′−1

1 C′
2 and B is similar to

C−1
1 C2, we see that (11), (12) has a solution if C−1

1 C2 is similar to C′−1
1 C′

2. This shows
the ”if” part of Lemma 1.

It remains to find an R which satisfies (14), (15). If A (or B) has a multiple eigenvalue
then there may be infinitely many solutions (these solutions can be characterized using
Lemma 3 in the appendix if A is diagonalizable). For example, if C1 and C2 are two
concentric circles their projection does not determine the homography since the circles
are invariant to rotations around their centre. We are mainly interested in cases where
there are only finitely many solutions, and thus in the following we assume that A and B
have distinct eigenvalues.

When A and B have distinct eigenvalues they are diagonalizable and, in particular,
complex orthogonally diagonalizable [4]. By computing their eigenvalues and eigenvec-
tors we get factorizations A = QDQ> and B = UDU>, where Q and U are complex
orthogonal and D is diagonal (since A and B are similar we may arrange the diagonal
factors to be the same). Then (15) implies

R>QDQ>R = UDU> (16)

and Lemma 3 in the appendix gives R>Q = UP where P = diag(±1,±1,±1). Thus
R = QPU> and

H = F′−>
1 QPU>F>

1 (17)

is a solution to (11),(12). Moreover, any solution is of this form. Notice that H in (17)
satisfies (detH)2 = 1 since detC1 = detC′

1. However, since H may be multiplied with ±1
without changing the actual homography it is enough to consider only four of the above
eight choices for P. Hence, in general, the original homogeneous equations have four
solutions of which some may be complex. If we have a nonreal solution then its complex
conjugate is also a solution, which implies that there are 0, 2 or 4 nonreal solutions.

Above we have constructed an algorithm for solving a homography from two conic
correspondences. There exists a four-fold ambiguity of solutions. The geometrically
correct homography can be chosen if, for example, a point correspondence is known.
The proposed algorithm involves only linear algebra: the factorization of Lemma 2 and
the factorization of A and B require the eigenvalues and eigenvectors of 3×3 symmetric
matrices and nothing else.

3.3 Implementation
We summarize the proposed algorithms in the following.

Algorithm 1: homography from n conic correspondences

(i) Given the conic correspondences normalize all the coefficient matrices to have
unit Frobenius norm. Denote the obtained matrices by Ci, C′

i, i = 1, . . . ,n.
Then, for all i, replace Ci with siCi where si is given in (4).

(ii) For each ordered pair {i, j}, i, j = 1, . . . ,n, compute C−1
i C j and C′−1

i C′
j and

use these to form the matrices Mi j (see (8) and (9)).



(iii) Stack all the matrices Mi j to a 9n(n−1)×9 matrix M and compute its singular
value decomposition M = USV> so that the singular values are in descending
order on the diagonal of S. Set h to be the last column of V.

(iv) The vector h contains the elements of the homography matrix H (if the con-
figuration of conics is such that they determine the homography uniquely).

Algorithm 2: homography from 2 conic correspondences

(i) Given the conic correspondences normalize all the coefficient matrices to have
unit Frobenius norm. Denote the obtained matrices by Ci, C′

i, i = 1,2. Then,
for all i, replace Ci with siCi where si is given in (4).

(ii) Compute the eigendecompositions C1 = V1D1V>
1 and C′

1 = V′
1D′

1V′>
1 and set

F1 = V1D1/2
1 and F′

1 = V′
1D′1/2

1 .
(iii) Compute A = F′−1

1 C′
2F′−>

1 and B = F−1
1 C2F−>

1 and their eigendecomposi-
tions A = QDAQ> and B = UDBU> where DA = diag(a1,a2,a3) and DB =
diag(b1,b2,b3).

(iv) Go through all six possible permutations of the eigenvalues bk and compute
distances ∑k |ak − bk|2. Choose the ordering that gives the smallest distance
and permute the eigenvectors correspondingly to get a new U (due to mea-
surement errors A and B may not be exactly similar).

(v) Set P1 =diag(1,1,1), P2 =diag(−1,1,1), P3 =diag(1,−1,1) and finally P4 =
diag(1,1,−1). The four solutions are Hk = F′−>

1 QPkU>F>
1 , k = {1,2,3,4}.

In general, one of these solutions should be the geometrically correct one.

In the next section we will show that these algorithms are practical also when there is
no exact solution to (3) due to noise and measurement errors in conic coefficients. Related
to this we would like to point out an implementational issue. We experimentally found
that the selection of coordinate origin and scale has an effect to the solution produced by
Algorithm 1 when the conics are obtained by fitting them to noisy points. Hence, we used
a similar normalization scheme as in [3, p. 109] for solving a homography from point
correspondences. That is: (i) all the points in both images are normalized such that their
centroid is the origin and their average distance from the origin is

√
2, (ii) conics are fitted

to the normalized points, (iii) homography is solved with Algorithm 1, (iv) the obtained
homography is denormalized (see [3] for details).

4 Experiments
4.1 A Simple Example
First, we illustrate the solutions obtained by the Algorithm 2 with exact data. We con-
structed two conic coefficient matrices, C1 and C2, so that the first conic is the unit circle
and the second is the parabola y = x2. Then we applied a rotation of angle π/2 about the
origin to get C′

1 and C′
2, see Fig. 1. Applying the Algorithm 2 provides four solutions of

which two are complex. We discarded the complex solutions and transformed the four
corner points of a square using the real solutions. From Fig. 1 we can observe that in this
case both real solutions are geometrically meaningful due to symmetry, the other is a pure
rotation and the other is a rotation combined with a reflection.
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Figure 1: (a) two conics and a square, (b) the rotated conics, (c) the square transformed with the
first real solution (rotation), and (d) with the other real solution (rotation and reflection)
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Figure 2: Two patterns of four ellipses. The ground truth ellipses are in black and the fitted ellipses
in blue. Each ellipse was fitted to 50 points perturbed with Gaussian noise. Here the standard
deviation of noise is approximately 2 % of data spread in both images. The ellipses from the first
image were transformed to the second using the estimated homography, the result is in red.

4.2 Synthetic Data with Noise
Next we experimented our algorithms with synthetic data in order to evaluate their sensi-
tivity to noise. In Fig. 2(a) there are two planar patterns consisting of four ellipses. The
ground truth homography between the patterns was constructed so that the second pattern
would be a result of imaging the first pattern with a typical perspective camera. Notice
the different scales between the images. The original ellipses in the first pattern and their
exact images in the second pattern are plotted in black. We sampled 50 points uniformly
from each ellipse and added Gaussian noise to these points with varying standard devia-
tion. The standard deviation of the noise was proportional to the spread of the data points
and varied between 0 and 2 % of data spread. The measured conic coefficients were ob-
tained by fitting ellipses to the noisy points using the method [1]. The fitted ellipses are
plotted in blue.

We estimated the homography at different levels of noise using two (A and B), three
(A, B and C) or four ellipse correspondences. At each noise level we did 1000 trials
involving ellipse fitting and homography estimation. The estimated homography was
compared to the ground truth by mapping the four points (1,1), (1,−1), (−1,−1), and
(−1,1) from the first image to the second image with both homographies and then com-
puting the root-mean-squared (RMS) distance of the corresponding points in the second
image. In Fig. 3 we have plotted the average values of the logarithm of this RMS distance
among the 1000 trials for six different homography estimates. Among the six estimates
we have also the estimate from four point correspondences, computed using the normal-
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Figure 3: The average estimation error among 1000 trials at each noise level. Notice the logarithmic
scale. The experimental set-up is illustrated in Fig. 2.

ized DLT method [3, p. 109]. Here we used the centres of ellipses A, B, C and D together
with their projections in the second image as the four point correspondences. These points
were perturbed with the same Gaussian noise as the points on the ellipses.

It can be seen from Fig. 3 that the conic based methods are here more robust than
the point based method. This is expected since there are only four point correspondences
while there are 50 points per ellipse. It can also be seen that the robustness to noise in-
creases while the number of conic correspondences increases. Further, the normalization
of image coordinates that was discussed in Section 3.3 improves the results when used
together with Algorithm 1. This is analogous to the point based method [3]. However,
we found that the normalization of image coordinates had no effect on the result of Al-
gorithm 2 in this experiment. In addition, we experimented whether it is really useful to
consider all ordered pairs of conics in the step (ii) of Algorithm 1 or would it be sufficient
to take each pair only once. Our observation was that using all ordered pairs gives better
robustness to noise.

4.3 Real Data
We did experiments also with real images. In Fig. 4 we have two views of a plane con-
taining white circles on black background. The ellipses, i.e. imaged circles, were detected
by first thresholding the images and then fitting ellipses to the boundary points of the bi-
nary blobs using [1]. The detected ellipses are shown in cyan. The homography between
the views was estimated using 2 and 36 ellipse correspondences. The results are shown
in Figs. 4(b) and 4(c), respectively. It can be seen that when only two ellipse corre-
spondences are used (those in the right hand side corners of the second image) there is
a notable registration error. However, we found that if we would use the two ellipses in
the lower left and upper right corners the registration result would be visually the same as
when using all the ellipses. This indicates that two ellipse correspondences are sufficient
to recover the homography with a reasonable accuracy also in practice.



(a) (b) (c)

Figure 4: (a) Image of a plane containing white circles. The detected ellipses are in cyan. (b)
Another view. The homography was estimated using the two ellipses in the right upper and lower
corners. The ellipses transformed from the first view are in yellow. (c) The homography estimated
using all the ellipses.

5 Conclusions
We have proposed two new algorithms for computing a planar homography from conic
correspondences. The first algorithm can be used when there are at least three conic
correspondences and, in general, it provides a unique solution up to scale. The second
algorithm is for the minimal case of two conic correspondences and, in general, it provides
a solution up to a four-fold ambiguity. Both algorithms require only linear algebra and
they are easy to implement as described in Section 3.3. In the experiments we showed
that the proposed algorithms provide a reasonable estimate of the homography also when
no exact solution exists due to measurement errors in the conic coefficients.
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A Appendix
Proof of Lemma 2: The spectral theorem says that C = VDV> where V is real orthogonal
and D is real diagonal. Hence, taking F = VD1/2 gives C = FF>. Note that D1/2 will be
complex if D contains negative diagonal elements. If C is invertible and C = FF> = F1F>

1
then (detF)2 = (detF1)

2 6= 0 so F and F1 are invertible. We get F1 = FR for R = F−1F1,
and

RR> = F−1(F1F>
1 )F−> = F−1(FF>)F−> = I

�

Lemma 3 Let A be a diagonalizable complex symmetric 3× 3 matrix. Then there exist
complex matrices Q and D, with Q>Q = I and D diagonal, such that A = QDQ>. Fur-
ther, if D = diag(λ1,λ2,λ3) and if A = Q1DQ>

1 is another factorization with Q>
1 Q1 = I,

then Q1 = QP where P has the following form.

1. If λ1,λ2,λ3 are distinct then P = diag(±1,±1,±1).

2. If λ1 = λ2 6= λ3 then P =
(U 0

0 ±1
)

where U is a complex 2×2 matrix with U>U = I.



3. If λ1 = λ2 = λ3 then A is diagonal and P can be any complex orthogonal matrix.

Proof: The existence of a factorization A = QDQ> follows from the fact that A is
diagonalizable and [4, Section 4.4]. Let A = Q1DQ>

1 be another such factorization, and
write q j and q̃ j for the columns of Q and Q1, respectively. If all λ j are distinct, then each
eigenspace is one dimensional and orthogonality implies q̃ j =±q j. If λ1 = λ2 6= λ3, then
the first eigenspace is two dimensional and

(q̃1 q̃2 q̃3) = (q1 q2 q3)

(

U 0
0 ±1

)

for some complex 2× 2 matrix U. Orthogonality implies U>U = I. The case where all
eigenvalues are equal is obvious. �
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