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Abstract. We consider the geodesic X-ray transform acting on solenoidal tensor
fields on a compact simply connected manifold with strictly convex boundary and

non-positive curvature. We establish a stability estimate of the form L2 7→ H
1/2
T ,

where the H
1/2
T -space is defined using the natural parametrization of geodesics as

initial boundary points and incoming directions (fan-beam geometry); only tangen-
tial derivatives at the boundary are used. The proof is based on the Pestov identity
with boundary term localized in frequency.

1. Introduction

To motivate our results, let us begin with the simplest case of the Radon transform
in R2 in parallel beam geometry (see [Na01] for more details).

Example. If f ∈ C∞c (R2), the Radon transform of f is

Rf(s, v) =

∫ ∞
−∞

f(sv + tv⊥) dt, s ∈ R, v ∈ S1,

where v⊥ is the rotation of v by 90◦ counterclockwise. The Fourier transform of Rf
in the s variable, denoted by (Rf )̃ ( · , v), satisfies the Fourier slice theorem

(Rf )̃ (σ, v) = (2π)1/2f̂(σv), σ ∈ R, v ∈ S1.

Using the Plancherel theorem and polar coordinates, we obtain that

‖f‖2L2(R2) = ‖f̂‖2L2(R2) =

∫ ∞
0

∫
S1

|f̂(σv)|2σ dv dσ

=
1

2

∫ ∞
−∞

∫
S1

|f̂(σv)|2|σ| dv dσ

=
1

4π

∫ ∞
−∞

∫
S1

|(Rf )̃ (σ, v)|2|σ| dv dσ.

In particular, this implies the stability estimate

(1.1) ‖f‖L2(R2) ≤
1

(4π)1/2
‖Rf‖

H
1/2
T (R×S1)

with the mixed Sobolev norm ‖h‖
H

1/2
T (R×S1)

= ‖(1 + σ2)1/4h̃(σ, v)‖L2(R×S1).

1
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The main question we address in the present paper is the existence of a stability
estimate analogous to (1.1) but in a geometric setting, namely, when R2 and the lines
in the plane are replaced by a Riemannian manifold and its geodesics. There are two
features we wish to preserve from (1.1): one is its L2 → H1/2 nature and the other

is that the H
1/2
T only incorporates “half of the derivatives” of the target space (space

of geodesics).
Let us first be more precise about the geometric setting. The geodesic X-ray trans-

form acts on functions defined on the unit sphere bundle of a compact oriented d-
dimensional Riemannian manifold (M, g) with smooth boundary ∂M (d ≥ 2). Let
SM denote the unit sphere bundle on M , i.e.

SM := {(x, v) ∈ TM : |v|g = 1}.
We define the volume form on SM by dΣ2d−1(x, v) = dV d(x) ∧ dSx(v), where dV d is
the volume form on M and dSx is the volume form on the fibre SxM . The boundary
of SM is ∂SM := {(x, v) ∈ SM : x ∈ ∂M}. On ∂SM the natural volume form
is dΣ2d−2(x, v) = dV d−1(x) ∧ dSx(v), where dV d−1 is the volume form on ∂M . We
distinguish two subsets of ∂SM (incoming and outgoing directions)

∂±SM := {(x, v) ∈ ∂SM : ±〈v, ν(x)〉g ≤ 0},
where ν(x) is the outward unit normal vector on ∂M at x. It is easy to see that

∂+SM ∩ ∂−SM = S(∂M).

Given (x, v) ∈ SM , we denote by γx,v the unique geodesic with γx,v(0) = x and
γ̇x,v(0) = v and let τ(x, v) be the first time when the geodesic γx,v exits M .

We say that (M, g) is non-trapping if τ(x, v) <∞ for all (x, v) ∈ SM . In this case
the space of geodesics is naturally parametrized by ∂+SM (fan-beam geometry).

Definition 1.1. The geodesic X-ray transform of a function F ∈ C∞(SM) is the
function

IF (x, v) :=

τ(x,v)∫
0

F (γx,v(t), γ̇x,v(t)) dt, (x, v) ∈ ∂+SM.

If the manifold (M, g) is non-trapping and has strictly convex boundary, then
I : C∞(SM) → C∞(∂+SM), and extends as a bounded operator I : Hk(SM) →
Hk(∂+SM) for all k ≥ 0 [Sh94, Theorem 4.2.1], where the Sobolev spaces are defined
using the L2-inner products arising from the volume forms introduced above.

We shall consider I acting on special functions F ∈ C∞(SM) induced by symmetric
tensor fields. We denote by C∞(Sm(T ∗M)) the space of smooth covariant symmetric
tensor fields of rank m on M with L2 inner product:

(u,w) :=

∫
M

ui1···imw
i1···im dV d,

where wi1···im = gi1j1 · · · gimjmwj1···jm . There is a natural map

`m : C∞(Sm(T ∗M))→ C∞(SM)
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given by `m(f)(x, v) := fx(v, . . . , v). We can now define the geodesic ray transform
acting on symmetric m-tensors simply by setting Im := I ◦ `m. Let ds = σ∇ be
the symmetric inner differentiation, where ∇ is the Levi-Civita connection associated
with g, and σ denotes symmetrization. It is easy to check that if f = dsp for some
p ∈ C∞(Sm−1(T ∗M)) with p|∂M = 0, then Imf = 0. The tensor tomography problem
asks the following question: are such tensors the only obstructions for Im to be
injective? If this is the case, then we say Im is solenoidal injective or s-injective
for short. This terminology is explained by the following well known decomposition
(cf. [Sh94]). Given f ∈ Hk(Sm(T ∗M)), k ≥ 0, there exist uniquely determined
fs ∈ Hk(Sm(T ∗M)) and p ∈ Hk+1(Sm−1(T ∗M)), such that

f = fs + dsp, δsfs = 0, p|∂M = 0,

where δs is the divergence. We call fs and dsp the solenoidal part and potential part
of f respectively.

There is one important instance in which the tensor tomography problem is solved
for tensors of any order m and in any dimension d. This is when we assume in addition
that the sectional curvature of M is non-positive. Moreover, in this case a stability
estimate is available as follows:

Theorem 1.2. ([PS88] and [Sh94, Theorem 4.3.3]) Let (M, g) be a simply connected
compact manifold with strictly convex boundary and non-positive sectional curvature.
Given m ≥ 0 there is a constant C > 0 such that for any f ∈ H1(Sm(T ∗M))

‖fs‖2L2 ≤ C(‖Imf‖2H1(∂+SM) +m‖f‖H1‖Imf‖L2).

(We note that a manifold as in the theorem is necessarily non-trapping.) There
are two notorious differences between the stability estimate above and that in (1.1).
Firstly, the stability estimate in Theorem 1.2 has in the right hand side the term
‖f‖H1‖Imf‖L2 when m 6= 0. Secondly, it is not sharp in the sense that it is L2 → H1.
In [BS18] Boman and Sharafutdinov resolved these issues for strictly convex domains
in Euclidean space and asked whether the same was true for the more general setting of
non-positively curved Riemannian manifolds. This paper provides a positive answer
to these questions. Moreover, the 1/2-Sobolev space on the target space of Im is
naturally suggested by the geometry and the most relevant L2-energy identity for the
problem: the Pestov identity. The Pestov identity with boundary term in the way
that we shall use it here was derived for instance in [IP18, Lemma 8]. It contains a
boundary term given by

(1.2) (Tu,
v

∇u)L2(∂SM)

where u ∈ C∞(∂SM),
v

∇ is the vertical gradient, and T is a tangential operator
defined by

T = 〈ν(x), v〉
h

∇− νX,

where X is the geodesic vector field and
h

∇ the full horizontal gradient (we refer to
Sections 2 and 3 for the precise definitions). The operator T acts on ∂SM and it only
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involves horizontal derivatives. This suggests that only horizontal derivatives of Imf
on ∂SM should appear in the stability estimate.

We can define the tangential (or horizontal) H1(∂SM)-norm by setting

‖u‖2H1
T (∂SM) := ‖u‖2L2(∂SM) + ‖

h

∇‖u‖2L2(∂SM)

where
h

∇‖u contains the tangential derivatives in
h

∇u along ∂M . For example, if M
is a ball in Rn with Euclidean metric, then ∂SM = ∂M × Sd−1 and

‖u‖2H1
T (∂SM) =

∫
∂M

∫
Sd−1

(|u(x, v)|2 + |∇xu(x, v)|2) dS(v) dS(x)

where ∇x is the gradient on ∂M . The space H1
T (∂+SM) is defined by restric-

tion, and H
1/2
T (∂+SM) is defined by complex interpolation between L2(∂+SM) and

H1
T (∂+SM).
With this definition we may now state our main result:

Theorem 1.3. Let (M, g) be a simply connected compact manifold with strictly convex
boundary and non-positive sectional curvature. Given m ≥ 0 there is a constant C > 0
such that for any f ∈ H1(Sm(T ∗M))

‖fs‖L2 ≤ C‖Imf‖H1/2
T (∂+SM)

.

The constant C can be estimated in terms of m and (M, g). In fact, for the related
stability result for the transport equation in Theorem 5.1, one can take C = 1.

Most of work in the proof of Theorem 1.3 lies in the upgrade from the H1(∂+SM)-

norm in Theorem 1.2 to the H
1/2
T (∂+SM)-norm. The upgrade is possible thanks to

the localization in frequency of the Pestov identity first noted in full generality in
[PS18] (in two dimensions this was proved in [PSU15]). However, in [PS18] we did
not consider the boundary term. It turns out, quite remarkably, that the boundary
term (1.2) also localizes in frequency. This allows us to change the norm for Imf from

H1 to H
1/2
T , thus producing the upgrade. We also mention that for dim (M) = 2 the

proof would simplify substantially because spherical harmonics decompositions and
the T operator are simpler; the two-dimensional proof will be given in [PSU19].

1.1. Related results and alternative approaches. There are many earlier results
on stability estimates for Im, using different techniques. One approach is to consider
the normal operator I∗mIm where the adjoint I∗m is computed using a natural L2

µ-inner
product on ∂+SM suggested by the Santaló formula. When M is free of conjugate
points, it turns out that I∗mIm is an (elliptic) ΨDO of order −1 on a slightly larger
open manifold engulfing M . This approach has produced stability estimates for the
normal operator, cf. [SU04], and has proved to be of fundamental importance in the
solution of several geometric inverse problems. One drawback is that one needs to
work on the slightly extended manifold, unless one is willing to incorporate modified
transmission conditions to account for boundary effects [MNP19]. Another drawback
is that the approach does not give estimates for the constants due to a compactness
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argument. Still, quite recently, a sharp stability estimate has been obtained in [AS19],
by defining a suitable H1/2-norm based on this extension or equivalently on a different
parametrization of the space of geodesics. Our approach in Theorem 1.3 deals directly
with the boundary and with the space of geodesics in “fan-beam” geometry as given
by ∂+SM . In this sense our theorem addresses the open problem stated at the end
of the introduction in [AS19]. Also our tangential derivatives are naturally suggested
by the geometry of the problem.

The microlocal approach can actually be pushed further, using scattering calculus
and a combination of a local theorem with a global strict convexity assumption as in
[UV16, SUV18]. This is also very powerful, and allows even to consider situations with
conjugate points as long as d ≥ 3. However, the stability estimates thus produced
are L2 → H1.

One drawback of Theorem 1.3 is the curvature assumption. In [AS19] the estimates
hold for compact simple manifolds for m = 0, 1 and for m = 2 when Im is known to
be injective, e.g. when d = 2 [Sh07, PSU13]. Another possible improvement would be
to replace the assumption f ∈ H1 by f ∈ L2 and to prove the two-sided inequality

c‖fs‖L2 ≤ ‖Imf‖H1/2
T (∂+SM)

≤ C‖fs‖L2 .

For this, one would like to prove that Im is bounded from L2 to H
1/2
T . This is true if

f vanishes near ∂M since Im is a Fourier integral operator, but it is not clear how to
prove this with uniform bounds when the support of f extends up to ∂M .

Finally, we mention that quite recently, Monard [M19] has studied very detailed
mapping properties of I0 for 2D discs of constant curvature at all Sobolev scales; for
these cases, he also obtains a stability estimate with a suitable H1/2-norm. Further
references to stability estimates for Im may be found in [AS19].

Acknowledgements. GPP was supported by EPSRC grant EP/R001898/1 and the
Leverhulme trust. MS was supported by the Academy of Finland (Finnish Centre
of Excellence in Inverse Modelling and Imaging, grant numbers 312121 and 309963)
and by the European Research Council under Horizon 2020 (ERC CoG 770924).
This material is based upon work supported by the National Science Foundation
under Grant No. 1440140, while the authors were in residence at MSRI in Berkeley,
California, during the semester on Microlocal Analysis in 2019.

2. Geometric preliminaries

In this section we collect some geometric preliminaries for subsequent use.

Unit sphere bundle. We start by recalling some standard notions related to the
geometry of the unit sphere bundle. We follow the setup and notation of [PSU15]; for
other approaches and background information see [GK80, Sh94, Pa99, Kn02, DS11].

Let (M, g) be a d-dimensional compact Riemannian manifold with or without
boundary, having unit sphere bundle π : SM → M , and let X be the geodesic
vector field. We equip SM with the Sasaki metric. If V denotes the vertical subbun-
dle given by V = Ker dπ, then there is an orthogonal splitting with respect to the
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Sasaki metric:

(2.1) TSM = RX ⊕H⊕ V .

The subbundle H is called the horizontal subbundle. Elements in H(x, v) and V(x, v)
are canonically identified with elements in the codimension one subspace {v}⊥ ⊂ TxM
by the isomorphisms

dπx,v : V(x, v)→ {v}⊥, Kx,v : H(x, v)→ {v}⊥,

here Kx,v is the connection map coming from Levi-Civita connection. We will use
these identifications freely below.

We shall denote by Z the set of smooth functions Z : SM → TM such that
Z(x, v) ∈ TxM and 〈Z(x, v), v〉 = 0 for all (x, v) ∈ SM . Alternatively we may
describe the elements of Z is a follows. Consider the pull-back bundle π∗TM over
SM and let N denote the subbundle of π∗TM whose fiber over (x, v) is given by
N(x,v) = {v}⊥. Then Z coincides with the smooth sections of the bundle N . Note
that N carries a natural scalar product and thus an L2-inner product (using the
Liouville measure on SM for integration).

Given a smooth function u ∈ C∞(SM) we can consider its gradient ∇u with
respect to the Sasaki metric. Using the splitting above we may write uniquely in the
decomposition (2.1)

∇u = ((Xu)X,
h

∇u,
v

∇u).

The derivatives
h

∇u ∈ Z and
v

∇u ∈ Z are called horizontal and vertical derivatives
respectively. (This differs from the definitions in [Kn02, Sh94] since here all objects
are defined on SM as opposed to TM .)

The geodesic vector X acts on Z as follows:

(2.2) XZ(x, v) :=
DZ(ϕt(x, v))

dt
|t=0

where D/dt is the covariant derivative with respect to Levi-Civita connection and
ϕt is the geodesic flow. With respect to the L2-product on N , the formal adjoints

of
v

∇ : C∞(SM) → Z and
h

∇ : C∞(SM) → Z are denoted by −
v

div and −
h

div
respectively. Note that since X leaves invariant the volume form of the Sasaki metric
we have X∗ = −X for both actions of X on C∞(SM) and Z.

Let R(x, v) : {v}⊥ → {v}⊥ be the operator determined by the Riemann curvature
tensor by R(x, v)w = R(w, v)v, and let d = dimM .

Spherical harmonics decomposition. There is a natural spherical harmonics

decomposition with respect to the vertical Laplacian ∆ = −
v

div
v

∇ (cf. [PSU15, Section
3] and [GK80]):

L2(SM) =
∞⊕
m=0

Hm(SM),



A SHARP STABILITY ESTIMATE FOR TENSOR TOMOGRAPHY 7

so that any f ∈ L2(SM) has the orthogonal decomposition

f =
∞∑
m=0

fm.

We write Ωm = Hm(SM) ∩ C∞(SM). Then ∆u = m(m + d − 2)u for u ∈ Ωm and
we let λm := m(m+ d− 2).

Decomposition of X. The geodesic vector field has a special behaviour with respect
to the decomposition into fibrewise spherical harmonics: it maps Ωm into Ωm−1⊕Ωm+1

[GK80, Proposition 3.2]. Hence on Ωm we can write

X = X− +X+

where X− : Ωm → Ωm−1 and X+ : Ωm → Ωm+1. By [GK80, Proposition 3.7] the
operator X+ is overdetermined elliptic (i.e. it has injective principal symbol). We
can explain the decomposition X = X− + X+ as follows. Fix x ∈ M and consider
local coordinates which are geodesic at x (so ∂xjgkl(x) = 0 for all j, k, l). Then

Xu(x, v) = vi ∂u
∂xi

. We now use the following basic fact about spherical harmonics:
the product of a spherical harmonic of degree m with a spherical harmonic of degree
one decomposes as the sum of spherical harmonics of degree m− 1 and m+ 1.

3. Pestov identity with boundary term

We recall the following commutator formulas from [PSU15]:

[X,
v

∇] = −
h

∇,

[X,
h

∇] = R
v

∇,
h

div
v

∇−
v

div
h

∇ = (d− 1)X.

(3.1)

Taking adjoints gives the following commutator formulas on Z:

[X,
v

div] = −
h

div,

[X,
h

div] = −
v

divR.

(3.2)

Using these relations one can establish a Pestov identity with boundary term. Let
µ(x, v) := 〈v, ν(x)〉. We let ‖·‖ and (·, ·) denote the L2-norm and L2-inner product
respectively determined by the volume form dΣ2d−1 on SM ; we let (·, ·)∂SM stand for
the L2-inner product on ∂SM determined by dΣ2d−2.

Proposition 3.1 (Pestov identity with boundary term, cf. Lemma 8 in [IP18]). Let
(M, g) be a compact manifold with smooth boundary. If u ∈ C∞(SM), then

‖
v

∇Xu‖2 = ‖X
v

∇u‖2 − (R
v

∇u,
v

∇u) + (d− 1)‖Xu‖2 + P (u, u),

where P is the quadratic form defined by

P (u,w) = (Tu,
v

∇w)∂SM ,
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and Tu := µ
h

∇u−Xu
v

∇µ.

We can express T using the full horizontal derivative
h

∇u =
h

∇u + (Xu)v as T =

µ
h

∇− νX since
v

∇µ = ν−µv. It turns out that T can also be rewritten in such a way
that it acts on functions u ∈ C∞(∂SM). To see this, consider the operators

(3.3) ∇‖u := ∇u− 〈∇u, (ν, 0)〉 (ν, 0)

and

(3.4) X‖ := X − 〈X, (ν, 0)〉 (ν, 0) = (v − 〈v, ν〉 ν, 0) = (v‖, 0)

at the boundary. We also define the horizontal part of ∇‖ as
h

∇‖u := dπ(∇‖u) =
h

∇u− 〈
h

∇u, ν〉ν.
The following simple lemma is proved in [IP18, Lemma 14]:

Lemma 3.2. We have

(3.5) T = µ
h

∇‖ − νX‖.

From this form we can clearly see that T : C∞(∂SM)→ Z|∂SM .

Remark 3.3. In 2D, Tu = (Tu)iv, where T is the tangential horizontal vector field
(iν, 0) and i is the complex structure of the surface. The vector field T and the vertical
vector field V form a commuting frame for ∂SM .

We next rewrite the Pestov identity in terms of X+ and X− as in [PS18]. To do
this, we need some notation: for a polynomially bounded sequence α = (αl)

∞
l=0 of real

numbers, we define a corresponding ”inner product”

(u,w)α =
∞∑
l=0

αl(ul, wl)L2(SM), u, w ∈ C∞(SM).

We also write ‖u‖2α =
∑∞

l=0 αl‖ul‖2. (If each αl is positive one gets an actual inner
product and norm, but it is notationally convenient to allow zero or negative αl.)

The Pestov identity can then be written in the following form. Define

αl = λl

[(
1 +

1

l + d− 2

)2

− 1

]
+ (d− 1),(3.6)

βl = λl

[
1−

(
1− 1

l

)2
]
− (d− 1).(3.7)

The next result extends [PS18, Proposition 4.4] to the case with boundary terms.

Proposition 3.4 (Pestov identity in terms of X± with boundary term). Let (M, g)
be a compact manifold with smooth boundary. If u ∈ C∞(SM), then

‖X−u‖2α − (R
v

∇u,
v

∇u) + ‖Z(u)‖2 + P (u, u) = ‖X+u‖2β,
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where Z(u) is
v

div-free.

Proof. Recall from [PSU15, Lemma 4.4] that

(3.8)
h

∇u =
v

∇

[
∞∑
l=1

(
1

l
X+ul−1 −

1

l + d− 2
X−ul+1

)]
+ Z(u)

where Z(u) ∈ Z satisfies
v

divZ(u) = 0. Thus by (3.1)

(3.9) X
v

∇u =
v

∇
∞∑
l=1

[(
1− 1

l

)
X+ul−1 +

(
1 +

1

l + d− 2

)
X−ul+1

]
− Z(u).

This gives

‖X
v

∇u‖2

=

∞∑
l=1

λl

((
1− 1

l

)
X+ul−1 +

(
1 +

1

l + d− 2

)
X−ul+1,

(
1− 1

l

)
X+ul−1 +

(
1 +

1

l + d− 2

)
X−ul+1

)
+ ‖Z(u)‖2

=

∞∑
l=1

λl

[(
1− 1

l

)2

‖X+ul−1‖2 +
(
1 +

1

l + d− 2

)2

‖X−ul+1‖2
]

+

∞∑
l=1

λl

(
1− 1

l

)(
1 +

1

l + d− 2

)
[(X+ul−1, X−ul+1) + (X−ul+1, X+ul−1)] + ‖Z(u)‖2.

On the other hand, one has

‖
v

∇Xu‖2 − (d− 1)‖Xu‖2

= −(d− 1)‖X−u1‖2 +
∞∑
l=1

(λl − (d− 1))(X+ul−1 +X−ul+1, X+ul−1 +X−ul+1)

= −(d− 1)‖X−u1‖2 +
∞∑
l=1

(λl − (d− 1))
[
‖X+ul−1‖2 + ‖X−ul+1‖2

]
+
∞∑
l=1

(λl − (d− 1)) [(X+ul−1, X−ul+1) + (X−ul+1, X+ul−1)] .

Somewhat miraculously, we observe that

λl

(
1− 1

l

)(
1 +

1

l + d− 2

)
= λl − (d− 1).

This means that the two sums above involving [(X+ul−1, X−ul+1) + (X−ul+1, X+ul−1)]
terms are equal. The Pestov identity from Proposition 3.1 now yields

∞∑
l=0

αl‖X−ul+1‖2 − (R
v

∇u,
v

∇u) + ‖Z(u)‖2 + P (u, u) =
∞∑
l=1

βl‖X+ul−1‖2

where αl, βl are as in (3.6)–(3.7). The result follows. �
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Later on we shall need the following useful property.

Lemma 3.5 (Adjoint of T ). The formal adjoint of T : C∞(∂SM)→ Z|∂SM satisfies
v

divT = −T ∗
v

∇

and the operator
v

divT is self-adjoint in L2(∂SM, dΣ2d−2).

Proof. We use the Pestov identity with boundary term, to claim first that the operator
v

divT is self adjoint. Proposition 3.4 and the polarization identity imply that

P (u,w) = (X+u,X+w)β − (X−u,X−w)α + (R
v

∇u,
v

∇w)− (Z(u), Z(w))

and sinceR is symmetric, it follows that P (u,w) = P (w, u). But P (u,w) = −(
v

divTu,w)

and thus
v

divT is self-adjoint. Hence
v

divT = (
v

divT )∗ = −T ∗
v

∇
as desired. �

4. Frequency localization

Recall from Section 2 that any u ∈ C∞(SM) admits an L2-orthogonal decomposi-
tion

u =
∞∑
l=0

ul, ul ∈ Ωl,

where Ωl corresponds to the set of vertical spherical harmonics of degree l. Since
X± maps Ωl to Ωl±1, it is immediate that the Pestov identity with boundary term
(Proposition 3.4) reduces to the following identity when applied to functions in Ωl

(i.e. frequency localized Pestov identity).

Proposition 4.1 (Pestov identity on Ωl with boundary term). Let (M, g) be a com-
pact manifold with smooth boundary, and let l ≥ 0. One has

αl−1‖X−u‖2 − (R
v

∇u,
v

∇u) + ‖Z(u)‖2 + P (u, u) = βl+1‖X+u‖2, u ∈ Ωl.

(We define α−1 = 0.)

It was proved in [PS18] (and in [PSU15, Appendix B] when dim (M) = 2) that the
frequency localized Pestov identity for all l is equivalent with the standard Pestov
identity. The same is true in the boundary case:

Lemma 4.2. The Pestov identity with boundary term on Ωl is equivalent with the
Pestov identity with boundary term in the following sense: for any u ∈ C∞(SM), one
has
∞∑
l=0

[
αl−1‖X−ul‖2 − (R

v

∇ul,
v

∇ul) + ‖Z(ul)‖2 + P (ul, ul)− βl+1‖X+ul‖2
]

= ‖X−u‖2α − (R
v

∇u,
v

∇u) + ‖Z(u)‖2 + P (u, u)− ‖X+u‖2β.
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The result will follow if we can show that the curvature, Z and P terms localise.
Thus Lemma 4.2 is a corollary of the next result.

Lemma 4.3. If (M, g) is a compact Riemannian manifold, then

(R
v

∇u,
v

∇w) = 0, (Z(u), Z(w)) = 0, P (u,w) = 0

whenever u ∈ Ωm, w ∈ Ωl and m 6= l. In particular
v

divT : Ωm → Ωm.

Proof. The localization of the curvature term was proved [PS18, Lemma 5.4]. We shall
prove here that the Z-term localizes. That is enough to obtain also the conclusion
for P since Proposition 3.4 and the polarization identity imply that

P (u,w) = (X+u,X+w)β − (X−u,X−w)α + (R
v

∇u,
v

∇w)− (Z(u), Z(w)).

Hence the statements for the curvature and Z-term imply that P (u,w) = 0 when

m 6= l. The last claim follows since P (u,w) = −(
v

divTu,w).
The claim for Z(u) for d = 2 follows from [PS18, Remark 6.5] using the explicit

representation for Z(u). To prove the claim when d ≥ 3, recall that Z(u) is the
v

div-free part of
h

∇u (the
v

div-free part is uniquely defined since there are no nontrivial

harmonic 1-forms on SxM when d ≥ 3). Using the bracket relation
h

∇ =
v

∇X −X
v

∇
we can relate X

v

∇ and Z(u). Indeed this is done explicitly in equation (3.9), which

shows that Z(u) is the
v

div-free part of −X
v

∇u. If we consider a coordinate system

around a point x such that ∂xjgkl(x) = 0 for all j, k, l and write
v

∇u = (∂ku)∂xk as in
[PSU15, Appendix A], then at x

X
v

∇u = vj∂xj(∂
ku)∂xk = vj∂k(∂xju)∂xk = vj

v

∇(∂xju).

Hence if we think of each vj as 1-form it is enough to analyze the vertical Fourier

decomposition of A
v

∇w, where A is a scalar 1-form and w = ∂xju ∈ Ωm. This is
precisely the content of Lemma A.1, and combining the statement of that lemma

with (3.9) we see that Z(u) = −B(u) where B is the operator in Lemma A.1 for X
v

∇.
Since B localizes in frequency, the lemma is proved. �

5. Stability for the transport equation

In this section we will prove the main stability estimate for solutions of the transport
equation Xu = f in SM when f has finite degree. In the next section we will give
the more standard form where the solenoidal part of f is estimated in terms of Imf .

Theorem 5.1. Let (M, g) be a compact Riemannian manifold with smooth boundary
and sectional curvature ≤ 0, let u ∈ C∞(SM), and write f := Xu. Suppose that f
has finite degree m. If m = 0, then

‖f‖L2(SM) ≤ ‖u‖H1/2
T (∂SM)
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whereas if m ≥ 1, then

‖f −X(u0 + . . .+ um−1)‖L2(SM) ≤ ‖u‖H1/2
T (∂SM)

.

5.1. Shifted Pestov identity with boundary terms. To prove Theorem 5.1 we
first assume that m ≥ 1, and discuss the case m = 0 later. We will try to estimate f in
terms of u|∂SM in suitable norms. The starting point is the identity from Proposition
4.1 with l ≥ 1:

αl−1‖X−ul‖2 − (R
v

∇ul,
v

∇ul) + ‖Z(ul)‖2 + P (ul, ul) = βl+1‖X+ul‖2.

Since we are assuming non-positive sectional curvature, we have

−(R
v

∇ul,
v

∇ul) + ‖Z(ul)‖2 ≥ 0

and thus

αl−1‖X−ul‖2 + P (ul, ul) ≤ βl+1‖X+ul‖2.
We divide this estimate by αl−1 (always different from zero since l ≥ 1), which
corresponds to shifting the estimate down by one half vertical derivatives since αl−1 ∼
l. It follows that

‖X−ul‖2 +
1

αl−1
P (ul, ul) ≤

βl+1

αl−1
‖X+ul‖2.

The constant βl+1

αl−1
is exactly Dd(l)

2 where Dd(l) is as in [PSU15, Lemma 5.1]. Note

that Dd(l) ≤ 1 for d ≥ 4 and in the remaining cases it is sufficiently close to one
for all practical purposes (when reading the proof it may be helpful to think that
Dd(l) ≡ 1).

Thus we have the following inequality:

(5.1) ‖X−ul‖2 +
1

αl−1
P (ul, ul) ≤ Dd(l)

2‖X+ul‖2.

For l ≥ m we have X−ul+2 +X+ul = 0 and using (5.1) we may write

‖X−ul‖2 +
1

αl−1
P (ul, ul) ≤ Dd(l)

2‖X−ul+2‖2.

Starting at l = m and iterating this inequality N times leads to

‖X−um‖2 ≤

[
N−1∏
j=0

Dd(m+ 2j)2

]
‖X−um+2N‖2−

N−1∑
j=0

∏j−1
k=0Dd(m+ 2k)2

αm−1+2j

P (um+2j, um+2j)

Write γd,m,j =
∏j−1

k=0Dd(m+2k)2 and γd,m,0 = 1. In the notation of [PSU15, Theorem

1.1] one has γd,m,j =
∏j−1

k=0Cd(m− 1 + 2k)2, and thus γd,m,j ≤ cd where

(5.2) cd =

 2, d = 2,
1.28, d = 3,

1, d ≥ 4.



A SHARP STABILITY ESTIMATE FOR TENSOR TOMOGRAPHY 13

Since ‖X−ul‖2 → 0 as l→∞, we may take the limit as N →∞ to obtain

(5.3) ‖X−um‖2 ≤ −
∞∑
j=0

γd,m,j
αm−1+2j

P (um+2j, um+2j).

The argument above gives a completely analogous inequality for ‖X−um+1‖2, and
adding these two inequalities leads to

(5.4) ‖X−um‖2 + ‖X−um+1‖2 ≤ −
∞∑
k=0

bm,kP (um+k, um+k)

where

bm,k =

{ γd,m,j

αm−1+2j
, k = 2j,

γd,m+1,j

αm+2j
, k = 2j + 1.

Define q := u0 + u1 + · · ·+ um−1. Then the transport equation Xu = f also gives

(5.5) Xq +X−um +X−um+1 = f

and thus ‖f −Xq‖2 = ‖X−um‖2 + ‖X−um+1‖2. This yields

(5.6) ‖f −Xq‖2 ≤ −
∞∑
k=0

bm,kP (um+k, um+k).

If we assume m = 0, then the equation Xu = f implies X−u1 = f , and (5.3) gives

(5.7) ‖f‖2 ≤ −
∞∑
j=0

b1,2jP (u1+2j, u1+2j) ≤ −
∞∑
k=0

b1,kP (u1+k, u1+k).

Thus to prove Theorem 5.1 for m ≥ 0, it remains to bound the right hand side of
(5.6) for all m ≥ 1.

5.2. The right hand side of (5.6): the space H
1/2
T (∂SM). Let m ≥ 1. Motivated

by (5.6) and the fact that P is defined in terms of the (horizontal) tangential operator
T , we define a natural H1/2-space as follows. Define the H1

T (∂SM)-norm by setting

‖u‖2H1
T

:= ‖u‖2L2 + ‖
h

∇‖u‖2L2 .

The space H
1/2
T (∂SM) is defined by complex interpolation between L2 and H1

T . The

norm H
−1/2
T is defined by duality, and then H

−1/2
T is also the interpolation space

between L2 and H−1T (see [BL76, Corollary 4.5.2]).

Remark 5.2. Note that from (3.5) we have

(5.8) ‖Tu‖L2 ≤ ‖
h

∇‖u‖L2

since |Tu|2 = µ2|
h

∇‖u|2 + |X‖u|2 ≤ (µ2 + |v‖|2)|
h

∇‖u|2 = |v|2|
h

∇‖u|2 = |
h

∇‖u|2.
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Now we use the key property of localization given by Lemma 4.3 to observe that

∞∑
k=0

bm,kP (um+k, um+k) = P

(
∞∑
k=0

um+k,
∞∑
l=0

bm,lum+l

)
.

We define an operator B = Bm : C∞(∂SM)→ C∞(∂SM) by setting

Bu :=
∞∑
l=0

bm,lum+l.

Since m ≥ 1, the constant bm,l is well defined also when l = 0. Now (5.6) becomes

(5.9) ‖f −Xq‖2 ≤ −P (u,Bu) = −(Tu,
v

∇Bu).

Here is the main claim:

Lemma 5.3. Given u ∈ C∞(∂SM) we have

(Tu,
v

∇Bu) ≤ ‖u‖2
H

1/2
T

.

Proof. We may write

(Tu,
v

∇Bu) = −(B
v

divTu, u).

By the definitions, it suffices to show that

‖B
v

divTu‖
H
−1/2
T
≤ ‖u‖

H
1/2
T
.

By interpolation, this follows from the next two inequalities

(5.10) ‖B
v

divTu‖L2 ≤ ‖u‖H1
T
,

(5.11) ‖B
v

divTu‖H−1
T
≤ ‖u‖L2 .

To prove these estimates we first establish the property

(5.12) ‖
v

∇Bu‖L2 ≤ ‖u‖L2 .

Indeed using the definition of B,

‖
v

∇Bu‖2L2 = (Bu,∆Bu) =
∞∑
l=0

λm+lb
2
m,l‖um+l‖2L2 .

To prove (5.12) we will show that λm+lb
2
m,l ≤ 1 for m ≥ 1 and l ≥ 0. If m = 1

and l = 0, then λ1b
2
1,0 = λ1

α2
0

= 1
d−1 ≤ 1, so we may assume m, l ≥ 1. One has
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γd,m,j ≤ cd, which gives λm+lb
2
m,l ≤ c2d

λm+l

α2
m−1+l

. Observe that simplifying (3.6) gives

αl = (2l+d−2)(l+d−1)
l+d−2 for all l ≥ 1. We thus have, writing k = m+ l ≥ 2,

λk
α2
k−1

=
k(k + d− 2)(k + d− 3)2

(2k + d− 4)2(k + d− 2)2

=
1

4

k3 + (2d− 6)k2 + (d− 3)2k

(k2 + (d− 4)k + (d−4
2

)2)(k + d− 2)

=
1

4

k3 + (2d− 6)k2 + (d2 − 6d+ 9)k

k3 + (2d− 6)k2 + (d2 − 6d+ 8 + (d−4
2

)2)k + (d− 2)(d−4
2

)2
.

Thus if d = 2 or d ≥ 6, one has (d−4
2

)2 ≥ 1 and hence λk
α2
k−1
≤ 1

4
. If d = 3, 4, 5 we

estimate

λk
α2
k−1
≤ 1

4

k3 + (2d− 6)k2 + (d2 − 6d+ 9)k

k3 + (2d− 6)k2 + (d2 − 6d+ 8)k
≤ 1

4

[
1 +

1

(k + d− 3)2 − 1

]
≤ 1

3

using k ≥ 2. Combining these estimates with (5.2), we have

λm+lb
2
m,l ≤ c2d

λm+l

α2
m−1+l

≤ 1.

The estimate (5.12) follows. Since −
v

∇B is the adjoint of B
v

div, using (5.12) and (5.8)
yields

‖B
v

divTu‖L2 ≤ ‖Tu‖L2 ≤ ‖u‖H1
T

thus proving (5.10).

Finally to prove (5.11), we note that B
v

divT =
v

divTB by Lemma 4.3. Using Lemma
3.5 we may write

‖B
v

divTu‖H−1
T

= sup
‖h‖

H1
T
=1

(
v

divTBu, h)

= sup
‖h‖

H1
T
=1

−(T ∗
v

∇Bu, h)

= sup
‖h‖

H1
T
=1

−(
v

∇Bu, Th)

≤ sup
‖h‖

H1
T
=1

‖u‖L2‖Th‖L2

≤ ‖u‖L2 ,

where in the penultimate line we used (5.12) and (5.8). �

Theorem 5.1 for m ≥ 1 now follows from (5.9) and Lemma 5.3. When m = 0, it
follows from (5.7) and Lemma 5.3.
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6. Stability for the solenoidal part

We now rewrite Theorem 5.1 in terms of the solenoidal part of f and extend the
result to H1 regularity. Recall that the map

`m : C∞(Sm(T ∗M))→
[m/2]⊕
k=0

Ωm−2k,

is an isomorphism and it gives a natural identification between functions in Ωm and
trace-free symmetric m-tensors (for details on this see [GK80, DS11, PSU15]). The
identification actually holds pointwise for every x ∈ M . Moreover, the L2-norms on
trace free symmetric m-tensors and functions in Ωm are the same up to a constant
depending only on d and m (cf. [DS11, Lemma 2.4]).

If we let f̃ := `−1m f and q̃ := `−1m−1q, the well-known relation X`m−1 = `md
s implies

that `−1m (f − Xq) = f̃ − dsq̃. To simplify the notation we shall the drop the tildes,

identify f with f̃ , q with q̃ and use that the L2-norms are equivalent.
We first collect regularity properties of solutions of transport equations involving

H1 tensor fields.

Lemma 6.1. Let (M, g) be a compact simple manifold. Given f ∈ H1(Sm(T ∗M)),
there is uf ∈ H1(SM) satisfying

(6.1) Xuf = −f in SM , uf |∂−SM = 0, uf |∂+SM = If .

Moreover, one has uf |∂SM ∈ H1(∂SM) and If ∈ H1
0 (∂+SM).

Proof. If f ∈ C∞(Sm(T ∗M)), define uf on SM by

uf (x, v) =

∫ τ(x,v)

0

f(ϕt(x, v)) dt

where ϕt is the geodesic flow on SM . One has uf ∈ C∞(SM \ S(∂M)) ∩ C(SM)
since the same is true for τ , and (6.1) holds for uf . By [Sh95, Corollary 1], the map
f 7→ uf extends as a bounded map H1(Sm(T ∗M))→ H1(SM). (This boils down to

the fact that
v

∇τ and
h

∇‖τ , where the operator
h

∇‖ is extended smoothly to SM , are
uniformly bounded on SM \ S(∂M), see [Sh94, Lemma 4.1.3] and [DPSU07, Lemma
5.1].) Moreover, by [Sh94, Theorem 4.2.1] the map f 7→ If extends as a bounded map
H1(Sm(T ∗M)) → H1(∂+SM). Then the properties (6.1) remain valid for f ∈ H1

(the boundary value of uf is in H1/2(∂SM) by the trace theorem). Since If vanishes
on the boundary of ∂+SM when f ∈ C∞, one has If ∈ H1

0 (∂+SM) first for f ∈ C∞
and then for f ∈ H1 by density. Since uf |∂SM = E0(If) where E0 denotes extension
by zero from ∂+SM to ∂SM , we have uf |∂SM ∈ H1(∂SM) when f ∈ H1. �

Next we give a version of Theorem 5.1 for H1 tensor fields.

Theorem 6.2. Let (M, g) be a simply connected compact manifold with strictly convex
boundary and sectional curvature ≤ 0, and let f ∈ H1(Sm(T ∗M)). If m = 0, then

(6.2) ‖f‖L2(M) ≤ C‖uf‖
H

1/2
T (∂SM)
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whereas if m ≥ 1, then

(6.3) ‖f − dsq‖L2(M) ≤ C‖uf‖
H

1/2
T (∂SM)

.

Here C only depends on d and m.

Proof. Let m ≥ 1 (the case m = 0 is analogous). Going back to (5.3) and using
Lemma 5.3, one has the inequality

‖X−um‖2 + ‖X−um+1‖2 ≤ ‖u‖2H1/2
T (∂SM)

, u ∈ C∞(SM).

Since functions in H1(SM) have traces in H1/2(∂SM), and hence also in H
1/2
T (∂SM),

the above inequality holds for u ∈ H1(SM) by density. Then it is enough to take
u = uf , where uf ∈ H1(SM) by Lemma 6.1, and to note that by (5.5) and by
equivalence of the L2 norms

‖X−um‖2 + ‖X−um+1‖2 = ‖f −Xq‖2L2(SM) ≥ c(d,m)‖f − dsq‖2L2(M). �

The estimate (6.2) for m = 0 is already in the form that we want, so we will focus
on the case m ≥ 1. Using the potential and solenoidal decomposition, we may write
f = fs + dsp where δsfs = 0 and p is an (m − 1)-tensor such that p|∂M = 0. Let
w = p− q. Then integrating by parts

‖f − dsq‖2 = ‖fs + dsw‖2(6.4)

= ‖fs‖2 + 2(fs, d
sw) + ‖dsw‖2

= ‖fs‖2 + 2(ινfs, w)∂M + ‖dsw‖2

≥ ‖fs‖2 − 2|(ινfs, q)∂M |.
Next we observe that for any ε > 0

(6.5) 2|(ινfs, q)∂M | ≤
1

ε
‖q‖2H1/2(∂M) + ε‖ινfs‖2H−1/2(∂M).

We now claim:

Lemma 6.3. We have
‖ινfs‖H−1/2(∂M) . ‖fs‖L2(M).

Proof. This is a duality argument, but it is important that δsfs = 0. Consider a
bounded extension map for symmetric (m − 1)-tensors, e : H1/2(∂M) → H1(M)
(such a map can be constructed from a corresponding extension map for functions by
working in local coordinates and using a partition of unity). Now write

‖ινfs‖H−1/2(∂M) = sup
‖h‖

H1/2(∂M)
=1

∫
∂M

〈ινfs, h〉 dS

= sup
‖h‖

H1/2(∂M)
=1

(−(δsfs, e(h)) + (fs, d
se(h)))

= sup
‖h‖

H1/2(∂M)
=1

(fs, d
se(h))

. ‖fs‖L2(M). �
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Combining (6.3)–(6.5) with Lemma 6.3 and choosing ε small enough, it follows that

(6.6) ‖fs‖2L2(M) . ‖uf‖2H1/2
T (∂SM)

+ ‖q‖2H1/2(∂M).

The next two lemmas will be useful when estimating the last term on the right.

Lemma 6.4. Given m ≥ 0, there is a constant C > 0 such that for any tensor q of
order m

‖q‖H1/2(∂M) ≤ C‖`mq‖H1/2
T (∂SM)

.

Proof. Recall that we identify symmetric m-tensors with functions in
⊕[m/2]

k=0 Ωm−2k
via `m as explained at the beginning of this section. By interpolation, it is enough

to show that ‖`−1m h‖L2 . ‖h‖L2 and ‖`−1m h‖H1 . ‖h‖H1
T

when h ∈
⊕[m/2]

k=0 Ωm−2k.

The first inequality follows from the equivalence of the L2-norms. For the second
inequality, observe that locally a symmetric m-tensor field can be written as q =
qi1...imdx

i1 ⊗ · · · ⊗ dxim . The H1-norm of q in ∂M consists of the L2-norm of q plus
the L2 norm of the components qi1...im(x) tangentially to M . Locally `mq has the

form qi1...imv
i1 . . . vim . When we apply

h

∇‖ to `mq all the tangential derivatives in the
direction of ∂M will appear. There will also be some vertical derivatives (involving
the Christoffel symbols), but since `mq is a polynomial of degree m in v, these terms
can all be controlled by the L2-norm of `mq. Thus ‖q‖H1 . ‖`mq‖H1

T
follows, and this

may be rewritten as ‖`−1m h‖H1 . ‖h‖H1
T
. �

Lemma 6.5 (The H1
T (∂SM) norm localizes in frequency). One has

‖u‖2H1
T (∂SM) =

∞∑
m=0

‖um‖2H1
T (∂SM)

for all u ∈ H1
T (∂SM). In particular, ‖

∑m
l=0 ul‖H1

T (∂SM) ≤ ‖u‖H1
T (∂SM) when m ≥ 0.

Proof. The proof is somewhat indirect and is based on the following observations.

(1) Let W be a vector field on M and let W = (W, 0) be its horizontal lift to
SM . Then ∆W = W∆ where ∆ is the vertical Laplacian. This can be
seen by taking a geodesic coordinate neighbourhood around a point x, so
that ∂jgkl(x) = 0 for all j, k.l. In that case if we write W = wi(x)∂xi , then
(Wu)(x, v) = wi(x) ∂u

∂xi
and thus W : Ωm → Ωm. (Another way to prove this

is to check that [δj,∆] = 0, using the notation and commutator formulas in
[PSU15, Appendix A].)

(2) There is a neighbourhood Uε of ∂M in M diffeomorphic to ∂M × [0, ε) via
∂M × [0, ε) 3 (x, t) 7→ expx(−tν(x)) ∈ Uε. This allows us to naturally extend
to Uε the exterior unit normal ν to a vector field, still denoted by ν.

(3) A smooth function u ∈ C∞(∂SM) can be extended to a smooth function
u� ∈ C∞(SUε) simply by making it constant on the orbits of the flow of �,
the horizontal lift of ν. By item (1) we have

(6.7) (um)� = (u�)m
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(4) Let ft be the flow of � in SM , and let Vε be the neighbourhood of ∂SM in
SM diffeomorphic to ∂SM × [0, ε) via (x, v, t) 7→ f−t(x, v). Since f−t(x, v) =
(x(t), v(t)) where x(t) = expx(−tν) is the normal geodesic and v(t) is the
parallel transport of v along x(t), one has Vε = SUε (the map v 7→ v(t) is
bijective from SxM onto Sx(t)M).

Let u ∈ C∞(∂SM). The fact that �(u�) = 0 implies that
h

∇‖u = (
h

∇u�)|∂SM and
thus for (x, v) ∈ ∂SM we have

lim
ε→0

1

ε

∫ ε

0

|
h

∇u�(x, v, t)|2 dt = |
h

∇‖u(x, v)|2.

Integrating over ∂SM and using that Vε = SUε by (4), this gives

(6.8) lim
ε→0

1

ε
‖

h

∇u�‖2L2(SUε)
= ‖

h

∇‖u‖2L2(∂SM).

We now recall that it is possible to write for any w ∈ C∞(SUε) (all norms in
L2(SUε)), cf. [LRS18, proof of Lemma 5.1]:

(6.9) ‖
h

∇w‖2 = ‖Z(w)‖2 + ‖X−w1‖2 +
∞∑
l=1

A(d, l)‖X+wl−1‖2 +B(d, l)‖X−wl+1‖2,

where A(d, l) = 2 + d−2
2

and B(d, l) = 2 + 1
d+l−2 . By Lemma 4.3 one may write

‖Z(w)‖2 =
∑
‖Z(wm)‖2, and thus using (6.9) for w = u� and w = (u�)m for each m

we deduce

‖
h

∇u�‖2L2(SUε)
=

∞∑
m=0

‖
h

∇(u�)m‖2L2(SUε)
.

Dividing this by ε and taking the limit as ε→ 0, the identities (6.7) and (6.8) yield

‖
h

∇‖u‖2L2(∂SM) =
∞∑
m=0

‖
h

∇‖um‖2L2(∂SM).

This implies the desired claim for u ∈ C∞(∂SM), and the result follows since
C∞(∂SM) is dense in H1

T (∂SM). (The density claim can be proved by using a
partition of unity, convolution approximation in coordinate neighborhoods, and the
Friedrichs lemma [Hö85, Lemma 17.1.5].) �

We now put the arguments above together to derive:

Theorem 6.6. Let (M, g) be a simply connected compact manifold with strictly convex
boundary and non-positive sectional curvature. Given m ≥ 0 there is a constant C > 0
such that for any f ∈ H1(Sm(T ∗M)), one has

‖fs‖L2(M) ≤ C‖uf‖
H

1/2
T (∂SM)

.

Proof. For m = 0 this is just (6.2), so we assume m ≥ 1. Combining (6.6) and Lemma
6.4 we derive

‖fs‖ . ‖uf‖H1/2
T

+ ‖`m−1q‖2H1/2
T

.
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Recall that `m−1q =
∑

l≤m−1 u
f
l . Interpolating the bound ‖

∑
l≤m−1 ul‖L2(∂SM) ≤

‖u‖L2(∂SM) for u ∈ L2(∂SM) with the bound in Lemma 6.5 gives

‖
∑
l≤m−1

ul‖H1/2
T
≤ ‖u‖

H
1/2
T
, u ∈ H1/2

T (∂SM),

and the result follows by taking u = uf . �

We can refine this further and prove Theorem 1.3 in the introduction. Define the

space H
1/2
T (∂+SM) as the interpolation space between H1

T (∂+SM) and L2(∂+SM).

Proof of Theorem 1.3. Theorem 6.6 gives

(6.10) ‖fs‖L2(M) ≤ C‖E0(If)‖
H

1/2
T (∂SM)

where E0 is extension by zero from ∂+SM to ∂SM . We define H1
T,0(∂+SM) as the

closure of C∞c ((∂+SM)int) with respect to the H1
T -norm, and H

1/2
T,0 (∂+SM) as the in-

terpolation space between L2 and H1
T,0(∂+SM). Since E0 is bounded H1

T,0(∂+SM)→
H1
T (∂SM) and L2(∂+SM)→ L2(∂SM), it is also bounded

(6.11) E0 : H
1/2
T,0 (∂+SM)→ H

1/2
T (∂SM).

Now, if f ∈ H1(Sm(T ∗M)), then If is in H1
0 (∂+SM) by Lemma 6.1 and hence also

in the larger space H
1/2
T,0 (∂+SM). Combining (6.10) and (6.11) proves the result. �

Remark 6.7. Theorem 1.3 remains true for f ∈ H1/2(Sm(T ∗M)) by density, since I
is bounded H1/2(Sm(T ∗M)) → H1/2(∂+SM) by [Sh94, Theorem 4.2.1] and interpo-
lation. It would be interesting if one could prove Theorem 1.3 for f ∈ L2(Sm(T ∗M)).

However, in general we do not know if I is bounded L2(Sm(T ∗M))→ H
1/2
T (∂+SM).

Also, our approach with the Pestov identity as it stands is unable to produce stability
estimates for higher order Sobolev norms.

Appendix A. Vector spherical harmonics

In Lemma 4.3, we want to prove the frequency localization statement

(Z(um), Z(wl)) = 0, m 6= l,

where um ∈ Ωm and wl ∈ Ωl. As discussed in the proof of Lemma 4.3, this follows
from the next localization statement. Recall that if A ∈ Ω1, i.e. A(x, v) = Aj(x)vj,
then Au = A+u+ A−u for u ∈ C∞(SM) where A± : Ωm → Ωm±1.

Lemma A.1. Let d = dim (M) ≥ 3 and let A ∈ Ω1. For any um ∈ Ωm one has

A
v

∇um =
v

∇
[(

1− 1

m+ 1

)
A+um +

(
1 +

1

m+ d− 3

)
A−um

]
+B(um)

where B(um) is the
v

div-free part of A
v

∇um. The map B : C∞(SM)→ Z satisfies

(B(um), B(wl)) = 0, m 6= l,

for any um ∈ Ωm and wl ∈ Ωl.
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The proof is based on understanding vector spherical harmonics expansions on SM .
This will be done next, and the proof of Lemma A.1 will be given in the end of this
appendix.

If um ∈ Ωm, then
v

∇um is an element of the space

Z = {Z ∈ C∞(SM, TM) ; Z(x, v) ∈ TxM and 〈Z(x, v), v〉 = 0}.
Thus each Z(x, · ) is a vector field on SxM , and using the Sasaki metric it can be
identified with a 1-form on SxM . The Hodge Laplacian dδ+ δd acting on 1-forms on
each SxM induces a vertical Laplacian on Z,

∆1 : Z → Z.
Spherical harmonics expansions on Z are eigenfunction expansions of ∆1. However,
since each SxM is isometric to the standard round sphere Sd−1, it is really enough
to understand spherical harmonics expansions of 1-forms on Sd−1 as studied e.g. in
[Bo09]. The case d = dim (M) = 2 is easy and reduces to Fourier expansions on the
circle. The cases d = 3 and d ≥ 4 will have different features.

The case d = 2. Using the formulas in [PSU15, Appendix B], when d = dim (M) = 2
the space Z can be identified with C∞(SM) via Z = {z(x, v)iv ; z ∈ C∞(SM)} and
one has

∆1(z(x, v)iv) = −
v

∇
v

div(z(x, v)iv) = −(V 2z)iv.

Thus the eigenfunction expansions for ∆1 in Z are the same as eigenfunction expan-
sions for the vertical Laplacian −V 2 on L2(SM). The eigenvalues of ∆1 are {λm}∞m=0

where λm = m(m+ d− 2) = m2, and one has the orthogonal decomposition

L2(SM,N) =
∞⊕
m=0

H1
m

where H1
m = {Z ∈ L2(SM,N) ; ∆1Z = λmZ} = {z(x, v)iv ; −V 2z = λmz}. In

particular, any Z ∈ Z has the L2-orthogonal expansion

Z =
∞∑
m=0

zm(x, v) iv

where zm ∈ Ωm.

The case d = 3. It turns out that when d = 3, the study of vector spherical har-
monics still reduces to Fourier expansions on functions but there is extra structure.

Thus let d = dim (M) = 3, and fix x ∈ M . Recall that Z(x, · ) is a vector field
on SxM . Since SxM is two-dimensional (and isometric to S2), there is a well-defined
rotation by 90◦ on each Tv(SxM) which induces a map

∗ : Z → Z, ∗Z(x, v) = (∗SxM(Z(x, v)[))]

where ∗SxM is the Hodge star operator on SxM and the musical isomorphisms act
with respect to the metric gx on SxM .

Spherical harmonics expansions on Z are described as follows:
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Lemma A.2. Let (M, g) be a Riemannian manifold with d = dim (M) = 3. The
eigenvalues of ∆1 are {λm}∞m=1 where λm = m(m+d−2), and one has the orthogonal
decomposition

L2(SM,N) =
∞⊕
m=1

H1
m

where H1
m = {Z ∈ L2(SM,N) ; ∆1Z = λmZ}. Moreover, writing Ω1

m = H1
m ∩

C∞(SM,N), one has the L2-orthogonal decomposition

Ω1
m =

v

∇Ωm ⊕ ∗
v

∇Ωm.

In particular, any Z ∈ Z has the L2-orthogonal expansion

Z =
∞∑
m=1

(
v

∇um + ∗
v

∇wm)

where um, wm ∈ Ωm.

Proof. It is enough to work on SxM for fixed x, and since SxM is isometric to S2

it is enough to determine the eigenvalues and eigenspaces of the Hodge Laplacian
∆ = dδ + δd in S2 when acting on 1-forms. Recall that δ = − ∗ d∗ and ∗∗ = (−1)k

on k-forms.
If α is a 1-form on S2, one has the Hodge decomposition α = du+ δβ where u is a

0-form and β is a 2-form (there are no nontrivial harmonic 1-forms on S2). Moreover,
β = − ∗ w for some 0-form w and one has

α = du+ ∗dw.
Since u and w are smooth functions on S2, they have spherical harmonics expansions

u =
∞∑
m=0

um, w =
∞∑
m=0

wm, um, wm ∈ Ωm(S2).

The Hodge Laplacian satisfies ∆d = d∆ and ∆ ∗ d = ∗d∆. It follows that

(A.1) ∆α =
∞∑
m=1

λm(dum + ∗dwm).

In the L2 inner product on S2 one has (dum, dwl) = (∆um, wl) = λm(um, wl) if
um ∈ Ωm, wl ∈ Ωl. Thus it follows that

(dum, dwl) = (∗dum, ∗dwl) = 0 if m 6= l,

and (dum, ∗dwl) = 0 for all m, l. From (A.1) we see by orthogonality that the eigen-
values of ∆ on 1-forms are {λm}∞m=1 and the eigenspace corresponding to λm consists
of elements of the form dum + ∗dwm with um, wm ∈ Ωm. �

Next we will see how multiplication by A(x, v) ∈ Ω1 affects Fourier decompositions
on Z. Recall that on C∞(SM), multiplication by A splits as A = A+ + A− where
A± : Ωm → Ωm±1. In the case of Z, there is a new operator A0 which allows us to
describe how multiplication by A affects Fourier expansions.
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Lemma A.3. Let d = dim (M) = 3 and let A ∈ Ω1. The operator

A0 : C∞(SM)→ C∞(SM), A0u = 〈
v

∇A, ∗
v

∇u〉

satisfies A0 : Ωm → Ωm for any m. For any u ∈ C∞(SM) one has

A
v

∇u =
∞∑
l=1

v

∇
[(

1− 1

l

)
A+ul−1 +

(
1 +

1

l + d− 2

)
A−ul+1

]
+
∞∑
l=1

∗
v

∇
[ 1

λl
A0ul

]
and

A ∗
v

∇u = −
∞∑
l=1

v

∇
[ 1

λl
A0ul

]
+
∞∑
l=1

∗
v

∇
[(

1− 1

l

)
A+ul−1 +

(
1 +

1

l + d− 2

)
A−ul+1

]
.

Proof. Again it is enough to fix x and to work with differential forms on S2. So we
are reduced to the following: if A(v) = ajv

j is a scalar function in S2 with aj ∈ C,
and if d, δ and ∆ = dδ + δd are the corresponding operators on S2, we need to show
that the operator

A0(u) = 〈dA, ∗du〉
maps Ωm(S2) to itself, and for any u ∈ C∞(S2) we have

(A.2) Adu =
∞∑
l=1

d
[(

1− 1

l

)
A+ul−1 +

(
1 +

1

l + d− 2

)
A−ul+1

]
+
∞∑
l=1

∗d
[ 1

λl
A0ul

]
.

The last statement will then follow since A commutes with ∗.
Define vector fields on S2, ∂ju = ∂yj(u(y/|y|))|S2 (see [PSU15, Appendix A] for

more details). Then du = ∂ju dv
j, and ∗du is the cross product of v and du,

∗du = (v2∂3u− v3∂2u) dv1 + (v3∂1u− v1∂3u) dv2 + (v1∂2u− v2∂1u) dv3

which can be written as ∗du = (Vju) dvj with V1 = v2∂3 − v3∂2 etc. In the following
we will raise and lower indices with respect to the Euclidean metric in R3 (i.e. write
vj for vj etc). Since A(v) = akv

k we have ∂jA = ak(δ
k
j − vjvk) = aj − Avj. Since

〈dvj, dvk〉 = δjk − vjvk and since vj∂j = vjVj = 0, it follows that

A0u = (∂jA)V ju = ajV
ju.

But now, on SM in any dimension d = dim (M), the vertical Laplacian ∆0 = −
v

div
v

∇
on scalar functions satisfies

[∆0, va] = −2∂a + (d− 1)va, [∆0, ∂b] = −(d− 3)∂b + 2vb∆0

and consequently

[∆0, va∂b − vb∂a] = 0.

It follows that each V j maps Ωm(S2) to itself, and the same is then true for A0.
It remains to show (A.2) for u ∈ C∞(S2). We begin with the Hodge decomposition

Adu = dα + ∗dβ
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where α, β ∈ C∞(S2) are determined from

∆α = δ(Adu),

∆β = − ∗ d(Adu).

To solve for the Fourier components of α and β, we expand the right hand sides of
the above equations in Fourier series. One has

δ(Adu) = A(δdu)− 〈dA, du〉 = A∆u+
1

2
(∆(Au)− (∆A)u− A(∆u))

=
1

2
(∆(Au) + A∆u− (∆A)u).

Expanding u in spherical harmonics and using that ∆A = (d− 1)A we get

δ(Adu) =
1

2

∞∑
l=1

[(λl − (d− 1))(A+ul−1 + A−ul+1) + λl−1A+ul−1 + λl+1A−ul+1] .

(Note that (δ(Adu))0 = 1
2
(A−∆u1 − (d− 1)A−u1) = 0.) It follows that for l ≥ 1,

αl =
1

2λl
[(λl + λl−1 − (d− 1))A+ul−1 + (λl + λl+1 − (d− 1))A−ul+1] .

For the second equation, we have

− ∗ d(Adu) = − ∗ (dA ∧ du) = ∗(dA ∧ ∗(∗du)) = 〈dA, ∗du〉 = A0u

and therefore for l ≥ 1 one has

βl =
1

λl
A0ul.

Substituting α and β in the Hodge decomposition Adu = dα+ ∗dβ proves (A.2). �

The case d ≥ 4. If d = dim (M) ≥ 4, the Laplacian ∆1 acting on Z will have two
sets of eigenvalues corresponding to the Hodge demposition of 1-forms. If x is fixed,
then SxM is isometric to Sd−1 and any 1-form α on SxM has a Hodge decomposition

α = dSxMu+ δSxMβ

where u is a 0-form and β is an exact 2-form on SxM . Correspondingly, any Z ∈ Z
has the Hodge decomposition

Z =
v

∇u+
v

δβ

for some u ∈ C∞(SM) and β ∈ Z2, where Z2 is the set of smooth 2-forms βx on

each SxM varying smoothly with respect to x, and
v

δβ is the vertical codifferential of
β identified with an element of Z. In fact one can take β ∈ Z2,d, where Z2,d is the
set of 2-forms β ∈ Z2 so that βx is exact for each x.

The following result is a consequence of [Bo09].
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Lemma A.4. Let (M, g) be a Riemannian manifold with d = dim (M) ≥ 4. The
eigenvalues of ∆1 are {λm, µm}∞m=1 where λm = m(m+ d− 2) and µm = λm + d− 3,
and one has the L2-orthogonal decomposition

Z =
∞⊕
m=1

[
Ω1,d
m ⊕ Ω1,δ

m

]
where Ω1,d

m = {Z ∈ Z ; ∆1Z = λmZ} and Ω1,δ
m = {Z ∈ Z ; ∆1Z = µmZ}. Moreover,

one has

Ω1,d
m =

v

∇Ωm,

Ω1,δ
m =

v

δΩ2,d
m

where Ω2,d
m = {β ∈ Z2,d ; ∆2β = µmβ} with ∆2 corresponding to the Hodge Laplacian

on 2-forms on each SxM . In particular, any Z ∈ Z has the L2-orthogonal expansion

Z =
∞∑
m=1

(
v

∇um +
v

δβm)

where um ∈ Ωm and βm ∈ Ω2,d
m .

Next we see how multiplication by A ∈ Ω1 affects Fourier decompositions. If
Z,W ∈ Z we write Z ∧W for the element of Z2 obtained as the wedge product of
the 1-forms corresponding to Z and W .

Lemma A.5. Let d = dim (M) ≥ 4 and let A ∈ Ω1. The operator

A0 : C∞(SM)→ Z2,d, A0u =
v

∇A ∧
v

∇u

satisfies A0 : Ωm → Ω2,d
m for any m ≥ 1. For any u ∈ C∞(SM) one has

A
v

∇u =
∞∑
l=1

v

∇
[(

1− 1

l

)
A+ul−1 +

(
1 +

1

l + d− 2

)
A−ul+1

]
+
∞∑
l=1

v

δ
[ 1

µl
A0ul

]
.

The proof uses the following lemma.

Lemma A.6. If u and v are 1-forms on a Riemannian manifold (M, g) and if ∆ =
dδ + δd is the Hodge Laplacian, then

∆(u ∧ v) = (∆u) ∧ v − 2

dim(M)∑
j=1

∇Ej
u ∧∇Ej

v + u ∧ (∆v) + 2R(u], v], · , · )

where {E1, . . . , En} is any local orthonormal frame, ∇ is the Levi-Civita connection
and R is the Riemann curvature tensor.

Proof. Follows either by relating ∆ to the connection Laplacian via a Weitzenbock
identity, or by computations in normal coordinates. �
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Proof of Lemma A.5. It is enough to fix x and to work with differential forms on
Sd−1. Thus we are reduced to the following: if A(v) = ajv

j is a scalar function in
Sd−1 with aj ∈ C, and if d, δ and ∆ = dδ + δd are the corresponding operators on
Sd−1, we need to show that the operator

A0 : C∞(Sd−1)→ C∞(Sd−1,Λ2), A0(u) = dA ∧ du

maps Ωm(Sd−1) to Ω2,d
m (Sd−1), and for any u ∈ C∞(Sd−1) we have

(A.3) Adu =
∞∑
l=1

d
[(

1− 1

l

)
A+ul−1 +

(
1 +

1

l + d− 2

)
A−ul+1

]
+
∞∑
l=1

δ
[ 1

µl
A0ul

]
.

Since A0u = d(Adu), A0 maps into the set of exact 2-forms. Let u ∈ Ωm. By
Lemma A.6, for any local orthonormal frame {Ej} of T (Sd−1) we have

∆(A0u) = ∆(dA ∧ du)

= (∆dA) ∧ du− 2
d−1∑
j=1

∇Ej
dA ∧∇Ej

du+ dA ∧ (∆du) + 2R(dA], du], · , · )

= (λm + d− 1)dA ∧ du− 2
d−1∑
j=1

∇Ej
dA ∧∇Ej

du+ 2R(dA], du], · , · )

using that u ∈ Ωm and A ∈ Ω1. Now if v ∈ Sd−1 and w ∈ TvSd−1 with |w| = 1, and
if γ(t) is the geodesic on Sd−1 with γ̇(0) = w, one has

∇dA|v(w,w) =
d2

dt2
A(γ(t))

∣∣∣
t=0

=
d2

dt2
(ajγ

j(t))
∣∣∣
t=0

= −A(v)

using that geodesics are great circles. Thus ∇Ej
dA|v(w) = −A(v)〈Ej, w〉, which gives

that ∇Ej
dA|v = −A(v)E[

j and

d−1∑
j=1

∇Ej
dA ∧∇Ej

du = −A(v)
d−1∑
j=1

E[
j ∧∇Ej

du = −A(v)d(du) = 0.

Also, on the sphere we have R(u], v], · , · ) = −u ∧ v. These facts imply that

∆(A0u) = (λm + d− 3)dA ∧ du = µmA0u.

Thus A0 maps Ωm to Ω2,d
m .

We next show (A.3) for u ∈ C∞(Sd−1). We begin with the Hodge decomposition

Adu = dα + δβ

where the function α ∈ C∞(Sd−1) and the exact 2-form β ∈ C∞(Sd−1,Λ2) are deter-
mined from

∆α = δ(Adu),

∆β = d(Adu).
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To solve for the Fourier components of α and β, we expand the right hand sides of
the above equations in Fourier series. One has

δ(Adu) = A(δdu)− 〈dA, du〉 = A∆u+
1

2
(∆(Au)− (∆A)u− A(∆u))

=
1

2
(∆(Au) + A∆u− (∆A)u).

Expanding u in spherical harmonics and using that ∆A = (d− 1)A we get

δ(Adu) =
1

2

∞∑
l=1

[(λl − (d− 1))(A+ul−1 + A−ul+1) + λl−1A+ul−1 + λl+1A−ul+1] .

It follows that for l ≥ 1,

αl =
1

2λl
[(λl + λl−1 − (d− 1))A+ul−1 + (λl + λl+1 − (d− 1))A−ul+1]

For the second equation, we have

d(Adu) = dA ∧ du = A0u.

Since A0 maps Ωl to Ω2,d
l for l ≥ 1, one has

β =
∞∑
l=1

1

µl
A0ul.

Substituting α and β in the Hodge decomposition Adu = dα + δβ proves (A.3). �

Proof of Lemma A.1. Since A
v

∇u0 = 0, it is enough to study A
v

∇um for m ≥ 1.

For d = 3, Lemma A.3 shows that B(um) = ∗
v

∇ 1
λm
A0um where A0 : Ωm → Ωm.

Consequently for m 6= l

(B(um), B(wl)) =
1

λmλl
(−

v

div
v

∇A0um, A0wl) =
1

λl
(A0um, A0wl) = 0.

Finally let d ≥ 4. By Lemma A.5 we have B(um) =
v

δ 1
µm
A0um where A0 : Ωm → Ω2,d

m .

On the space Ω2,d
m corresponding to exact 2-forms, the Hodge Laplacian ∆2 is given

by dδ and has eigenvalue µm. Hence for m 6= l

(B(um), B(wl)) =
1

µmµl
(∆2A0um, A0wl) =

1

µl
(A0um, A0wl) = 0

using that the eigenspaces for ∆2 having different eigenvalues are L2-orthogonal. This
concludes the proof. �
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