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Abstract. We study the inverse scattering problem of determining a magnetic field and elec-

tric potential from scattering measurements corresponding to finitely many plane waves. The

main result shows that the coefficients are uniquely determined by 2n measurements up to a
natural gauge. We also show that one can recover the full first order term for a related equation

having no gauge invariance, and that it is possible to reduce the number of measurements if

the coefficients have certain symmetries. This work extends the fixed angle scattering results of
[RS20a, RS20b] to Hamiltonians with first order perturbations, and it is based on wave equation

methods and Carleman estimates.
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1. Introduction and Main Theorems

In this work we study the inverse scattering problem of recovering a first order perturbation from
fixed angle scattering measurements. Let λ > 0, n ≥ 2 and let ω ∈ Sn−1 be a fixed unit vector.
Suppose that for m ∈ N, V(x,D) is a first order differential operator with Cm(Rn) coefficients
having compact support in B = {x ∈ Rn : |x| < 1}, the open ball of radius 1. We consider a
Hamiltonian HV = −∆ + V(x,D) in Rn and the problem

(1.1)

{
(HV − λ2)ψV = 0

ψV(x, λ, ω) = eiλω·x + ψsV(x, λ, ω),

where ψsV(x, λ, ω) is known as a the scattering solution. It is well known that in order to have
uniqueness for this problem one needs to put further restrictions on the function ψsV . See e.g.
[Ya10] for the following facts. The outgoing Sommerfeld Radiation Condition (SRC for short)

∂rψ
s
V − iλψsV = o(r−(n−1)/2) as r →∞,

where r = |x|, selects the solutions that heuristically behave as Fourier transforms in time of
spherical waves that propagate towards infinity. A function ψsV satisfying (1.1) and the SRC is
called an outgoing scattering solution. This solution is given by the so called outgoing resolvent
operator

(1.2) RV(λ) := (HV − (λ+ i0)2)−1,

so that, formally,

ψsV = RV(λ)(−V(x,D)eiλω·x).

Notice that, assuming that such a solution ψsV exists—which would happen if the resolvent is well
defined and bounded in appropriate spaces—it must satisfy the Helmholtz equation

(−∆− λ2)ψsV = 0 in Rn \B,
1
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since the coefficients of V(x,D) are compactly supported in B. It is well known that a solution of
Helmholtz equation satisfying the SRC has always the asymptotic expansion

(1.3) ψsV(x, λ, ω) = eiλ|x||x|−
n−1

2 aV(λ, θ, ω) + o(|x|−
n−1

2 ), as |x| → ∞,

where θ = x
|x| and aV(λ, θ, ω) is called the scattering amplitude or far field pattern.

In this setting, the main objective of an inverse scattering problem consists in reconstructing
the coefficients of V(x,D) from partial or full knowledge of aV(λ, θ, ω). Depending on the data
that is assumed to be known we can distinguish several types of inverse scattering problems:

1. Full data. Recover the coefficients of V(x,D) from the knowledge of aV(λ, θ, ω) for all
(λ, θ, ω) ∈ (0,∞)× Sn−1 × Sn−1.

2. Fixed frequency (or fixed energy). Recover the coefficients of V(x,D) from the knowledge
of aV(λ0, θ, ω) for a fixed λ0 > 0 and all (θ, ω) ∈ Sn−1 × Sn−1.

3. Backscattering. Recover the coefficients of V(x,D) from the knowledge of aV(λ, ω,−ω) for
all (λ, ω) ∈ (0,∞)× Sn−1.

4. Fixed angle (single measurement). Recover the coefficients of V(x,D) from the knowledge
of aV(λ, θ, ω0) for a fixed ω0 ∈ Sn−1 and all (λ, θ) ∈ (0,∞)× Sn−1.

In the case of fixed angle scattering it is also interesting to consider analogous inverse problems in
which aV( · , · , ω) is assumed to be known for each ω in a fixed subset (usually finite) of Sn−1.

Let D = −i∇. We consider the Hamiltonian

HV = HA,q = (D + A)2 + q = −∆ + 2A ·D +D ·A + A2 + q,

where both the magnetic potential A, and the electrostatic potential q are real. Then HV is self-
adjoint, and if A and q are compactly supported, the resolvent (1.2) is bounded in appropriate
spaces under very general assumptions on the regularity of A and q. This implies that the problem
(1.1) has a unique solution ψsV and hence that the scattering amplitude aV = aA,q is well defined,
so that the fixed angle scattering problem can be appropriately stated.

In [RS20a, RS20b] it has been proved that for HV = −∆ + q, knowledge of the fixed angle
scattering data aV( · , · , ω) in two opposite directions ω = ±ω0 for a fixed ω0 ∈ Sn−1, determines
uniquely the potential q. The present article extends the results of [RS20a, RS20b] to the case of
non-vanishing first order coefficients and proves that from 2n measurements, or just n+1 measure-
ments under symmetry conditions, one can determine both the first and zeroth order coefficients up
to natural gauges. To prove these results, we follow the approach used in [RS20b], that is we show
the equivalence of the fixed angle scattering problem with an appropriate inverse problem for the
wave equation. This inverse scattering problem in time domain consists in recovering information
on A and q from boundary measurements of the solution UA,q of the initial value problem

(1.4) (∂2
t +HA,q)UA,q = 0 in Rn+1, UA,q|{t<−1} = δ(t− x · ω).

If the support of A and q is contained in B, the boundary measurements of UA,q are made in the
set ∂B × (−T, T ) ∩ {(x, t) : t ≥ x · ω}, where ∂B denotes the boundary of the ball.

We now describe some previous results on the inverse scattering problem of recovering a potential
q(x) from fixed angle measurements. As discussed above, this problem can be considered in the
frequency domain, as the problem of determining q from the scattering amplitude aq( · , · , ω) for the
Schrödinger operator −∆ + q with a fixed direction ω ∈ Sn−1, or alternatively in the time domain
as the problem of recovering q from boundary or scattering measurements of the solution Uq of the
wave equation. The equivalence of these problems is discussed in [RS20b] (see [Me95, Uh01, MU]
for the odd dimensional case).

The one-dimensional case is quite classical, see [Ma11, DT79]. In dimensions n ≥ 2 uniqueness
has been proved for small or generic potentials [St92, B+20], recovery of singularities results are
given in [Ru01, Me18], and uniqueness of the zero potential is considered in [BM89]. Recently in
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[RS20a, RS20b] it was proved that measurements for two opposite fixed angles uniquely determine
a potential q ∈ C∞c (Rn). The problem with one measurement remains open, but [RS20a, RS20b]
prove uniqueness for symmetric or horizontally controlled potentials (similar to angularly con-
trolled potentials in backscattering [RU14]), and Lipschitz stability estimates are given for the
wave equation version of the problem. We also mention the recent work [MS20] which studies
the fixed angle problem when the Euclidean metric is replaced by a Riemannian metric, or sound
speed, satisfying certain conditions, and the upcoming work [KRS20] which studies fixed angle
scattering for time-dependent coefficients also in the case of first order perturbations.

We now introduce the main results in this work. Since the metric is Euclidean, the vector
potential A can equivalently be seen as a 1-form A = Ajdxj . We denote by dA the exterior
derivative of A. Let {e1, . . . , en} be any orthonormal basis in Rn. Our first result shows that the
magnetic field dA and the electrostatic potential q are uniquely determined by the knowledge of
the fixed angle scattering amplitude aA,q( · , · , ω) for the n orthogonal directions ω = ej , 1 ≤ j ≤ n
and the n opposite ones, ω = −ej . From now on, in this paper we will fix m to be the integer

(1.5) m =
3

2
n+ 10 if n is even, m =

3

2
(n+ 1) + 10 if n is odd.

In general we consider A ∈ Cm+2(Rn;Rn) and q ∈ Cm(Rn;R). This is required in order to
guarantee that the solutions of (1.4) satisfy certain regularity properties.

Theorem 1.1. Let n ≥ 2 and λ0 > 0, and let {e1, . . . , en} be any orthonormal basis in Rn.
Assume that the pairs of potentials A1,A2 ∈ Cm+2

c (Rn;Rn) and q1, q2 ∈ Cmc (Rn;R) are compactly
supported in B. Assume also that the following condition holds:

(1.6)

∫ ∞
−∞

en ·Ak(x1, . . . , xn−1, s) ds = 0 for k = 1, 2 and for every (x1, . . . , xn−1) ∈ Rn−1.

If for all θ ∈ Sn−1 and λ ≥ λ0 we have

aA1,q1(λ, θ,±ej) = aA2,q2(λ, θ,±ej) for all j = 1, . . . , n,

then dA1 = dA2 and q1 = q2.

The condition (1.6) is a technical restriction necessary to decouple the information on q from the
information on A at some point in the proof of this uniqueness result.

In Theorem 1.1 one cannot recover completely the magnetic potential A due to the phenomenon
of gauge invariance. This consists simply in the observation that if HA,qu = v for some functions u
and v, then HA+∇f,q (e−ifu) = e−ifv, for any f ∈ C2(Rn). Therefore if f is compactly supported,
the scattering amplitude is not going to be affected by f , so that aA,q = aA+∇f,q. On the other
hand if we consider Hamiltonians

H̃A,V := −∆− 2iA ·D + V,

where V is a fixed function, then the gauge invariance is broken and knowledge of the associated
scattering amplitude ãA,V ( · , · , ω) for the 2n directions ω = ±ej determines completely A.

Theorem 1.2. Let n ≥ 2 and λ0 > 0, and let {e1, . . . , en} be any orthonormal basis in Rn.
Assume that A1,A2 ∈ Cm+2

c (Rn;Rn) and V ∈ Cmc (Rn;C) have compact support in B, and that

the Hamiltonians H̃A1,V and H̃A2,V are both self-adjoint operators.
If for all θ ∈ Sn−1 and λ ≥ λ0 we have

ãA1,V (λ, θ,±ej) = ãA2,V (λ, θ,±ej) for all j = 1, . . . , n,

then A1 = A2.
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Notice that in this statement (1.6) is not assumed. This is related to the fact that V is fixed, so
it is not necessary to decouple V from A in the proof. Similarly, if A is a fixed vector potential,
it would be possible to determine q from the knowledge of aA,q( · , · ,±ω) for a fixed ω ∈ Sn−1.

In both the previous theorems we have considered an orthonormal basis {e1, . . . , en} of Rn in
order to simplify the notation and computations in some parts of the arguments, but we remark
that our proofs can be easily adapted to allow non-orthonormal directions of measurements. Also,
in both theorems the measured quantities are the scattering amplitudes generated by 2n waves
incoming each one from one of the 2n different directions ±ej . Given ej , one can avoid the need
of sending a wave also from the opposite direction −ej provided the potentials satisfy certain
symmetry properties. As an example of this phenomenon we state the following result.

Theorem 1.3. Let n ≥ 2 and λ0 > 0, and let {e1, . . . , en} be any orthonormal basis in Rn.
Assume that the pairs of potentials A1,A2 ∈ Cm+2

c (Rn;Rn) and q1, q2 ∈ Cmc (Rn;R) are compactly
supported in B and satisfy (1.6). Assume also that

(1.7) Ak(−x) = −Ak(x), for k = 1, 2.

If for all θ ∈ Sn−1 and λ ≥ λ0 we have

aA1,q1(λ, θ, ej) = aA2,q2(λ, θ, ej) for all j = 1, . . . , n− 1, and

aA1,q1(λ, θ,±en) = aA2,q2(λ, θ,±en),

then dA1 = dA2 and q1 = q2.

We assume that aA1,q1(λ, θ, ω) = aA2,q2(λ, θ, ω) for ω = ±en instead of just ω = en since we
have not considered any symmetry on the potential q (a result assuming symmetries on q to
reduce further the data could also be proved modifying slightly the arguments used to prove this
theorem). We also prove in time domain a more technical result analogous to Theorem 1.2 that
requires just n measurements instead of 2n, and that is compatible with less restrictive symmetry
conditions than (1.7) (see Theorem 5.1 below).

As already mentioned, the previous theorems follow from corresponding results for the time
domain inverse problem (Theorems 2.1, 2.2, and 5.2, respectively). We now state the precise result
that establishes the equivalence between the inverse scattering problem in frequency domain and
the inverse scattering problem in time domain, extending the results in [RS20b] to first order
perturbations.

Theorem 1.4. Let n ≥ 2, ω ∈ Sn−1, and λ0 > 0. Assume that A1,A2 ∈ Cm+2
c (Rn;Rn) and

q1, q2 ∈ Cmc (Rn;R) are supported in B. For k = 1, 2, let UAk,qk(x, t;ω) be the unique distributional
solution of the initial value problem

(∂2
t + (D + Ak)2 + qk)UAk,qk = 0 in Rn+1, UAk,qk |{t<−1} = δ(t− x · ω).

Then one has that

aA1,q1(λ, θ, ω) = aA2,q2(λ, θ, ω) for λ ≥ λ0 and θ ∈ Sn−1,

if and only if

UA1,q1(x, t;ω) = UA2,q2(x, t;ω) for all (x, t) ∈ (∂B × R) ∩ {t ≥ x · ω} .

We remark that the restriction of the distribution UAk,qk to the surface ∂B × R is always well
defined and vanishes in the open set (∂B × R) ∩ {t < x · ω}. This can be seen from the explicit
formula for UAk,qk that we will compute in section 2.

The proof of the main results in time domain is based on a Carleman estimate method introduced
in [RS20a, RS20b], which in turn adapts the method introduced in [BK81]. See [IY01, Kl13, BY17]
for more information and references on the Bukhgeim-Klibanov method, and [CS11, H+19] for its
use in inverse boundary problems for the magnetic Schrödinger operator.
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Essentially, the Carleman estimate is applied to the difference of two solutions of (1.4). The
general idea is to choose an appropriate Carleman weight function for the wave operator that is
large on the surface {t = x · ω} and allows one to control a source term on the right hand side of
the equation. Then one needs an additional energy estimate to absorb the error coming from the
source term. This will allow one to control the difference of the potentials A1 − A2 or q1 − q2.
This step is the key to get the uniqueness result. Unfortunately, after doing all this, there is
a remaining boundary term in the Carleman estimate that cannot be appropriately controlled.
However, this term can be canceled using an equivalent Carleman estimate for solutions of the
wave equation coming from the opposite direction. This is why we require 2n measurements to
recover n independent functions instead of just n measurements. Assuming symmetry properties
on the coefficients like in Theorem 1.3 is essentially an alternative way to get around this difficulty.

An interesting point in the proof of the time domain results is how one decouples the information
concerning A from the information on q. The method used here consists in considering the solutions
of the initial value problem

(1.8) (∂2
t +HA,q)UA,q = 0 in Rn+1, UA,q|{t<−1} = H(t− x · ω),

where H stands for the Heaviside function. Since (1.4) is essentially the time derivative of the
previous IVP, it turns out that it is equivalent to formulate the inverse scattering problem in time
domain using any of these initial value problems. The advantage is that the solutions of (1.8)
contain information only about A at the surface {t = x · ω}. By using these ideas, we are able
to estimate both A1 −A2 in terms of q1 − q2 and q1 − q2 in terms of A1 −A2. Using these two
estimates in tandem allows us to recover both the magnetic field and electric potential under the
assumption (1.6).

This paper is structured as follows. In Section 2 we state the time domain results, Theorem
2.1 and Theorem 2.2, from which Theorems 1.1 and 1.2 follow by Theorem 1.4. We also analyze
the structure of the solutions of the initial value problems (1.4) and (1.8) and we state several of
their properties that will play an essential role later on. In Section 3 we introduce the Carleman
estimate and in Section 4 we combine the results of the previous two sections to prove Theorems
2.1 and 2.2. In the last section of the paper we state and prove Theorems 5.1 and 5.2 in order to
illustrate how the number of measurements can be reduced in time domain by imposing symmetry
assumptions on the potentials (Theorem 1.3 follows from the second result). The proof of Theorem
1.4 is given in Appendix A, and Appendix B is devoted to adapting several known results for the
wave operator to our purposes.

Acknowledgements. C.M. was supported by project MTM2017-85934-C3-3-P. L.P. and M.S.
were supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Modelling
and Imaging, grant numbers 312121 and 309963), and M.S. was also supported by the European
Research Council under Horizon 2020 (ERC CoG 770924). The authors would like to thank the
anonymous referees for their comments and suggestions that have helped to improve this paper.

2. The inverse problem in time domain

Main results in time domain. Let ω ∈ Sn−1 be fixed. In the time domain setting we consider
the initial value problem

(2.1) (∂2
t +HV)UV = 0 in Rn+1, UV |{t<−1} = δ(t− x · ω),

where δ represents the 1-dimensional delta distribution and HV = −∆ + V(x,D) . Formally, the
problem (1.1) is the Fourier transform in the time variable of (2.1). As we will show later in this
section, there is a unique distributional solution of UV if the first order coefficients of V are in
Cm+2
c (Rn) and the zero order coefficient is Cmc (Rn), for m as in (1.5).
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The inverse problem in the time domain consists in determining the coefficients of V from certain
measurements of UV at the boundary ∂B× (−T, T ) ⊂ Rn+1 for some fixed T > 0. To simplify the
notation we define

Σ := ∂B × (−T, T ).

From now, depending on the context, it will be useful to write the Hamiltonian HV both in the
forms

(2.2) HA,q = (D + A)2 + q,

and

(2.3) LW,V = −∆ + 2W · ∇+ V,

where A,W ∈ Cm+2
c (Rn;Cn) and q, V ∈ Cmc (Rn;C). Since the coefficients have high regu-

larity and are complex valued, both forms are completely equivalent, but the first notation is
specially convenient in the cases where there is gauge invariance. In fact, this inverse problem
has an invariance equivalent to the gauge invariance present in the frequency domain problem. A
straightforward computation shows that if U is a solution of

(∂2
t +HA,q)U = 0 in Rn+1, U |{t<−1} = δ(t− x · ω),

then Ũ = e−fU is a solution of

(∂2
t +HA+∇f,q)Ũ = 0 in Rn+1, Ũ |{t<−1} = δ(t− x · ω),

where f is any C2(Rn) function with compact support in B. The initial condition satisfied by Ũ is
not affected by the exponential factor e−f since for t < −1 the distribution δ(t−x ·ω) is supported

in {x · ω < −1}, a region where f vanishes. On the other hand we also have that Ũ |Σ = U |Σ since
the support of f is contained in B. Hence, at best one can recover the magnetic field dA from the
boundary data U |Σ. We now state two uniqueness results for the inverse problem that we have
just introduced.

Theorem 2.1. Let A1,A2 ∈ Cm+2
c (Rn;Cn) and q1, q2 ∈ Cmc (Rn;C) with compact support in B

and such that∫ ∞
−∞

en ·Ak(x1, . . . , xn−1, s) ds = 0 for k = 1, 2, and all (x1, . . . , xn−1) ∈ Rn−1.

Also, let 1 ≤ j ≤ n and consider the 2n solutions Uk,±j(x, t) of

(2.4) (∂2
t + (D + Ak)2 + qk)Uk,±j = 0 in Rn+1, Uk,±j |{t<−1} = δ(t−±xj).

If for each 1 ≤ j ≤ n one has U1,±j = U2,±j on the surface Σ ∩ {t ≥ ±xj}, then dA1 = dA2 and
q1 = q2.

As in the introduction, we highlight that the restriction of the distribution U1,±j to the surface Σ
is well defined and vanishes in the open set Σ ∩ {t < ±xj}, see the comments after Proposition
2.4 for more details. Theorem 1.1 follows directly from this result and Theorem 1.4. On the other
hand, if we fix the zero order term to be always the same, then the gauge invariance disappears
and one can recover completely the first order term of the perturbation. To state this result we
use the Hamiltonian in the form (2.3).

Theorem 2.2. Let W1,W2 ∈ Cm+2
c (Rn;Cn) and V ∈ Cmc (Rn;C) with compact support in B.

Let 1 ≤ j ≤ n and k = 1, 2, and consider the corresponding 2n solutions Uk,±j satisfying

(2.5) (∂2
t −∆ + 2Wk · ∇+ V )Uk,±j = 0, in Rn+1, Uk,±j |{t<−1} = δ(t−±xj).

If for each 1 ≤ j ≤ n one has U1,±j = U2,±j on the surface Σ ∩ {t ≥ ±xj}, then W1 = W2.
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As in the previous case, Theorem 1.2 follows from Theorem 2.2 with Wk = −iAk and Theorem
1.4. To see this, notice that for k = 1, 2 the Hamiltonians H̃Ak,V in Theorem 1.2 satisfy H̃Ak,V =

(D + Ak)2 + qk for qk := V −A2
k − D ·Ak. And since by assumption Ak is real and H̃Ak,V is

self-adjoint, qk must be a real function. This means that the conditions required to apply Theorem
1.4 are satisfied.

In Theorem 2.2 one needs 2n measurements to obtain the unique determination of the first
order coefficient W. The number of measurements in Theorem 2.1 stays the same even if one now
also proves the unique determination of q. This is due to the gauge invariance phenomenon, since
now one uniquely determines just the magnetic field dA and not the first order term A. In fact,
in the uniqueness proof, gauge invariance reduces one degree of freedom in the first order term by
making it possible to choose a gauge in which the nth component of A1−A2 vanishes (as we shall
see later on, the fact that the solutions Uk,±n coincide at Σ∩ {t = ±xn} guarantees that there are
no obstructions for this gauge transformation).

The direct problem. In order to prove the previous theorems we need to study the direct problem
(2.1) in more detail. Let ω ∈ Sn−1. Assume W ∈ Cm+2

c (Rn;Cn) and V ∈ Cmc (R;C), and consider
the initial value problems for the wave operator

(2.6) (∂2
t + LW,V )Uδ = 0 in Rn+1, Uδ|{t<−1} = δ(t− x · ω),

and

(2.7) (∂2
t + LW,V )UH = 0 in Rn+1, UH |{t<−1} = H(t− x · ω),

where LW,V was defined in (2.3). As mentioned in the introduction, the reason we also consider
the second equation is that the δ-wave Uδ and H-wave UH contain equivalent information about
W and V (see Proposition 2.5 below), but H-waves decouple the information on W from the
information on V .

To study (2.6) and (2.7), it is convenient to use certain coordinates in Rn associated to the fixed
vector ω. Specifically, we take any orthonormal coordinate system such that, for x ∈ Rn, we have
x = (y, z) where y ∈ {ω}⊥ (identified with Rn−1) and z = x · ω.

For a fixed T > 7, it will be helpful to introduce the following subsets of Rn+1 (see Figure 1):

(2.8)

Q := B × (−T, T ), Σ := ∂B × (−T, T ),

Q± := Q ∩ {±(t− z) > 0} , Σ± := Σ ∩ {±(t− z) > 0} ,
Γ := Q ∩ {t = z} , Γ±T := Q ∩ {t = ±T} .

We now give a heuristic motivation of the existence of solutions Uδ and UH of (2.6) and (2.7).
For the interested reader we give a proof in Section B.1 of the properties that we now state, by
means of the progressing wave expansion method. We start by making the ansatz of looking for
possible solutions of (2.6) and (2.7) in the family of functions satisfying

U(y, z, t) = f(y, z, t)H(t− z) + g(y, z, t)δ(t− z),

where f(y, z, t) and g(y, z, t) are C2 functions in {t ≥ z}. A straightforward computation shows
that

(2.9)

(∂2
t + LW,V )U =

[
(∂2
t + LW,V )f

]
H(t− z)

+
[
(∂2
t + LW,V )g + 2(∂t + ∂z − ω ·W)f

]
δ(t− z)

+ 2 [(∂t + ∂z − ω ·W)g] ∂tδ(t− z).

In the case of equation (2.7) to satisfy the initial condition we need to have f = u where u is a
function satisfying u(x, t) = 1 for all t < −1, and g(x, t) = 0 for all (x, t) ∈ Rn+1. Then (2.9)
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t = T

t = −T

t = z

Q+

Q−

Γ
z

t

y

Figure 1. The regions Q, Q± and Γ.

implies that u must satisfy

(2.10)
(∂2
t + LW,V )u = 0 in {t > z} ,

∂tu+ ∂zu− ω ·Wu = 0 in {t = z} .

The unique solution of the last ODE is

u(y, z, z) = e
∫ z
−∞ ω·W(y,s) ds,

since it has to satisfy the initial condition u(y, z, z) = 1 for z < −1. We now state this and further
results about the solution of (2.7).

Proposition 2.3. Let ω ∈ Sn−1 be fixed. Let W ∈ Cm+2
c (Rn;Cn) and V ∈ Cmc (Rn;C). Define

(2.11) ψ(x) :=

∫ 0

−∞
ω ·W(x+ sω) ds.

There is a unique distributional solution UH(x, t;ω) of (2.7), and it is supported in the region
{t ≥ x · ω}. In particular,

UH(x, t;ω) = u(x, t)H(t− x · ω),

where u is a C2 function in {t ≥ x · ω} satisfying the IVP

(2.12)

(∂2
t + LW,V )u = 0 in {t > x · ω} ,

u(x, x · ω) = eψ(x)

u(x, t) = 1 in {x · ω ≤ t < −1} .

Notice that the boundary value of u at {t = x · ω} depends only on W and not on the zero order
term V .

We now study the solutions of (2.6). In this case we have to consider (2.9) with g = 1 for
t < −1, and f = v where v is a function satisfying v(x, t) = 0 for t < −1. Then the following
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conditions must be satisfied:

(2.13)

(∂2
t + LW,V )v = 0 in {t > z},

∂tv + ∂zv − ω ·Wv = −1/2(∂2
t + LW,V )g in {t = z} ,

∂tg + ∂zg − ω ·Wg = 0 in {t = z} ,
∂t(∂tg) + ∂z(∂tg)− ω ·W(∂tg) = 0 in {t = z} .

The last two conditions are required so that [(∂t + ∂z − ω ·W)g] ∂tδ(t− z) vanishes completely in
all Rn+1 as a distribution. As in the case of (2.10), the third ODE and the initial condition imply
that

g(y, z, z) = eψ(y,z) = e
∫ z
−∞ ω·W(y,s) ds,

and in fact we are going to choose g(y, z, t) = eψ(y,z) for all (y, z, t) ∈ Rn+1. We can freely do this:
g1(y, z, t)δ(t − z) = g2(y, z, t)δ(t − z) iff g1(y, z, z) = g2(y, z, z). Also, the previous choice implies
that ∂tg = 0, so that the last condition is satisfied too. Computing explicitly LW,V (g), the second
equation in (2.13) becomes the ODE

∂tv + ∂zv − ω ·Wv = −1

2
eψ(−∆ψ − |∇ψ|2 + 2W · ∇ψ + V ) in {t = z} ,

with initial condition v(y, z, z) = 0 if z < −1. The unique solution is then

v(y, z, z) = −1

2
eψ(y,z)

∫ z

−∞

[
−∆ψ − |∇ψ|2 + 2W · ∇ψ + V

]
(y, s) ds.

We state this rigorously in the following proposition.

Proposition 2.4. Let ω ∈ Sn−1 be fixed. Let W ∈ Cm+2
c (Rn;Cn) and V ∈ Cmc (Rn;C). Consider

ψ as in (2.11). There is a unique distributional solution Uδ(x, t;ω) of (2.6), and it is supported in
the region {t ≥ x · ω}. Moreover

(2.14) Uδ(x, t;ω) = v(x, t)H(t− x · ω) + eψ(x)δ(t− x · ω),

where v is a C2 function in {t ≥ x · ω} satisfying

(2.15)

(∂2
t + LW,V )v = 0 in {t > x · ω} ,
v(x, x · ω) = F (x),

v(x, t) = 0 in {x · ω ≤ t < −1} ,
with

F (x) = −1

2
eψ(x)

∫ 0

−∞

[
−∆ψ − |∇ψ|2 + 2W · ∇ψ + V

]
(x+ sω) ds.

One of the consequences of the formula (2.14) is that the restriction of Uδ(x, t;ω) to the surface
Σ is well defined. This essentially follows from the fact that the wave front set of the distribution
δ(t − x · ω) is disjoint from the normal bundle of Σ. We emphasize that Uδ satisfies the initial
condition Uδ|{t<−1} = δ(t− x · ω), even if it does not look that way at a first glance. This is due
to the fact that when t < −1 the distribution δ(t− x · ω) is supported in {x · ω < −1}, a region in
which ψ vanishes. Therefore

eψ(x)δ(t− x · ω) = δ(t− x · ω) for t < −1.

As mentioned previously, for more details about the proofs of Propositions 2.3 and 2.4 see Section
B.1. We remark that the condition (1.5) on the regularity of the coefficients appears in the proofs
of these propositions in order to have C2 solutions u and v of (2.12) and (2.15).

An important fact later on is that the solutions of (2.6) and (2.7) satisfy that ∂tUH = Uδ. This
is consequence of the independence of V and W from t together with the uniqueness of solutions
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for both equations. Of particular relevance for the scattering problem will be that this equivalence
also holds for the boundary data: knowledge of UH |Σ+

gives Uδ|Σ+
and vice versa.

Proposition 2.5. Let W ∈ Cm+2
c (Rn;Cn) and V ∈ Cmc (Rn;C), and let ω ∈ Sn−1 be fixed. If

Uδ and UH are, respectively, the unique distributional solutions of (2.6) and (2.7), then one has
that ∂tUH = Uδ in the sense of distributions. In fact, it also holds that v(x, t) = ∂tu(x, t), so that
(2.14) can be written as

(2.16) Uδ(x, t;ω) = (∂tu(x, t))H(t− x · ω) + u(x, t)δ(t− x · ω).

Specifically, if ψ is given by (2.11) we have that

(2.17) u(x, t) =

∫ t

x·ω
v(x, τ) dτ + eψ(x), for t ≥ x · ω.

Notice that the previous identity holds in particular for every x ∈ ∂B, so we can write that

(2.18) u|Σ+(x, t) =

∫ t

x·ω
v|Σ+(x, τ) dτ + eψ(x), for (x, t) ∈ Σ+.

Proof of Proposition 2.5. Since W and V are independent of t, we can take a time derivative of
both sides of (2.7). This implies that ∂tUH satisfies

(∂2
t + LW,V )∂tUH = 0 in Rn+1, ∂tUH |{t<−1} = δ(t− x · ω).

Computing explicitly ∂tUH , we get

∂tUH(x, t;ω) = (∂tu(x, t))H(t− x · ω) + u(x, t)δ(t− x · ω).

Proposition 2.4 implies there is a unique distributional solution of (2.7), and hence ∂tUH = Uδ.
Then ∂tu = v. We also get that u(x, x · ω) = eψ, but we already knew this from Proposition
2.3. Therefore (2.16) holds true. Identity (2.17) follows directly by the fundamental theorem of
calculus. �

As an immediate consequence of identity (2.18) we get the following lemma.

Lemma 2.6. Let W1,W2 ∈ Cm+2
c (Rn;Cn) and V1, V2 ∈ Cmc (Rn;C). For k = 1, 2 and ω ∈ Sn−1,

consider the solutions UH,k and Uδ,k of

(�+ 2Wk · ∇+ Vk)UH,k = 0, in Rn+1, UH,k|{t<−1} = H(t− x · ω),

and

(�+ 2Wk · ∇+ Vk)Uδ,k = 0, in Rn+1, Uδ,k|{t<−1} = δ(t− x · ω).

Then UH,1 = UH,2 in Σ ∩ {t ≥ x · ω} if and only if Uδ,1 = Uδ,2 in Σ ∩ {t ≥ x · ω}.

Energy estimates. To finish this section we state three different estimates related to the wave
operator that will be useful later on. They are analogues of the estimates given in [RS20a, Lemmas
3.3-3.5], modified in order to account for the presence of a first order perturbation not considered
in the mentioned paper. For completeness we have included the proofs in Section B.2. The first
two lemmas will be used to control certain boundary terms appearing in the Carleman estimate.
We denote by ∇Γα the component of ∇α tangential to Γ.

Lemma 2.7. Let T > 1. Let W ∈ L∞(B,Cn) and V ∈ L∞(B,C). Then, the estimate

‖α‖L2(ΓT ) + ‖∇x,tα‖L2(ΓT )

. ‖α‖H1(Γ) + ‖(�+ 2W · ∇+ V )α‖L2(Q+) + ‖α‖H1(Σ+) + ‖∂να‖L2(Σ+),
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holds true1 for every α ∈ C∞(Q+). The implicit constant depends on ‖W‖L∞(B), ‖V ‖L∞(B) and
T .

Lemma 2.8. Let T > 1. Let W ∈ L∞(B,Cn), V ∈ L∞(B,C) and φ ∈ C2(Q+). Then, there is a
constant σ0 > 0 such that the following estimate

(2.19)
σ2‖eσφα‖2L2(Γ) + ‖eσφ∇Γα‖2L2(Γ) . σ

3‖eσφα‖2L2(Q+) + σ‖eσφ∇x,tα‖2L2(Q+)

+ ‖eσφ(�+ 2W · ∇+ V )α‖2L2(Q+) + σ2‖eσφα‖2L2(Σ+) + ‖eσφ∇x,tα‖2L2(Σ+),

holds for every α ∈ C∞(Q+) and for every σ ≥ σ0. The implicit constant depends on ‖φ‖C2(Q+),

‖W‖L∞(B), ‖V ‖L∞(B) and T .

The following lemma will be used to show that the normal derivative at Σ+ of a solution of the
free wave equation outside the unit ball vanishes at Σ+ provided that certain extra conditions are
met. Here ν denotes the unit vector field normal to Σ+.

Lemma 2.9. Let T > 1. Let α(y, z, t) be a C2 function on {t ≥ z} satisfying

(2.20)

�α = 0 in {(y, z, t) : |(y, z)| > 1, t > z} ,
(∂t + ∂z)α(y, z, z) = 0 in {|(y, z)| > 1, t = z} ,

α(y, z, t) = 0 in {z < t < −1} .

Assume that on the region |(y, z)| ≥ 1 we have

(2.21) α(y, z, z) =


0, if |y| ≥ 1,

0, if |y| ≤ 1, and z ≤ −
√

1− |y|2,
β(y), if |y| ≤ 1, and z ≥

√
1− |y|2,

for some β ∈ C2
c (Rn−1) compactly supported on |y| ≤ 1− ε, where ε ∈ (0, 1). Then

‖∂ν(χα)‖L2(Σ+) . ε
−1/2‖χ‖C1

(
‖α‖H1(Σ+) + ‖α‖H1(Σ+∩Γ)

)
,

for any function χ ∈ C1(Q+). The implicit constant depends on T .

3. The Carleman estimate and its consequences

In this section we are going to apply a suitable Carleman estimate in order to be able to control
the difference of the potentials with the boundary data. For this purpose we adapt a Carleman
estimate for general second order operators stated in [RS20b, Theorem A.7]. The trick is to choose
an appropriate weight function to obtain a meaningful estimate for the wave operator.

First, take any ϑ ∈ Rn such that |ϑ| = 2 and consider the following smooth function,

(3.1) η(y, z, t) := |x− ϑ|2 − 1

4
(t− z)2.

The weight in the Carleman estimate is going to be the function φ = eλη for some λ > 0 large
enough. This choice is made in order to have several properties. On the one hand we want φ to be
sufficiently pseudoconvex so that the Carleman estimate holds for the wave operator. On the other
hand, we want φ to decay very fast when t > z in order to deal with certain terms appearing in
the Carleman estimate (see Lemma 3.2 below and its application in the proof of Lemma 3.3). And
finally, since the z coordinate is going to be determined by the direction ω of the traveling wave,
we require the restriction of φ to the surface {t = z} to be independent of ω (or in other words,

1Throughout the paper we write a . b or equivalently b & a, when a and b are positive constants and there exists

C > 0 so that a ≤ Cb. We refer to C as the implicit constant in the estimate.
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dependent on x but independent of the choice of coordinates x = (y, z)). This is of great help since
we recover A combining measurements made from waves traveling in different directions.

In order to state the Carleman estimate we fix an open set D ⊂ {(x, t) ∈ Rn+1 : |x| < 3/2} such
that Q ⊂ D (recall the notation introduced in (2.8)).

Proposition 3.1. Let φ = eλη for λ > 0 large enough. Let Ω ⊂ D be any open set with Lipschitz
boundary. Then there exists some σ0 > 0 such that

σ

∫
Ω

e2σφ(|∇u|2 + σ2|u|2) dx+ σ

∫
∂Ω

n∑
j=0

νjE
j(x, σRe(u),∇Re(u)) dS

+ σ

∫
∂Ω

n∑
j=0

νjE
j(x, σ Im(u),∇ Im(u)) dS .

∫
Ω

e2σφ|�u|2dx

holds for all u ∈ C2(Ω) and all σ ≥ σ0. The implicit constant depends on n, λ, and Ω. Here ν is
the outward pointing unit vector normal to ∂Ω, and for real v and 0 ≤ j ≤ n, Ej is given by

(3.2) Ej
(
x, σe−σφv,∇(e−σφv)

)
= −∂jφ(|∇xv|2 − ∂tv2)

− σ2∂jφ(|∇xφ|2 − ∂jφ2)v2 − 2∂jv(∇xv · ∇xφ− ∂tv∂tφ)− g(x, t)∂jvv,

where g is some real valued and bounded function independent of σ and v (here the index 0
corresponds to t, so that ∂0φ = ∂tφ).

Proof. Since �h is real if h is a real function, the statement follows from applying Theorem A.7 of
[RS20b] to the real and imaginary parts of u, and then adding the resulting estimates. However,
to apply the mentioned result, one needs to verify that φ is strongly pseudoconvex in the domain
D with respect the wave operator �. The reader can find the precise definition of this condition
in [RS20b, Appendix]), though it is not necessary for the discussion that follows.

Denote by (ξ, τ) ∈ Rn+1 the Fourier variables corresponding to (x, t), where ξ ∈ Rn and τ ∈ R.
It can be proved that a function φ = eλη will be strongly pseudoconvex for λ > 0 large enough
provided η satisfies certain technical conditions. By Propositions A.3 and A.5 in [RS20b], these
conditions are the following: one needs to verify that the level surfaces of η are pseudoconvex with
respect to the wave operator �, and that |(∇x,tη)(x, t)| > 0 for all (x, t) ∈ D.
In our case, the second property is immediate since |ϑ| = 2 implies that |x−ϑ|2 has non-vanishing
gradient in D. The reader can find in [RS20b, Definition A.1] a precise definition of the first
property. For the purpose of this work it is enough to use that the level surfaces of a function f
are pseudoconvex w.r.t. � in a domain D if for all (x, t) ∈ D and (ξ, τ) ∈ Rn+1

(3.3) τ2∂2
t f − 2τξ · ∇x∂tf +

n∑
j,k=1

ξjξk ∂
2
jkf > 0 when τ2 = |ξ|2 and τ∂tf − ξ · ∇xf = 0.

(notice that τ2 − |ξ|2 is the symbol of the wave operator).
We now consider f given by

f(y, z, t) =
1

2
(b|x− ϑ|2 − (t− z)2),

where |ϑ| = 2 and b > 0. Here we are using the orthonormal coordinates (x, t) = (y, z, t), y ∈ Rn−1

introduced previously. Let (ζ, ρ, τ) ∈ Rn−1×R×R be the Fourier variables counterpart to (y, z, t).
A straightforward computation with j, k = 1, . . . , n − 1 and ∂j = ∂yj , shows that the only non-
vanishing second order derivatives of f are

∂2
t f = −1, ∂2

jkf = bδj,k, ∂2
zf = b− 1, ∂2

tzf = 1,
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Then, in particular, (3.3) is verified if we show that

(3.4) − τ2 + b|ζ|2 + (b− 1)ρ2 − 2τρ > 0, whenever τ2 = |ζ|2 + ρ2.

Note that both conditions are homogeneous in the variables (ζ, ρ, τ), so it is enough to study the
case τ = 1. Thus (3.4) becomes

−1 + b+ (b− 2)ρ2 − 2ρ > 0 for − 1 ≤ ρ ≤ 1.

It is not difficult to verify that for b > 3 this inequality always holds. This proves that for b = 4
the level surfaces of f are strongly pseudoconvex with respect to �, and therefore, the same holds
for η = 1

2f .
To finish, we mention that precise formula (3.2) of the quadratic forms Ej is computed in detail

in [RS20b, Section A.2]. �

In the following lemma we prove a couple of properties of the weight φ that will be important
later in order to show that some terms appearing in the Carleman estimate are suitably small in
the parameter σ.

Lemma 3.2. Let ϑ ∈ Rn with |ϑ| = 2, and η as in (3.1). Then, the following properties are
satisfied for any T > 7:

i) The smallest value of φ on Γ is strictly larger than the largest value of φ on Γ−T ∪ ΓT .
ii) The function

κ(σ) = sup
(y,z)∈B

∫ T

−T
e2σ(φ(y,z,t)−φ(y,z,z)) dt

satisfies that lim
σ→∞

κ(σ) = 0.

Proof. Let η0(y, z) := |x− ϑ|2. For the first assertion it is enough to prove that

max
Γ−T∪ΓT

eλ(η0− 1
4 (t−z)2) < min

Γ
eλη0 ,

for T large enough, since η(y, z, z) = η0(y, z). Observing that |(y, z)| ≤ 1 in Γ and Γ±T , the
previous inequality will hold if

max
B

η0 −min
B

η0 <
1

4
(T − 1)2,

and since maxB η0 − minB η0 = 8, this is true for any T > 7. This yields the first assertion. To
prove the second assertion we are going to use the following inequality

1− e−s ≥ min {1/2, s/2} , s ≥ 0.

Since eλη0 > 1 always, we have

φ(y, z, z)− φ(y, z, t) = eλη0

(
1− e−λ4 (t−z)2

)
≥ 1− e−λ4 (t−z)2

≥ 1

2
min

{
1,
λ

4
(t− z)2

}
,

and hence, since |z| ≤ 1,

0 ≤
∫ T

−T
e2σ(φ(y,z,t)−φ(y,z,z))dt ≤

∫ T

−T
e−σmin{1,λ4 (t−z)2}dt ≤

∫ T−z

−T−z
e−σmin{1,λ4 t2}dt

≤
∫ T+1

−T−1

e−σmin{1,λ4 t2}dt.

By the dominated convergence theorem, the last integral goes to zero when σ →∞, and therefore
lim
σ→∞

κ(σ) = 0. This completes the proof. �
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We now adapt the Carleman estimate of Proposition 3.1 to our purposes. First, define

φ0(x, ϑ) := eλ|x−ϑ|
2

,

for x ∈ Rn and |ϑ| = 2, so that φ(y, z, z) = φ0(y, z). From now on it is convenient to use the
notation

Z := ∂t + ∂z, N := ∂t − ∂z.

We are interested in applying Proposition 3.1 for Ω = Q±. The boundary of Q± is composed of
the following regions: ∂Q± = Γ∪Σ± ∪Γ±T . We are going to use the precise formula (3.2) only in
Γ, where in fact an explicit computation yields that

(3.5)

n∑
j=0

νjE
j
(
x, σe−σφv,∇(e−σφv)

)
= 4(Nφ)((Zv)2 + σ2(Zφ)2v2)

+ 2(Zφ)(|∇yv|2 − σ2|∇yφ|2v2)− 4(Zv)(∇yv · ∇yφ)− 2(Zv)gv

for any real function v ∈ C2(Q±) (for a detailed derivation of this formula see [RS20b, Section
A.2]). The important thing about this identity is that it does not depend on ∇v but just on Zv
and ∇yv, which are derivatives along directions tangent to Γ.

The following lemma is the consequence of the Carleman estimate in Proposition 3.1 that is
relevant for our fixed angle scattering problem. It is an analogue of [RS20b, Proposition 3.2]
adapted to the case of magnetic potentials.

Lemma 3.3. Let T > 7 and ω ∈ Sn−1, and let φ0(x, ϑ) be as above. Assume that

(3.6) |(�+ 2E± · ∇+ f±)w±(x, t)| . |A±(x)|+ |q±(x)| for all (x, t) ∈ Q±,

and that

(3.7) |(∂t + ∂z − ω ·E±)w±| & |h±(x)| for all (x, t) ∈ Γ,

hold for some vector fields E±(x),A±(x) in C(Rn;Cn), some functions f±(x), h±(x), q±(x) in
C(Rn;C), and w±(x, t) in C2(Q±). Then there is a constant c > 0 such that, for σ > 0 large
enough,

(3.8)
∑
±
‖eσφ0h±‖2L2(B) . σ

3ecσ‖w+ − w−‖H1(Γ)(‖w+‖H1(Γ) + ‖w−‖H1(Γ))

+ γ(σ)
∑
±

(
‖eσφ0A±‖2L2(B) + ‖eσφ0q±‖2L2(B)

)
+ σ3ecσ

∑
±

(
‖w±‖2H1(Σ±) + ‖∂νw±‖2L2(Σ±)

)
,

where γ is a positive function satisfying γ(σ)→ 0 as σ →∞. The implicit constant is independent
of σ, ϑ and w±.

We remark that, since the functions φ0(x, ϑ) and h±(x) are independent of t, the norms
‖eσφ0h±‖L2(B) and ‖eσφ0h±‖L2(Γ) are equivalent. The same holds for A±(x) and q±(x).

In the proof of the lemma it will be useful to introduce the notation

(3.9) F j(x, σu,∇u) := e−2σφEj
(
x, σRe(u),∇Re(u)

)
+ e−2σφEj

(
x, σ Im(u),∇ Im(u)

)
.

We remark that F j depends on the function g in Proposition 3.1 which could in principle be different
in the domains Q+ and Q−, but as discussed in [RS20b, footnote 1 in the proof of Proposition 3.2]
we can choose g to be the same both in Q+ and Q−.
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Proof. We first apply Proposition 3.1 with Ω = Q+ ⊂ D. To simplify notation we use w, A, E,
q, and h instead of w+, A+, E+, q+, and h+. For σ > 0 large enough, Proposition 3.1 and (3.9)
yield the estimate

σ3‖eσφw‖2L2(Q+) + σ‖eσφ∇w‖2L2(Q+) + σ

∫
∂Q+

e2σφF j(x, σw,∇w)νj dS . ‖eσφ�w‖2L2(Q+),

where to shorten notation, we are temporarily adopting the convention that F jνj stands for∑n
j=0 F

jνj . Since E and f are bounded, a direct perturbation argument (one can absorb the

extra terms in the left hand side for σ large enough) allows to obtain from the previous estimate
that

σ3‖eσφw‖2L2(Q+) + σ‖eσφ∇w‖2L2(Q+) + σ

∫
∂Q+

e2σφF j(x, σw,∇w)νj dS

. ‖eσφ(�+ 2E · ∇+ f)w‖2L2(Q+),

for σ large enough. Then, since ∂Q+ = Γ ∪ Σ+ ∪ ΓT we have

(3.10) σ3‖eσφw‖2L2(Q+) + σ‖eσφ∇w‖2L2(Q+) + σ

∫
Γ

e2σφF j(x, σw,∇w)νj dS

. ‖eσφ(�+ 2E · ∇+ f)w‖2L2(Q+) + σ3‖eσφw‖2L2(Σ+∪ΓT ) + σ‖eσφ∇w‖2L2(Σ+∪ΓT ).

The energy estimate in Lemma 2.8 yields

σ2‖eσφw‖2L2(Γ) + ‖eσφ∇Γw‖2L2(Γ) . σ
3‖eσφw‖2L2(Q+)

+ σ‖eσφ∇w‖2L2(Q+) + ‖eσφ(�+ 2E · ∇+ f)w‖2L2(Q+) + σ2‖eσφw‖2L2(Σ+) + ‖eσφ∇w‖2L2(Σ+).

Combining this estimate with (3.10) gives

(3.11) σ2‖eσφw‖2L2(Γ) + ‖eσφ∇Γw‖2L2(Γ) + σ

∫
Γ

e2σφF j(x, σw,∇w)νj dS

. ‖eσφ(�+ 2E · ∇+ f)w‖2L2(Q+) + σ3‖eσφw‖2L2(Σ+∪ΓT ) + σ‖eσφ∇w‖2L2(Σ+∪ΓT ).

For the terms over ΓT , using the energy estimate in Lemma 2.7 one has

‖w‖2L2(ΓT ) + ‖∇w‖2L2(ΓT ) . ‖w‖
2
H1(Γ) + ‖(�+ 2E · ∇+ f)w‖2L2(Q+) + ‖w‖2L2(Σ+) + ‖∇w‖2L2(Σ+)

. ‖w‖2H1(Γ) + ‖A‖2L2(Γ) + ‖q‖2L2(Γ) + ‖w‖2L2(Σ+) + ‖∂νw‖2L2(Σ+),(3.12)

where in the last line we have used (3.6), which implies that

‖(�+ 2E · ∇+ f)w‖2L2(Q+) . ‖A‖
2
L2(B) + ‖q‖2L2(B) . ‖A‖

2
L2(Γ) + ‖q‖2L2(Γ),

since A and q do not depend on t. We now multiply (3.12) by eσ supΓT
φ. Then by Lemma 3.2 one

can use in the right hand side that supΓT φ ≤ infΓ φ− δ for some δ > 0. This gives

σ3‖eσφw‖2L2(ΓT ) + σ‖eσφ∇w‖2L2(ΓT ) . σ
3e−2δσ(‖eσφw‖2H1(Γ) + ‖eσφA‖2L2(Γ) + ‖eσφq‖2L2(Γ))

+ σ3e2σ supΓT
φ(‖eσφw‖2L2(Σ+) + ‖eσφ∂νw‖2L2(Σ+)).
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Inserting this estimate in (3.11), and taking σ large enough to absorb the term σ3e−2δσ‖eσφw‖2H1(Γ)

on the left, yields

(3.13)

σ2‖eσφw‖2L2(Γ) +‖eσφ∇Γw‖2L2(Γ) +σ

∫
Γ

e2σφF j(x, σw,∇w)νj dS . ‖eσφ(�+2E ·∇+f)w‖2L2(Q+)

+ σ3e−2δσ
(
‖eσφA‖2L2(Γ) + ‖eσφq‖2L2(Γ)

)
+ σ3ecσ

(
‖w‖2L2(Σ+) + ‖∇w‖2L2(Σ+)

)
.

By (3.7) we can relate the left hand side of the previous inequality with h using that

‖eσφh‖2L2(Γ) . ‖e
σφ(Z − ω ·E)w‖2L2(Γ),

and that for σ large enough

‖eσφ(Z − ω ·E)w‖2L2(Γ) . σ
2‖eσφw‖2L2(Γ) + ‖eσφZw‖2L2(Γ) ≤ σ

2‖eσφw‖2L2(Γ) + ‖eσφ∇Γw‖2L2(Γ).

Inserting these two estimates in (3.13) gives

(3.14) ‖eσφh‖2L2(Γ) + σ

∫
Γ

e2σφF j(x, σw,∇w)νj dS . ‖eσφ(�+ 2E · ∇+ f)w‖2L2(Q+)

+ σ3e−2δσ
(
‖eσφA‖2L2(Γ) + ‖eσφq‖2L2(Γ)

)
+ σ3ecσ

(
‖w‖2L2(Σ+) + ‖∇w‖2L2(Σ+)

)
.

By (3.6) and Lemma 3.2 we have

‖eσφ(�+ 2E · ∇+ f)w‖2L2(Q+) . ‖e
σφA‖2L2(Q+) + ‖eσφq‖2L2(Q+)

. κ(σ)
(
‖eσφA‖2L2(Γ) + ‖eσφq‖2L2(Γ)

)
,

where κ(σ)→ 0 as σ →∞. Using this in (3.14) yields

‖eσφh‖2L2(Γ) + σ

∫
Γ

e2σφF j(x, σw,∇w)νj dS

. γ(σ)
(
‖eσφA‖2L2(Γ) + ‖eσφq‖2L2(Γ)

)
+ σ3ecσ

(
‖w‖2L2(Σ+) + ‖∇w‖2L2(Σ+)

)
,

where γ(σ) := κ(σ) + σ3e−2δσ also satisfies γ(σ) → 0 as σ → ∞. We now use that φ(y, z, z) =

eλ|x−v|
2

= φ0(x), which means that we can write the previous estimate changing the L2(Γ) norms
to L2(B) norms (this is possible since the integrands do not depend on t any more). Also, (3.5)
and (3.9) imply that

F j(x, σw,∇w)νj |Γ = F j(x, σw,∇Γw)νj |Γ,
that is, F jνj on Γ only depends on the part of the gradient of w tangential to Γ. Applying these
observations and rewriting the previous estimate with w = w+ and A = A+, yields

(3.15) ‖eσφ0h+‖2L2(B) + σ

∫
Γ

e2σφ0F j(x, σw+,∇Γw+)νj dS

. γ(σ)
(
‖eσφ0A+‖2L2(B) + ‖eσφ0q+‖2L2(B)

)
+ σ3ecσ

(
‖w+‖2L2(Σ+) + ‖∇w+‖2L2(Σ+)

)
,

Fix ν to be the downward pointing unit normal to Γ, so ν is an exterior normal for Q+. An
analogous argument in Q− yields the estimate

(3.16) ‖eσφ0h−‖2L2(B) − σ
∫

Γ

e2σφ0F j(x, σw−,∇Γw−)νj dS

. γ(σ)
(
‖eσφ0A−‖2L2(B) + ‖eσφ0q−‖2L2(B)

)
+ σ3ecσ

(
‖w−‖2L2(Σ−) + ‖∇w−‖2L2(Σ−)

)
,
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where the minus sign in the boundary term comes from the fact that the outward pointing normal
at Γ seen as part of the boundary of Q− is the opposite to that of the case of Q+. Now, since
F j(x, σw,∇Γw)νj is quadratic in w and ∇Γw (and the coefficients are bounded functions), we have
that∫

Γ

e2σφ0 |F j(x, σw+,∇Γw+)νj − F j(x, σw−,∇Γw−)νj | dS

. σ2ecσ‖w+ − w−‖H1(Γ)(‖w+‖H1(Γ) + ‖w−‖H1(Γ)).

Therefore, adding (3.15) and (3.16) and applying the previous estimate gives the desired result. �

Lemma 3.3 is going to be used for two different purposes and, as a consequence, it will be
convenient to restate the estimate in a more specific way. We do this in the following couple of
lemmas.

Lemma 3.4. Let T > 7. Let E±, A±, f±, q±, and γ(σ) be as in Lemma 3.3, and suppose that
h± = q±. Assume that for a fixed ω ∈ Sn−1 there exist w± ∈ H2(Q±) such that (3.6) and (3.7)
hold with w+ = w− on Γ. Assume also that w±|Σ± = 0 and ∂νw±|Σ± = 0. Then one has that

(3.17)
∑
±
‖eσφ0q±‖2L2(B) . γ(σ)

∑
±
‖eσφ0A±‖2L2(B),

for σ > 0 large enough.

The proof is immediate from Lemma 3.3. This lemma will be applied in the following section to
appropriate w± functions that we will construct using the δ-wave solutions given by Proposition
2.4. The following lemma will be used in a similar setting, in this case for w± functions generated
by H-wave solutions like the ones given by Proposition 2.4.

Lemma 3.5. Let T > 7. Also, let A±, q±, and γ(σ) be as in Lemma 3.3.
Suppose that for a fixed ω ∈ Sn−1 there exist w±, E±, and f± satisfying the assumptions of
Lemma 3.3, and such that (3.6) and (3.7) hold with w+ = w− on Γ and h± = ω ·A±. Assume
also that w±|Σ± = 0 and ∂νw±|Σ± = 0. Then one has that

(3.18)
∑
±
‖eσφ0ω ·A±‖2L2(B) . γ(σ)

∑
±

(
‖eσφ0q±‖2L2(B) + ‖eσφ0A±‖2L2(B)

)
.

Moreover, let {e1, . . . , en} be an orthonormal basis of Rn, and let J ⊆ {1, . . . , n} be the set of
natural numbers satisfying that at least one of the components ej ·A+ and ej ·A− does not vanish
completely in Rn. Suppose that for each j ∈ J , estimate (3.18) holds with ω = ej . Then one has
that

(3.19)
∑
±
‖eσφ0A±‖2L2(B) . γ(σ)

∑
±
‖eσφ0q±‖2L2(B),

for σ > 0 large enough.

Proof. Estimate (3.18) follows immediately from Lemma 3.3 under the assumptions in the state-
ment. Let us prove (3.19). By assumption for each j ∈ J we have

(3.20)
∑
±
‖eσφ0ej ·A±‖2L2(B) . γ(σ)

∑
±

(
‖eσφ0A±‖2L2(B) + ‖eσφ0q±‖2L2(B)

)
.

But notice that, by definition, ej ·A± = 0 in Rn if j /∈ J , so that A± =
∑
j∈J(ej ·A±)ej . This

means that adding (3.20) for all j ∈ J gives∑
±
‖eσφ0A±‖2L2(B) . γ(σ)

∑
±

(
‖eσφ0A±‖2L2(B) + ‖eσφ0q±‖2L2(B)

)
.



18 C. J. MEROÑO, L. POTENCIANO-MACHADO, AND M. SALO

Then, using that γ(σ)→ 0 as σ →∞, to finish the proof is enough to take σ large enough in order
to absorb in the left hand side the first term on the right. �

We have already seen in Section 2 that the restriction to Γ of the solutions of (2.7) and (2.6)
is in a certain sense related to the coefficients of the perturbation. In the next section we use
this fact to construct appropriate functions w+ and w− so that estimates (3.17) and (3.19) hold
simultaneously with A± and q± being quantities related to the differences of potentials A1 −A2

and q1− q2. This will yield the proof of Theorem 2.1 (and similarly of 2.2), since the function γ(σ)
in the previous lemmas goes to zero when σ →∞.

4. Proof of the uniqueness theorems with 2n measurements

With Lemmas 3.4 and 3.5 we can finally prove the uniqueness results, Theorem 2.1 and 2.2.
Both theorems are stated in terms of pairs of measurements, one for each direction ±ej . Due to
this fact, it is convenient to give an explicit expression in the same coordinate system for solutions
of (2.7) and (2.6) that correspond to the opposite directions ω = ±ω0, where ω0 ∈ Sn−1 is fixed.

Let x ∈ Rn, and choose any orthonormal coordinate system in Rn such that x = (y, z), where y ∈
{ω0}⊥ (identified with Rn−1) and z = x·ω0. Consider the solutions UH,±(y, z, t) := UH(y, z, t;±ω0)
given by Proposition 2.3 when ω = ω0 and when ω = −ω0. By Proposition 2.3, in this coordinate
system it holds that UH,±(y, z, t) = u±(y, z, t)H(t− (±z)) with

(4.1)

{
(∂2
t + LW,V )u± = 0 in {t > ±z} ,

u±(y, z,±z) = eψ±(y,z)

where

ψ±(y, z) := ±
∫ ±z
−∞

ω0 ·W(y,±s) ds.

In the case of Proposition 2.4, it is convenient to state the results for a Hamiltonian written in
the form (2.2). This is easily obtained making the change W = −iA and V = A2 +D ·A + q in
the previous results. Therefore, using the same coordinates as before, the solutions Uδ,±(y, z, t) :=
Uδ(y, z, t;±ω0) of (2.6) given by Proposition 2.4 satisfy

Uδ,±(y, z, t) = v±(y, z, t)H(t−±z) + eψ±(y,z)δ(t−±z) in Rn,

where ψ±(y, z) := ±(−i)
∫ ±z
−∞ ω0 ·A(y,±s) ds, and v± satisfies

(4.2)

{
(∂2
t + LW,V )v± = 0 in {t > ±z} ,

v±(y, z,±z) = 1
2e
ψ±(y,z)

∫ ±z
−∞

[
∇ · (iA +∇ψ±) + (iA +∇ψ±)

2 − q
]

(y,±s) ds.

Having these explicit coordinate expressions, we now prove Theorems 2.1 and 2.2. We start with
the second one which is the simplest, since the zeroth order term V is fixed. The proof consists
in the construction of two appropriate functions w+ and w− using the solutions Uk,±j of (2.7) in
order to apply the results introduced in the previous section. For a fixed direction ω = ej and
k = 1, 2, we use Uk,+j to construct w+ and, with a certain gauge change, we use Uk,−j to construct
w−. The gauge change is a technical requirement necessary to have w+ = w− in Γ, as assumed
in Lemmas 3.4 and 3.5. Notice that the reason for this assumption comes from the fact that one
wants to get rid of the first term on the right hand side of the estimate (3.8) which is large when
the parameter σ is large.

Proof of Theorem 2.2. By Lemma 2.6 we know that it is completely equivalent to consider that
the Uk,±j are solutions of the initial value problem

(∂2
t −∆ + 2Wk · ∇+ V )Uk,±j = 0, in Rn+1, Uk,±j |{t<−1} = H(t−±xj).
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instead of the IVP (2.5). Here it is convenient to work with H-waves instead of δ-waves since,
as mentioned previously, the former have boundary values on Γ that are independent of V (see
Proposition 2.3).

Fix 1 ≤ j ≤ n, and take any orthonormal coordinate system in Rn such that x = (y, z) with
z = xj and y ∈ Rn−1. Let k = 1, 2. By the previous discussion, we know that the Uk,±j functions
satisfy that

(4.3) Uk,±j(y, z, t) = uk,±j(y, z, t)H(t−±z),

where uk,±j is given by (4.1) with W = Wk, ω = ±ej , and ω0 = ej . Writing this in detail we
obtain that

(4.4)

{
(�+ 2Wk · ∇+ V )uk,±j = 0 in {t > ±z},
uk,±j(y, z,±z) = e

∫±z
−∞(±ej)·Wk(y,±s) ds.

By assumption we have that U1,±j = U2,±j on Σ± = Σ ∩ {t ≥ ±z}, so that

(4.5) u1,±j = u2,±j on Σ±,

and hence, in particular u1,j = u2,j in Σ+∩Γ = Σ∩{t = z}. From this and (4.4) we get that there
is a function µj : Rn−1 → C such that

(4.6) µj(y) :=

∫ ∞
−∞

ej ·W1(y, s) ds =

∫ ∞
−∞

ej ·W2(y, s) ds.

We now define w+ := u1,j−u2,j in Q+. With this choice Proposition 2.3 yields that w+ ∈ C2(Q+),
and (4.4) that

w+(y, z, z) = e
∫ z
−∞ ej ·W1(y,s) ds − e

∫ z
−∞ ej ·W2(y,s) ds.

To apply Lemma 3.3 and Lemma 3.5 we need also to define an appropriate function w− in Q−.
To obtain a useful choice we now consider the solutions uk,−j of (4.4) and we take

w−(y, z, t) = eµj(y)(u1,−j(y, z,−t)− u2,−j(y, z,−t)).

Then w− ∈ C2(Q−) as desired. Also, if t = z

(4.7)

w−(y, z, z) = eµj(y)u1,−j(y, z,−z)− eµj(y)u2,−j(y, z,−z)

= eµj(y)+
∫−z
−∞(−ej)·W1(y,−s) ds − eµj(y)+

∫−z
−∞(−ej)·W2(y,−s) ds

= eµj(y)−
∫∞
z
ej ·W1(y,s) ds − eµj(y)−

∫∞
z
ej ·W2(y,s) ds = w+(y, z, z).

Therefore w+ satisfies

(4.8)
(�+ 2W1 · ∇+ V )w+ = 2(W2 −W1) · ∇u2,j in Q+,

(∂t + ∂z − ej ·W1)w+ = ej · (W1 −W2)u2,j in Γ,

and w− satisfies

(�+ 2(W1 +∇µj) · ∇+ f−)w− = 2eµj (W2 −W1) · ∇u2,−j(x,−t) in Q−,

(∂t + ∂z − ej ·W1)w− = eµj ej · (W1 −W2)u2,−j(y, z,−z) in Γ,

where f− = V − |∇µj |2 + ∆µj − 2W1 · ∇µj .
Observe that eµj(y), u2,±j(x,±t) and |∇u2,±j(x,±t)| are bounded functions in Q±. Also, we

have that |u2,±j(x,±t)| & 1 in Γ by (4.4). Therefore it holds that

|(�+ 2E± · ∇+ f±)w±| . |W2 −W1| in Q±,

|(∂t + ∂z − ej ·E±)w±| & |ej · (W1 −W2)| in Γ,
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with f+ = V , E+ = W1, E− = W1 + ∇µj , and f− as before (notice that ej · E± = ej ·W1

since ej · ∇µj = 0). Hence (3.6) and (3.7) are satisfied with A± = W1 −W2, q± = 0, and
h± = ej · (W1 −W2).
On the other hand, (4.5) implies that w+|Σ+

= w−|Σ− = 0. Then, applying Lemma 2.9 respectively
with α = w+ and χ = 1, or α = e−µjw− and χ = eµj yields that ∂νw±|Σ± = 0.
Since w+ = w− in Γ by (4.7), the previous observations imply that all the conditions to apply
Lemma 3.5 are satisfied, so that (3.18) holds for each j ∈ {1, . . . , n} with A± = W1 −W2 and
q± = 0. Therefore, the same lemma implies that (3.19) must also hold, and this gives

‖eσφ0(W1 −W2)‖L2(B) ≤ 0.

Hence W1 = W2, since eσφ0(x) > 0 always. This finishes the proof. �

We now go to the remaining case, Theorem 2.1. In this result the zero order term is not fixed
so that there is gauge invariance (in fact, to simplify the proof it will be convenient fix a specific
gauge). This is a harder proof than the previous one since we need to decouple information about
q from the information about A.

Proof of Theorem 2.1. Let k = 1, 2. Since making a change of gauge Ak −∇fk with fk compactly
supported leaves invariant the measured values Uk,±j |Σ+,±j we can freely choose a suitable fk in
order to simplify the problem. In fact, to show that dA1 = dA2 it is enough to prove that A1 = A2

in a specific fixed gauge. Under the assumptions in the statement one can always take

fk(x) =

∫ xn

−∞
en ·Ak(x1, . . . , xn−1, s) ds,

since (1.6) implies that fk must be compactly supported in B. With this choice, one has that

en · (A1 −∇f1) = en · (A2 −∇f2) = 0,

in Rn. Therefore, the previous arguments show that from now on we can assume without loss of
generality that we have fixed a gauge such that en ·A1 = en ·A2 = 0 in Rn.

Fix 1 ≤ j ≤ n−1. We again take any orthonormal coordinate system in Rn such that x = (y, z),
where y ∈ Rn−1 and z = xj . Let k = 1, 2. As in the proof of Theorem 2.2, by Lemma 2.6 we can
assume that Uk,±j satisfies the IVP

(4.9) (∂2
t + (D + Ak)2 + qk)Uk,±j = 0 in Rn+1, Uk,±j |{t<−1} = H(t−±xj),

instead of (2.4). By Proposition 2.3 we know that the Uk,±j have the structure described in (4.3)
for 1 ≤ j ≤ n− 1 where uk,±j satisfies (4.1) with W = −iAk, ω = ±ej , and ω0 = ej . Writing this
in detail we obtain that

(4.10)

{
(∂2
t + (D + Ak)2 + qk)uk,±j = 0 in {t > ±z},

uk,±j(y, z,±z) = e−i
∫±z
−∞(±ej)·Ak(y,±s) ds.

By the assumption that U1,±j = U2,±j on Σ± and (4.3), we have that (4.5) holds analogously
in this case. Specifically, in Σ+ ∩ Γ this implies that there is a function µj such that

µj(y) = −i
∫ ∞
−∞

ej ·A1(y, s) ds = −i
∫ ∞
−∞

ej ·A2(y, s) ds.

We now define w+ := u1,j − u2,j , so that w+ ∈ C2(Q+) by Proposition 2.3, and

w+(y, z, z) = e−i
∫ z
−∞ ej ·A1(y,s) ds − e−i

∫ z
−∞ ej ·A2(y,s) ds.

To define w− we consider the solutions uk,−j of (4.10) and we take

w−(y, z, t) = eµj(y)u1,−j(y, z,−t)− eµj(y)u2,−j(y, z,−t).
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Then w− ∈ C2(Q−) as desired. Also, for t = z

(4.11)
w−(y, z, z) = eµj(y)−i

∫−z
−∞(−ej)·A1(y,−s) ds − eµj(y)−i

∫−z
−∞(−ej)·A2(y,−s) ds

= eµj(y)+i
∫∞
z
ej ·A1(y,s) ds − eµj(y)+i

∫∞
z
ej ·A2(y,s) ds = w+(y, z, z).

Hence, if we define

(4.12) Vk := A2
k +D ·Ak + qk,

w+ satisfies

(�− i2A1 · ∇+ V1)w+ = 2(A2 −A1) ·Du2,j + (V2 − V1)u2,j in Q+,

(∂t + ∂z + iej ·A1)w+ = −iej · (A1 −A2)u2,j in Γ,

and w− satisfies

e−µj (�− 2(iA1 −∇µj) · ∇+ Ṽ1)w− =
(
2(A2 −A1) ·D + Ṽ2 − Ṽ1

)
u2,−j(x,−t) in Q−,

e−µj (∂t + ∂z + iej ·A1)w− = −iej · (A1 −A2)u2,−j(y, z,−z) in Γ,

where Ṽk = Vk + |∇µj |2 + ∆µj + 2iAk · ∇µj . Since |∇µj | is bounded, we have that

|Ṽ1 − Ṽ2| . |V1 − V2|+ |A1 −A2|.

On the other hand, u2,±j(x,±t) and |∇u2,±j(x,±t)| are also bounded in Q±, and on Γ we have

that |u2,±j | & 1 by (4.10). Therefore, if f+ = V1, f− = Ṽ1, E+ = −iA1, and E− = −iA1 +∇µj
(notice that ej · ∇µj = 0), one gets

|(�+ 2E± · ∇+ f±)w±| . |A1 −A2|+ |V1 − V2| in Q±,

|(∂t + ∂z − ej ·E±)w±| & |ej · (A1 −A2)| in Γ,

so that (3.6) and (3.7) are satisfied with h± = ej · (A1 −A2),

(4.13) A± = A1 −A2, and q± = V1 − V2.

As mentioned previously, (4.5) holds analogously in this case, so that w+|Σ+
= w−|Σ− = 0.

Again, applying Lemma 2.9 respectively with α = w+ and χ = 1, or α = e−µjw− and χ = eµj

yields that ∂νw±|Σ± = 0.
Also, (4.11) shows that w+ = w− in Γ. These assertions hold for each j = 1, . . . , n − 1, and the
n-th component en · (A1 −A2) vanishes in Rn. This means that the assumptions of Lemma 3.5
are satisfied with J = {1, . . . , n− 1}.
As a consequence (3.18) holds for each j ∈ J and hence (3.18) also holds with the choices established
in (4.13). This gives

(4.14) ‖eσφ0(A1 −A2)‖2L2(B) . γ(σ)‖eσφ0(V1 − V2)‖2L2(B),

where γ(σ)→ 0 as σ →∞.
We now use the information provided by Uk,±n. We use the same coordinates as before, in this

case with z = xn. Since en ·A1 = en ·A2 = 0 in all Rn, we have that

(4.15) ψ±(y, z) = −(±i)
∫ ±z
−∞

en ·Ak(y,±s) ds = 0.

Then Proposition 2.4 and (4.2) yield

Uk,±n(y, z, t) = vk,±n(y, z, t)H(t−±z) + δ(t−±z),
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where, using the notation introduced in (4.12) we have

(4.16)

{
(∂2
t + (D + Ak)2 + qk)vk,±n = 0 in {t > ±z},

vk,±n(y, z,±z) = − 1
2

∫ ±z
−∞ Vk(y,±s) ds.

The assumption U1,±n|Σ± = U2,±n|Σ± in the statement implies that

(4.17) v1,±n|Σ± = v2,±n|Σ± ,

and since Ak and qk are compactly supported this means that

(4.18) v1,n|Σ+∩Γ = −1

2

∫ ∞
−∞

V1(y, s) ds = −1

2

∫ ∞
−∞

V2(y, s) ds = v2,n|Σ+∩Γ,

We define

w+(y, z, t) = 2(v1,n − v2,n)(y, z, t) and w−(y, z, t) = −2(v1,−n − v2,−n)(y, z,−t),

so that w± ∈ C2(Q±) by Proposition 2.4. The combination of the identities (4.16) and (4.18) and
a change of variables shows that

w+(y, z, z)− w−(y, z, z) = −
∫ z

−∞
(V1 − V2)(y, s) ds−

∫ −z
−∞

(V1 − V2)(y,−s) ds

= −
∫ ∞
−∞

(V1 − V2)(y, s) ds = 0.(4.19)

Also, by direct computation (4.16) yields

|(�− i2A1 · ∇+ V1)w±| . |A1 −A2|+ |V1 − V2| in Q±,

|(∂t + ∂z + ien ·A1)w±| = |V1 − V2| in Γ.

Hence (3.6) and (3.7) are satisfied with h± = V1 − V2, E± = −iA1, f± = V1, and A± and q±
as in (4.13). Also, (4.17) implies that w+|Σ+

= w−|Σ− = 0, and (4.19) that w+|Γ = w−|Γ. The
condition ∂νw±|Σ± = 0 follows again from Lemma 2.9.

Therefore all the assumptions to apply Lemma 3.4 hold with the previous choices for A± and
q±, and this yields

(4.20) ‖eσφ0(V1 − V2)‖2L2(B) . γ(σ)‖eσφ0(A1 −A2)‖2L2(B).

Since γ(σ)→ 0 as σ →∞, combining the previous estimate with (4.14) immediately implies that
A1 −A2 = 0 and V1 − V2 = 0 in this gauge. In a general gauge then d(A1 −A2) = 0. And since
Vk = A2

k +D ·Ak + qk one obtains that q1 = q2. This finishes the proof. �

That the w± functions satisfy condition (4.19) is one of the key properties needed in order to
prove Theorem 2.1, since otherwise Lemma 3.4 cannot be applied with this choice of w±. In order
to prove (4.19) we have used indirectly that (1.6) holds (notice that this last condition means that
we can move to a gauge in which (4.15) is true). In fact, (4.19) it is no longer true in general if
one removes (1.6), since there appear non-vanishing terms in the right hand side of (4.19) related
to ψ+ and ψ−.

5. Reducing the number of measurements

In this section we prove an analogous result to Theorem 2.2, in which the number of mea-
surements is reduced to n. To compensate this, one needs assume that the potentials have certain
symmetries (in fact, each component of W must satisfy some kind of antisymmetry property). The
main change in the proof is in the definition of w− in Q−, which now is constructed by symmetry
from w+, instead of using new information coming from the solution associated to the opposite



THE FIXED ANGLE SCATTERING PROBLEM 23

direction. For each 0 ≤ j ≤ the symmetry of ej ·W plays an essential role since it is necessary to
show that w+ = w− in Γ, in order to extract meaningful results from the Carleman estimate.

Theorem 5.1. Let W1,W2 ∈ Cm+2
c (Rn;Cn), and V ∈ Cmc (Rn;C) with compact support in B.

Also, let 1 ≤ j ≤ n and k = 1, 2, and consider the n solutions Uk,j of

(5.1) (∂2
t −∆ + 2Wk · ∇+ V )Uk,j = 0, in Rn+1, Uk,j |{t<−1} = δ(t− xj).

Assume also that for each 1 ≤ j ≤ n there exists an orthogonal transformation Oj satisfying that
Oj(ej) = −ej and such that

(5.2) ej ·Wk(x) = −ej ·Wk(Oj(x)) for all k = 1, 2.

Then, if for all 1 ≤ j ≤ n one has U1,j = U2,j on the surface Σ∩{t ≥ xj}, it holds that W1 = W2.

The simplest example of a vector field satisfying the previous conditions is the case of an antisym-
metric vector fields Wk, that is, such that Wk(−x) = −Wk(x) (for example, the gradient of a
radial function).
We remark that it is possible to show that the previous theorem also holds if one substitutes
condition (5.2) by

ej ·Wk(x) = −ej ·Wk(Oj(x)) for all k = 1, 2 and 1 ≤ j ≤ n,

that is, a symmetry condition instead of an antisymmetry condition in the imaginary part of
ej ·Wk.

Proof of Theorem 5.1. By Lemma 2.6 we know that it is completely equivalent to assume that the
Uk,j solutions solve

(∂2
t −∆ + 2Wk · ∇+ V )Uk,j = 0, in Rn+1, Uk,j |{t<−1} = H(t− xj).

instead of (5.1). Take 1 ≤ j ≤ n. In this proof we fix x = (y, z) in Rn, where z = xj and y ∈ Rn−1.
Let k = 1, 2. By Proposition 2.3 and (4.1) we know that Uk,j(y, z, t) = uk,j(y, z, t)H(t− z) where
uk,j is the same function as uk,+j in (4.4)
Under the assumption in the statement we have that u1,j = u2,j on the surface Σ+ and hence, also
in Σ+ ∩ Γ = Σ ∩ {t = z}, which implies that there is a function µj : Rn−1 → C such that (4.6)
holds.

We now define w+ := u1,j − u2,j in Q+. Then

(5.3) w+(y, z, z) = e
∫ z
−∞ ej ·W1(y,s) ds − e

∫ z
−∞ ej ·W2(y,s) ds.

In this coordinates, for each matrix Oj in the statement there is by definition a n − 1 × n − 1
orthogonal matrix Tj such that

Oj(y, z) = (Tj(y),−z).

To apply Lemma 3.5 we need also to define an appropriate function w− in Q−. We take

w−(y, z, t) = eµj(y)w+(Tj(y),−z,−t).

If t = z, using (5.3) and the symmetry condition (5.2), we get that

(5.4)

w−(y, z, z) = eµj(y)+
∫−z
−∞ ej ·W1(Tj(y),s) ds − eµj(y)+

∫−z
−∞ ej ·W2(Tj(y),s) ds

= eµj(y)−
∫−z
−∞ ej ·W1(y,−s) ds − eµj(y)−

∫−z
−∞ ej ·W2(y,−s) ds

= eµj(y)−
∫∞
z
ej ·W1(y,s) ds − eµj(y)−

∫∞
z
ej ·W2(y,s) ds = w+(y, z, z).
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Therefore w+ satisfies (4.8), and w− satisfies

(�+ 2E− · ∇+ f−)w−(y, z, t)

= 2eµj(y)(W2 −W1)(Tj(y),−z) · ∇
(
u2,j(Tj(y),−z,−t)

)
in Q−,

where

(5.5)
E−(y, z) = W1(Tj(y),−z) +∇µj(y)

f−(y, z) = V (Tj(y),−z)− |∇µj(y)|2 + ∆µj(y)− 2W1(Tj(y),−z) · ∇µj(y).

Also, since ej ·W1(Tj(y),−z) = −ej ·W1(y, z), we have that

(∂t + ∂z − ej ·W1(y, z))w−(y, z, z) = −eµj(y)
(
∂t + ∂z − ej ·W1(Tj(y),−z)

)
w+(Tj(y),−z,−z)

= −eµj(y)ej · (W1 −W2)(Tj(y), z)u2,j(Tj(y),−z,−z),

Since |u2(y, z, z)| & 1 always, and |∇u2| is bounded above in Q+, the previous identities show that

|(�+ 2E± · ∇+ f±)w±| . |A±| in Q±,

|(∂t + ∂z − ej ·E±)w±| & |ej ·A±| in Γ,

where E− and f− where defined in (5.5), E+ = W1, f+ = V , and,

(5.6) A+ = W1 −W2 and A−(y, z) = (W1 −W2)(Tj(y),−z).
From (5.4) we get that w+ = w− on Γ. Also we have that w+|Σ+ = w−|Σ− = 0, and ∂νw±|Σ± = 0
by Lemma 2.9. Hence, we can use (3.18) of Lemma 3.5 with q± = 0 and ω = ej , which yields∑

±
‖eσφ0ej ·A±‖2L2(B) . γ(σ)

∑
±
‖eσφ0A±‖2L2(B).

Now, this holds for φ0(x) = φ0(x, ϑ) = eλ|x−ϑ|
2

, where ϑ is an arbitrary vector such that |ϑ| = 2.
Also, the implicit constant in the estimate is independent of ϑ. Therefore writing ϑ = 2θ for
θ ∈ Sn−1, we can integrate both sides of the previous estimate in Sn−1 to get∫

Sn−1

∑
±
‖eσφ0(·,2θ)ej ·A±‖2L2(B) dS(θ) . γ(σ)

∑
±

∫
Sn−1

‖eσφ0(·,2θ)A±‖2L2(B) dS(θ),

where dS(θ) denotes integration against the surface measure of the unit sphere. Changing the
order of integration with the L2(B) integrals gives

(5.7)
∑
±
‖r(x, σ)ej ·A±‖2L2(B) . γ(σ)

∑
±
‖r(x, σ)A±‖2L2(B),

where it can be verified that r(x, σ) :=
(∫
Sn−1 e

2σφ0(x,2θ) dS(θ)
)1/2

is a radial function.
Since r(x) is a radial, and A+ and A− differ in an orthogonal transformation by (5.6), a direct

change of variables shows that

‖r(x, σ)ej ·A−‖2L2(B) = ‖r(x, σ)ej ·A+‖2L2(B), and ‖r(x, σ)A−‖2L2(B) = ‖r(x, σ)A+‖2L2(B),

and therefore, taking into account that A+ = W1 −W2 we get from (5.7) that

‖r(x, σ)ej · (W1 −W2)‖2L2(B) . γ(σ)‖r(x, σ)(W1 −W2)‖2L2(B).

This estimate can be proved for any 1 ≤ j ≤ n. Adding over all directions, and using that γ(σ)→ 0
as σ → 0 to absorb the resulting term on the right hand side in the left, yields

‖r(x, σ)(W1 −W2)‖2L2(B) ≤ 0,

for σ > 0 large enough. Since r(x, σ) > 0 for all x ∈ Rn, and σ > 0, the previous estimate implies
that W1 = W2. This finishes the proof. �
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Combining the techniques used in this proof with the techniques used in the proof of Theorem
2.1, the reader can obtain some similar results to the previous one, always interchanging some
measurements for symmetry assumptions on A and q. A specially simple case is the following one.

Theorem 5.2. Let A1,A2 ∈ Cm+2
c (Rn;Cn) and q1, q2 ∈ Cmc (Rn;C) with compact support in B,

satisfying (1.6), and such that

(5.8) Ak(−x) = −Ak(x), for k = 1, 2.

Let 1 ≤ j ≤ n− 1 and consider the n− 1 solutions Uk,j(x, t) of

(∂2
t + (D + Ak)2 + qk)Uk,j = 0 in Rn+1, Uk,j |{t<−1} = δ(t− xj).

and the 2 solutions Uk,±n(x, t) of

(∂2
t + (D + Ak)2 + qk)Uk,±n = 0 in Rn+1, Uk,±n|{t<−1} = δ(t− (±xn)).

If for each 1 ≤ j ≤ n one has U1,j = U2,j on the surface Σ∩{t ≥ xj}, then dA1 = dA2 and q1 = q2.

Proof. We use the notation introduced in (4.12). Notice that Uk,j is the same as Uk,+j in the proof
of Theorem 2.1. We only give a sketch of the main ideas in the proof. One can start as in the
proof of Theorem 2.1 by making a change of gauge such that en ·A1 = en ·A2 = 0. One can verify
that this choice of gauge does not alter the antisymmetry property (5.8).

Let 0 ≤ j ≤ n− 1. By Lemma 2.6 we can assume that the Uk,j = Uk,+j satisfy (4.9) and (4.10)
with Wk = −iAk and V = Vk. We define w+ = u1,j − u2,j and

w−(y, z, t) = e−iµj(y)w+(−y,−z,−t).
It follows that w+ = w− in Γ, this can be verified using (5.8), in complete analogy with the
computations in (5.4). The remaining conditions necessary to apply Lemma 3.5 with A+ =
A1 −A2, A−(x) = A+(−x), q+ = V1 − V2 and q−(x) = q+(−x) can be verified as in the proof of
Theorem 2.1. Then Lemma 3.5 and a change of variables to transform q− in q+, and A− in A+

yields the estimate

(5.9) ‖eσφ0(·,ϑ)(A1 −A2)‖2L2(B) + ‖eσφ0(·,−ϑ)(A1 −A2)‖2L2(B)

. γ(σ)‖eσφ0(·,ϑ)(V1 − V2)‖2L2(B) + γ(σ)‖eσφ0(·,−ϑ)(V1 − V2)‖2L2(B).

We can now repeat exactly the same arguments used in the proof of Theorem 2.1 to prove (4.20).
In fact we have that (4.20) holds independently for both the weight functions φ0(·, ϑ) and φ0(·,−ϑ).
Adding these two possible estimates yields

‖eσφ0(·,ϑ)(V1 − V2)‖2L2(B) + ‖eσφ0(·,−ϑ)(V1 − V2)‖2L2(B)

. γ(σ)‖eσφ0(·,ϑ)(A1 −A2)‖2L2(B) + γ(σ)‖eσφ0(·,−ϑ)(A1 −A2)‖2L2(B).

The previous inequality and (5.9) imply that q1 = q2 and A1 = A2 in the gauge fixed at the
beginning of the proof. �

Appendix A. Stationary scattering

In this section we prove Theorem 1.4. We have adapted the proof of [RS20b, Theorem 5.1] in
order to allow for the presence of a first order perturbation, but the main ideas and the exposition
are similar to the work in that paper.

We define C+ := {λ ∈ C : Im(λ) > 0}, and we write RV(λ) for the resolvent operator RV(λ) =
(HV − λ2)−1 in case it is well defined. We also use the following nonstandard convention for the
Fourier transform and its inverse for Schwartz functions on the real line:

f̃(λ) =

∫ ∞
−∞

eiλtf(t) dt F̆ (t) =
1

2π

∫ ∞
−∞

e−iλtF (λ) dλ,
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(and equally for the extension of the Fourier transform to tempered distributions).
In order to illustrate why it is reasonable to expect an equivalence between the stationary

scattering data and the time domain data as stated in Theorem 1.4, we reproduce here the following
heuristic argument given in [RS20b]. Let UV(x, t;ω) be the solution of

(∂2
t −∆ + V(x,D))UV = 0 in Rn × R, UV |{t<−1} = δ(t− x · ω).

Suppose for the moment that the Fourier transform of UV in the time variable is well defined.

Then for each λ ∈ R the function ŨV(x, λ;ω) should solve the equation

(A.1) (−∆ + V(x,D)− λ2)ŨV(x, λ) = 0 in Rn.

If we define the time domain scattering solution to be uV = UV − δ(t − x · ω), one has that

ŨV(x, λ) = eiλx·ω + ũV(x, λ), where ũV(x, λ) extends holomorphically to {Im(λ) > 0} since uV
vanishes for t < −1. Since these are the properties that characterize the outgoing eigenfunctions
of (A.1) one might expect that

ŨV(x, λ;ω) = ψV(x, λ, ω),

where ψV is the solution of (1.1). Now, the condition aV1
(λ, ·, ω) = aV2

(λ, ·, ω) implies by the
Rellich uniqueness theorem that the outgoing eigenfunctions for HV1 and HV2 agree outside the
support of the potentials:

(A.2) ψV1
(λ, ·, ω)|Rn\B = ψV2

(λ, ·, ω)|Rn\B .

If the map λ → ψV(λ, x, ω) were smooth near λ = 0, then one could have (A.2) for all λ ∈ R.
Taking the inverse Fourier transform would imply that

UV1(·, t;ω)|Rn\B = UV2(·, t;ω)|Rn\B .

The argument above is only formal since requires the regularity of the map λ→ ψV(λ, x, ω) on
the real line. The regularity of this map is related to the poles of the meromorphic continuation of
the resolvent RV(λ), initially defined in the resolvent set of HV . Indeed, in some cases there is a
pole located at λ = 0 and thus the argument above does not work in general. To get around these
difficulties we start by recalling the following property of the Fourier transform.

Lemma A.1. Suppose F (z) is analytic on {Im(z) > r} for some r ∈ R and

|F (z)| ≤ C(1 + |z|)NeR Im(z), for Im(z) > r,

for some positive R,C,N independent of z. There exist an f ∈ D′(R) with supp(f) ⊂ [−R,∞)
and e−(µ−r)tf ∈ S ′(R) that also satisfies (e−(µ−r)tf)∼(·) = F (·+ iµ) for every µ > r.

This is essentially a Paley-Wiener theorem that we have stated in the form given in [RS20b,
Lemma 5.3]. In the following proposition we give the precise relation between the time domain
and frequency measurements.

Proposition A.2. Let ω ∈ Sn−1 and let V(x,D) = W · ∇ + V with W ∈ Cm+2
c (Rn;Cn), and

V ∈ Cmc (Rn;C) compactly supported in B. Let UV be the solution of

(A.3) (∂2
t −∆ + V(x,D))UV = 0 in Rn × R, UV |{t<−1} = δ(t− x · ω),

given by Proposition 2.4, and let uV(x, t;ω) = UV(x, t;ω) − δ(t − x · ω). Assume also that there
exists some r ≥ 0 such that for Im(λ) ≥ r

(A.4) ‖RV(λ)‖L2→L2 ≤ Cr,

where Cr > 0 is independent of λ. Then, if we define

ψsV(·, λ, ω) := −RV(λ)(V(x,D)eiλx·ω), for Im(λ) > r,
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the following identity holds

〈uV(x, t;ω), ϕ(x)χ(t)〉Rnx×Rt = 〈ψsV(x, σ + iµ, ω), ϕ(x)(eµtχ)∨(σ)〉Rnx×Rσ ,

for all µ > r, and all ϕ ∈ C∞c (Rn) and χ ∈ C∞c (R).

Proof. If (A.4) holds for some λ, then z = λ2 is, by definition, in the resolvent set ρ(HV) ⊂ C of the
operator HV . It is well known that the resolvent map z → (HV − z)−1 forms a holomorphic family
of bounded L2 operators in the open set ρ(HV) (see for example [Te09, Theorem 2.15]). Since the
map z = λ2 is also holomorphic and (A.4) holds for Im(λ) ≥ r, then λ→ RV(λ) = (HV − λ2)−1 is
also an holomorphic map for Im(λ) ≥ r.

On the other hand, using (A.4) we have

(A.5) ‖ψsV(·, λ, ω)‖L2(Rn) ≤ Cr,A,q(1 + |λ|)eIm(λ), Im(λ) ≥ r.

For any fixed ϕ ∈ C∞x (Rn), define

Fϕ(λ) =

∫
Rn
ψsV(x, λ, ω)ϕ(x)dx, Im(λ) ≥ r.

From the previous observations it follows that Fϕ(λ) must be an holomorphic function in the set
Im(λ) ≥ r. By estimate (A.5), we get

|Fϕ(λ)| ≤ Cr,A,q(1 + |λ|)eIm(λ) ‖ϕ‖L2 , Im(λ) ≥ r.

Then, Lemma A.1 implies that there is a function fϕ ∈ D′(R) supported on [−1,∞) such that for
all µ > r:

〈e−(µ−r)tfϕ, χ〉 = 〈Fϕ(·+ iµ), χ̆〉, χ ∈ C∞c (R).

Now, given µ > r, define the linear map K : C∞c (Rn)→ D′(R) given by

Kϕ = e−(µ−r)tfϕ.

The map K is continuous. To see this, take a sequence ϕj → 0 in C∞c (Rn), then (A.5) implies that
Fϕj → 0 when Im(λ) ≥ r, and hence

〈Kϕj , χ〉 = 〈e−(µ−r)tfϕj , χ〉 = 〈Fϕj (·+ iµ), χ̆〉 → 0 as j →∞.

Since K is continuous, the Schwartz kernel theorem ensures that there is a unique K ∈ D′(Rn×R)
such that

〈K,ϕ(x)χ(t)〉 = 〈Kϕ, χ〉 = 〈e−(µ−r)tfϕ, ϕ(x), χ〉 = 〈Fϕ(·+ iµ), χ̆〉
= 〈ψsV(x, σ + iµ, ω), ϕ(x)χ̆(σ)〉Rnx×Rσ .(A.6)

Since fϕ is supported in [−1,∞), it follows that K is supported in {t ≥ 1}. We now define the
distribution

v(x, t) := eµtK(x, t) ∈ D′(Rn × R).

We claim that v is a solution in Rn+1 of

(A.7) (�+ V(x,D))v = −V(x,D)δ(t− x · ω).

Since, by (A.3), this is also the equation satisfied by uV , then the uniqueness of distributional
solutions of the wave equation supported in {t ≥ −1} (see [Hö76, Theorem 9.3.2]) implies that
uV = v, so

〈uV , ϕ(x)χ(t)〉 = 〈Kϕ,χ(x)eµtχ(t)〉 = 〈ψsV(x, σ + iµ, ω), ϕ(x)(eµtχ)̆ (σ)〉Rnx×Rσ ,

which finishes the proof of the proposition.
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To prove the previous claim we use (A.6) in the following computations. First

〈∂2
t (eµtK), ϕ(x)χ(t)〉 = 〈K,ϕ(x)eµt∂2

t χ(t)〉
= 〈ψsV(x, σ + iµ, ω), ϕ(x)(eµt∂2

t χ(t))̆ 〉 = −〈ψsV(x, σ + iµ, ω), ϕ(x)(σ + iµ)2(eµtχ)̆ (σ)〉Rnx×Rσ .

Also, if we denote by V∗ the formal adjoin of V (with respect to the distribution pairing 〈·, ·〉), we
have

〈V(x,D)(eµtK), ϕ(x)χ(t)〉 = 〈K,V∗(x,D)ϕ(x)eµtχ(t)〉
= 〈V(x,D)ψsV(x, σ + iµ, ω), ϕ(x)(eµtχ)̆ (σ)〉Rnx×Rσ ,

and similarly one gets

〈∆x(eµtK), ϕ(x)χ(t)〉 = 〈∆xψ
s
V(x, σ + iµ, ω), ϕ(x)(eµtχ)̆ (σ)〉Rnx×Rσ .

Then putting this together we obtain that

〈(∂2
t −∆x + V(x,D)v, ϕ(x)χ(t)〉

= 〈(−∆x + V(x,D)− (σ + iµ)2)ψsV(x, σ + iµ, ω), ϕ(x)(eµtχ)̆ (σ)〉Rnx×Rσ
= 〈−V(x,D)ei(σ+iµ)x·ω, ϕ(x)(eµtχ)̆ (σ)〉Rnx×Rσ
= −〈ei(σ+iµ)x·ω,V∗(x,D)ϕ(x)(eµtχ)̆ (σ)〉Rnx×Rσ
= −〈e−µx·ωδ(t− x · ω),V∗(x,D)ϕ(x)eµtχ(t)〉
= 〈−V(x,D)δ(t− x · ω), ϕ(x)χ(t)〉.

Hence v satisfies (A.7), which proves the claim. �

The following proposition gives in the self-adjoint case the properties of the resolvent that we
require to apply the previous Proposition. Therefore we assume that V(x,D) can be written as
V(x,D) = 2A ·D +D ·A + q for real A and q.

Proposition A.3. Let A ∈ C1
c (Rn,Rn), q ∈ C1

c (Rn,R), and fix r0 = (2‖A‖2L∞ + ‖q‖L∞)1/2. For
any λ ∈ C+ \ i(0, r0], there is a bounded operator

RA,q(λ) : L2(Rn)→ L2(Rn)

such that for any f ∈ L2(Rn), the function u = RA,q(λ)f is the unique solution in L2(Rn) of

(HA,q − λ2)u = f.

Moreover, if r > r0 one has

(A.8) ‖RA,q(λ)‖L2→L2 ≤ Cr,A,q, Im(λ) ≥ r.
For any δ > 1/2 and λ in the region C+ \ i(0, r0], the family(

〈x〉−δRA,q(λ)〈x〉−δ
)
λ∈C+\(0,r0]

is a holomorphic family of bounded operators on L2(Rn) that can be extended continuously in the
weak operator topology to C+ \ i[0, r0].

Let λ ≥ 0. As mentioned in the introduction, the direct problem (1.1) will have a unique scattering
solution ψsV satisfying the SRC if the outgoing resolvent operator

(HV − (λ2 + i0))−1 = lim
ε→0

(HV − (λ2 + iε))−1,

is bounded in appropriate spaces. Then one can take

ψsV = (HV − (λ2 + i0)2)−1(−V(x,D)eiλω·x),
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as solution of (1.1). Under the assumptions of the previous proposition, for real λ > 0 the operator
RA,q(λ) given by the continuous extension to C+ \ i[0, r0] of the resolvent is exactly the outgoing
resolvent operator. On the other hand, if λ < 0 the resolvent RA,q(λ) is the operator known as
the incoming resolvent operator. This can be seen in the following computation: for real λ 6= 0,
taking the limits in an appropriate topology, one has

RA,q(λ) = lim
ε→0

RA,q(λ+ iε) = lim
ε→0

(HA,q − (λ+ iε)2)−1

= lim
ε→0

(HA,q − λ2 − i2λε− ε2)−1 = (HA,q − (λ2 ± i0))−1,

where the ± is given by the sign of λ.

Proof of Proposition A.3. We have that

HA,q = (D + A)2 + q = −∆ + V(x,D),

where V(x,D) = 2A ·D +D ·A + q. The operator HA,q is self-adjoint with domain H2(Rn) and,
as such, it has real spectrum: the resolvent RA,q(λ) is a bounded operator in L2 if λ ∈ C+ satisfies
λ2 /∈ R. Also, since A and q are compactly supported—V(x,D) is a short range perturbation of
−∆—it is well known that the continuous spectrum of HA,q is (0,∞) without embedded eigenvalues
(see, for example, [Hö83, Chapter 14]). We now show that the point spectrum of HA,q is contained
in [−r2

0, 0] where r2
0 = 2‖A‖2L∞ + ‖q‖L∞ . Indeed, assume that λ2 ∈ R and ψ ∈ L2 are such that

HA,qψ = λ2ψ,

is satisfied in the sense of distributions. Then ψ ∈ H2(Rn) by elliptic regularity, so taking the L2

product with ψ and integrating by parts gives us

λ2‖ψ‖2 = ‖∇ψ‖2 + (A ·Dψ,ψ)L2 + (Aψ,Dψ)L2 + ((A2 + q)ψ,ψ)L2

≥ ‖∇ψ‖2 − 2‖A‖L∞‖ψ‖‖∇ψ‖ − ‖q‖L∞‖ψ‖2 ≥
1

2
‖∇ψ‖2 − (2‖A‖2L∞ + ‖q‖L∞)‖ψ‖2,

where we have used that A2 ≥ 0 and Young’s inequality with ε. Hence

(λ2 + 2‖A‖2L∞ + ‖q‖L∞)‖ψ‖2 ≥ 1

2
‖∇ψ‖2 ≥ 0,

and thus we must necessarily have λ2 ≥ −(2‖A‖2L∞ + ‖q‖L∞). With this we can conclude that the
full spectrum of HA,q is contained in [−r2

0,∞), so that RA,q(λ) is a bounded operator in L2 for
all λ ∈ C+ \ i(0, r0]. Then the theory of self-adjoint operators implies two important facts.

The first is that one has the estimate

(A.9) ‖RA,q(λ)‖L2→L2 ≤ 1

dist(λ2, [−r2
0,∞))

,

(see, for example, [Te09, Theorem 2.15]). And the second is that RA,q(λ) : L2 → H2 is an
holomorphic family of operators for λ ∈ C+. This last statement follows from the fact that,
outside the spectrum, for all λ, λ0 ∈ C+ \ i(0, r0] one has the resolvent formula

RA,q(λ) = RA,q(λ0)

 m∑
j=0

(λ2 − λ2
0)jRjA,q(λ0) + (λ2 − λ2

0)m+1RmA,q(λ0)RA,q(λ)

 ,

see for example [Te09, p. 75]. One can take the limit m → ∞ in the L2 → L2 operator norm to
obtain an analytic expansion of the resolvent around λ0, since the remainder of the series goes to
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zero if λ is close enough to λ0. Then,

(A.10) RA,q(λ) = RA,q(λ0)

∞∑
j=0

(λ2 − λ2
0)jRjA,q(λ0),

for λ close enough to λ0. Since RA,q(λ) is also bounded from L2 to H2, (A.10) implies that
RA,q(λ) : L2 → H2 is holomorphic in C+ \ i(0, r0], and therefore so it is

〈x〉−δRA,q(λ)〈x〉−δ : L2 → H2

since the weight 〈x〉−δ and all its derivatives are bounded in Rn.
We now prove (A.8) using (A.9). To see this write λ = σ + iµ. Then it is enough to use that

dist(λ2, [−r2
0,∞)) ≥ | Im(λ2)| ≥ 2|σµ| when µ2 ≥ σ2−r0, and that dist(λ2, [−r2

0,∞)) ≥ |Re(λ2)| =
|σ2 − µ2 − r0| otherwise.

The continuity of 〈x〉−δRA,q(λ)〈x〉−δ for λ ∈ C+\i[0, r0] it is the well known limiting absorption
principle. See for example [Ya10, Proposition 1.7.1] for the free resolvent, and [Hö83, Chapter 14]
for the case of short range magnetic potentials (as in this case). A more specific statement of
the limiting absorption principle (also including long range magnetic potentials) can be found in
[Hö83, Theorem 30.2.10], which implies that RA,q(λ) is continuous as a function from C+ \ i[0, r0]
to the space of bounded operators between the Hörmander spaces B and B∗ considered with the
weak operator topology. Since B is continuously embedded in 〈x〉−δL2 this implies the (weak)
continuity of 〈x〉−δRA,q(λ)〈x〉−δ in C+ \ i[0, r0]. �

Putting together Propositions A.2 and A.3 we can now formalize the heuristic argument given
at the beginning of this section in order to prove Theorem 1.4.

Proof of Theorem 1.4. Let r0 = maxk=1,2(2‖Ak‖2L∞ + ‖qk‖L∞)1/2. By Proposition A.3, for all

λ ∈ C+ \ i[0, r0] we can define

ψsAk,qk
(·, λ, ω) = −RAk,qk((A2

k +D ·Ak + 2λω ·A+ qk)eiλx·ω).

Assume first that aA1,q1(λ, θ, ω) = aA2,q2(λ, θ, ω) for all λ ∈ R such that λ ≥ λ0 and all θ ∈ Sn−1.
Recall that aAk,qk(λ, θ, ω) are defined by the asymptotic expansion

ψsAk,qk
(rθ, λ, ω) = eiλrr−

n−1
2 aAk,qk(λ, θ, ω) + o(r−

n−1
2 ), r →∞ k = 1, 2.

Therefore, since Ak and qk are supported in B, for any fixed λ ≥ λ0 the function ψA1,q1 − ψA2,q2

satisfies

(−∆− λ)(ψA1,q1 − ψA2,q2)(·, λ, ω) = 0 in Rn \B

(ψA1,q1 − ψA2,q2)(x, λ, ω) = o(|x|−
n−1

2 ) as |x| → ∞.

The Rellich uniqueness theorem implies that ψA1,q1 −ψA2,q2 vanishes outside B. In particular, for

any ϕ ∈ C∞c (Rn \B), the function

(A.11) wϕ|[λ0,∞)(λ) = 〈(ψA1,q1 − ψA2,q2)(·, λ, ω), ϕ〉Rnx ,
satisfies

wϕ|[λ0,∞) = 0.

By Proposition A.3, the map λ→ wϕ is holomorphic in C+ \ i(0, r0] and continuous in C+ \ i[0, r0].
Since it vanishes on [λ0,∞), we must have wϕ = 0. In particular for any µ > r0 and σ ∈ R one
has

〈(ψA1,q1 − ψA2,q2)(x, σ + iµ, ω), ϕ(x)〉 = 0.

Then Proposition A.2 implies that

〈(uA1,q1 − uA2,q2)(x, t;ω), ϕ(x)χ(t)〉Rnx×Rt = 0.
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for all ϕ ∈ C∞c (Rn \B) and χ ∈ C∞c (R). Therefore

(uA1,q1 − uA2,q2)(x, t;ω) = 0 (x, t) ∈ Rn ×B.

Let us prove the converse statement. As in the previous sections, we take any orthonormal
coordinate system in Rn such that x = (y, z), where z = x ·ω and y ∈ {ω}⊥ (identified with Rn−1).

Assume that uA1,q1(x, t;ω) = uA2,q2(x, t;ω) for (x, t) ∈ (∂B×R)∩{t ≥ z}. By Proposition 2.4,
the function α = uA1,q1 − uA2,q2 solves

�α = 0 in {(x, t) : |x| > 1 and t > z},

and α|(∂B×R)∩{t≥z} = 0 and satisfies all the conditions required to apply Lemma 2.9. Thus, this
lemma yields that one also has ∂να|(∂B×R)∩{t≥z} = 0. Now, the Cauchy data of α vanishes on
the lateral boundary of the set {(x, t) : |x| ≥ 1 and t ≥ z}, and Holmgren’s uniqueness theorem
applied in this set shows that α is identically zero in the relevant domain of dependence. However,
by finite speed of propagation the support of α is contained in the same domain of dependence.
Thus α is identically zero in {(x, t) : |x| ≥ 1 and t ≥ z}, which implies that

uA1,q1(x, t;ω) = uA2,q2(x, t;ω), (x, t) ∈ (Rn \B)× R.

The relation in Proposition A.2 gives that for any µ > r0 and for any ϕ ∈ C∞c (Rn \B)

wϕ(σ + iµ) = 〈(ψA1,q1 − ψA2,q2)(x, σ + iµ, ω), ϕ(x)〉Rnx = 0 σ ∈ R,

using the notation in (A.11). A mentioned previously, wϕ is holomorphic in C+ \ i(0, r0] and has

a continuous extension to C+ \ i[0, r0] so, in particular, it follows that

wϕ(λ) = 〈(ψA1,q1 − ψA2,q2)(·, λ, ω), ϕ〉Rnx = 0

for all λ > 0. Thus (ψA1,q1 −ψA2,q2)(·, λ, ω) vanishes outside B for any λ > 0. By the asymptotics
given in (1.3), this implies that aA1,q1(λ, θ, ω) = aA2,q2(λ, θ, ω) for all λ > 0 and θ ∈ Sn−1. �

Appendix B. Some results concerning the wave operator

The first part of this section is devoted to the proof of Propositions 2.3 and 2.4. In the second
part we prove Lemmas 2.7-2.9.

B.1. Existence and uniqueness of solutions. Here we complete the proof of Proposition 2.3
and Proposition 2.4. Let ω ∈ Sn−1. In what follows, we write ∂z = ω · ∇. We first prove the
existence and uniqueness of distributional solutions to

(B.1) (∂2
t + LW,V )Uδ = 0 in Rn+1, Uδ|{t<−1} = δ(t− x · ω)

and

(B.2) (∂2
t + LW,V )UH = 0 in Rn+1, UH |{t<−1} = H(t− x · ω).

We start by proving the uniqueness. In both cases, it is reduced to prove that zero is the unique
distributional solution to the following homogenous equation

(∂2
t + LW,V )U = 0 in Rn+1, U |{t<−1} = 0,

which is true by [Hö83, Theorem 23.2.7]. Let us now prove the existence of solutions. The method
we shall use is the so-called progressing wave expansion method, see for example [Sh85, Lemma 1]
and [RU14, Theorem 1]. For any j ≥ 0, define

(B.3) sj+ =

{
sj , s ≥ 0,
0, s < 0.
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Note that s0
+ = H(s) is the unidimensional Heaviside function at s ∈ R. Let N ∈ N and suppose

that the solutions to (∂2
t + LW,V )U = 0 have the following expansion

(B.4) U(x, t) = a−1(x)δ(t− x · ω) +

N∑
j=0

aj(x)(t− x · ω)j+ +RN (x, t).

In the case of (B.1) the coefficients (aj)
N
j=−1 and the remainder term RN must satisfy the following

initial value conditions

RN |t<−1 = 0, a−1|x·ω<−1 = 1, aj |x·ω<−1 = 0, j = 0, 1, . . . , N

and in the case of (B.2), the conditions

RN |t<−1 = 0, a0|x·ω<−1 = 1, aj |x·ω<−1 = 0, j = −1, 1, . . . , N.

A straightforward computation shows that the remainder term RN must satisfy

(B.5)

(∂2
t + LW,V )RN (x, t) = −2 ((∂z − ω ·W)a−1) ∂tδ(t− x · ω)

− (2(∂z − ω ·W)a0 + LW,V a−1) δ(t− x · ω)

−
N−1∑
j=0

(2(j + 1)(∂z − ω ·W)aj+1 + LW,V aj) (t− x · ω)j+

− (LW,V aN ) (t− x · ω)N+ .

The task now is to prove the existence of the coefficients (aj)
N
j=−1 and RN , satisfying the recur-

sive identity (B.5) with the corresponding initial value conditions. One expects getting smoother
remainder terms RN as N grows, or at least with better regularity than the Delta distribution and
Heaviside function. This can be achieved by killing most the non-smooth terms on the right-hand
side of (B.5). We now split the proof into two cases depending on the nature of the initial value
conditions.

First case. Existence of solutions of (B.1). Above discussion motivates choosing the recursive
formulae

(∂z − ω ·W)a−1 = 0, in Rn, a−1|x·ω<−1 = 1,(B.6)

(∂z − ω ·W)a0 = −1

2
LW,V a−1 in Rn, a0|x·ω<−1 = 0,

(∂z − ω ·W)ak+1 = − 1

2(k + 1)
LW,V ak, in Rn, ak+1|x·ω<−1 = 0,(B.7)

(∂2
t + LW,V )RN (x, t) = − (LW,V aN ) (t− x · ω)N+ , in Rn+1, RN |t<−1 = 0,(B.8)

where k = 0, 1, . . . , N − 1. By standard ODEs techniques, one can prove that if

ψ(x) =

∫ 0

−∞
ω ·W(x+ sω) ds,
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then we have in Rn for k = 0, 1, . . . , N − 1:

(B.9)

a−1(x) = eψ(x),

a0(x) = −1

2
eψ(x)

∫ 0

−∞
e−ψ(x+sω)(LW,V a−1)(x+ sω) ds

= −1

2
eψ(x)

∫ 0

−∞

[
−∆ψ − |∇ψ|2 + 2W · ∇ψ + V

]
(x+ sω) ds,

ak+1(x) = − 1

2(k + 1)
eψ(x)

∫ 0

−∞
e−ψ(x+sω)(LW,V ak)(x+ sω) ds.

It remains to prove the existence of solutions to (B.8). To do that, assume that

W ∈ Cm+2
c (Rn) and V ∈ Cmc (Rn)

for some m ∈ N large enough which will be fixed later. Note that

‖a−1‖L∞ . ‖W‖Cm+2 ,

and for j = 0, 1, . . . , N

‖aj‖L∞ . ‖W‖Cm−2j + ‖V ‖Cm−2j .

Setting

β = min {m− 2N − 2, N − 1} ,
we deduce that ß(t, x) := (LW,V aN ) (t− x ·ω)N+ belongs to Cβ(Rn+1). We actually claim that for
every fixed t ≥ −1, the function ß(t, ·) is supported in the following compact set of Rn

{x ∈ Rn : −1 ≤ x · ω ≤ t, |x− (x · ω)ω| ≤ 1} .

Indeed, by (B.3) we immediately deduce that (t− x · ω)N+ = 0 when t < x · ω. Moreover, by (B.7),
we already known that aN (x) = 0 when x · ω < −1. The explicit expression of aN given in (B.9),
combined with the compact support of W and V in the unit ball, imply that aN (x) = 0 when

|x− (x ·ω)x| > 1. This proves the claim. In particular, the function ß belongs to Hβ1

loc(R;Hβ2

loc(Rn))
with βj ≥ 0 (both will be fixed later) and β1 + β2 = β. Since ∂2

t + LW,V is a strictly hyperbolic
operator, [Hö76, Theorems 9.3.1 and 9.3.2] ensures that there exists a unique solution RN ∈
Hβ1+1
loc (R;Hβ2

loc(Rn)) to (B.8) such that for any given T > −1 we have

‖RN‖Hβ1+1((−1,T ];Hβ2 (Rn)) .
∥∥(LW,V aN ) (t− x · ω)N+

∥∥
Hβ1 ((−1,T ];Hβ2 (Rn))

.

We claim that RN ∈ C2(Rn+1) by suitably choosing the parameters m, N , β1, and β2. This regu-
larity is needed to apply, for instance, the Carleman estimate with boundary terms in Proposition
3.1 and the estimate in Lemma 3.3. By [Hö83, Theorem B.2.8/Vol III], this follows if for instance

n+ 3

2
< β1 + β2 = β and

3

2
< β1,

and furthermore

(B.10)
‖RN‖C2((−1,T ]×Rn) . ‖RN‖Hβ1+1((−1,T ];Hβ2 (Rn))

.
∥∥(LW,V aN ) (t− x · ω)N+

∥∥
Hβ1 ((−1,T ];Hβ2 (Rn))

.

Equating the two parameters involved in the definition of β, that is, m− 2N − 2 = N − 1; we
choose m = 3N + 1, and hence β = N − 1. We distinguish two cases:

• When n is even we consider

N =
n+ 6

2
, m =

3

2
n+ 10, β1 = 2, β2 =

n

2
.
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• When n is odd we consider

N =
n+ 7

2
, m =

3

2
(n+ 1) + 10, β1 = 2, β2 =

n+ 1

2
.

The desired claim is proved by combining above choices with (B.10). On the other hand, by (B.4)
and (B.9), we deduce that Uδ can be written as follows

Uδ(x, t) = eψ(x)δ(t− x · ω) + v(x, t)H(t− x · ω),

where

v(x, t) =

N∑
j=0

aj(x)(t− x · ω)j+ +RN (x, t)

is of class C2 in the region {t ≥ x · ω}. This shows that v satisfies all the properties stated in
Proposition 2.4, and hence the proof of existence and uniqueness of solutions to (B.1) is completed.

Second case. Existence of solutions of (B.2). This case is quite similar to the previous one, and
hence we only give a brief explanation of the proof. Here we have a−1 = 0 and according to
identity (B.5), the function a0 must satisfy (B.6) in place of a−1. The remaining coefficients ak
satisfy (B.7). The remainder term RN satisfies the same equation as in (B.8), and thus its existence
is guaranteed by [Hö76, Theorems 9.3.1 and 9.3.2]. In this case, the solution UH to (B.2) has the
form

UH(x, t) = u(x, t)H(t− x · ω), u(x, t) =

N∑
j=0

aj(x)(t− x · ω)j+ +RN (x, t),

where u is of class C2 in the region {t ≥ x · ω}. Moreover, it satisfies all the desired properties
stated in Proposition 2.3.

B.2. Proof of the energy lemmas. The proofs of the following lemmas are mainly based on
standard multiplier techniques. Here divm and ∇m stand respectively for the divergence and
gradient operators with respect to a set of variables m; while ∇ is reserved for the gradient operator
with respect to the full spatial variables, that is ∇ = ∇x. Let r = |x|. We define the radial and
angular derivatives as

∂r =
x

|x|
· ∇, Ωjk = xj∂k − xk∂j , j, k = 1, 2, . . . , n.

Note that

|∇α(x)|2 = |∂rα|2 +
1

2r2

∑
i 6=j

i,j=1,2,...,n

|Ωijα(x)|2.

We also adopt the notation: αz := ∂zα, αt := ∂tα and αr := ∂rα.

Proof of Lemma 2.9. This result is quite similar to Lemma [RS20a, Lemma 3.3]. Define

HT = {(y, z, t) : |(y, z)| ≥ 1, −T ≤ t ≤ T, t ≥ z} .
The following identities will be useful in our computations

2αt�α = divx,t
(
−2αt∇α, α2

t + |∇α|2
)
,

2(x · ∇α)�α = divx,t
(
x(|∇α|2 − α2

t )− 2(x · ∇α)∇α, 2αt(x · ∇α)
)

+ nα2
t − (n− 2)|∇α|2.

Thanks to the domain of dependence theorem for the wave equation �α = 0 in HT , see for
instance [Ev97, Section 2.4, Theorem 6], we deduce that α is compactly supported for each fixed
t. In particular, for each fixed t, one integral involving α on |x| ≥ 1 is actually on M ≥ |x| ≥ 1 for
a large enough M > 1. This fact will be used several times throughout this proof.
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On the one hand, integrating the first identity over the region HT ∩ {t ≤ τ} for any fixed
τ ∈ [−T, T ], and combining Stoke’s theorem with the third equation in (2.20), we obtain

(B.11)

0 =

∫
∂(HT∩{t≤τ})

ν(y, z, t) ·
(
−2αt∇α, α2

t + |∇α|2
)
dS

=

∫
HT∩{t=τ}

(
α2
t + |∇α|2

)
dx+ 2

∫
Σ+∩{t≤τ}

αrαt dS

− 1√
2

∫
HT∩{t=z}

(
α2
t + |∇α|2 + 2αtαz

)
dydz.

We have used that the unit normal vectors ν(y, z, t) are respectively equal to (0, 0, 1), 1√
2
(0, 1,−1)

and − 1
|x| (y, z, 0) on the regions HT ∩ {t = τ}, HT ∩ {t = z} and Σ+ ∩ {t ≤ τ}. A domain of

dependence argument shows that HT ∩ suppα is bounded and far away from the origin, thus 1/|x|
is well defined on that region. In particular, αr is well defined on HT ∩ suppα.

On the other hand, note that α2
t + |∇α|2 +2αtαz = |∇yα|2 +(Zα)2 and Zα = 0 on HT ∩{t = z}.

Combining these facts with Young’s inequality applied with ε > 0, we get from identity (B.11) that

(B.12)

∫
HT∩{t=τ}

(
α2
t + |∇α|2

)
dx ≤ ε

∫
Σ+

α2
r dS + ε−1

∫
Σ+

α2
t dS

+
1√
2

∫
HT∩{t=z}

|∇y α(y, z, z)|2dydz.

In a similar fashion, now integrating the second useful identity over HT , we obtain

(B.13)

∫
Σ+

(
2α2

r + α2
t − |∇α|2

)
dS =

∫
HT

(
(n− 2)|∇α|2 − nα2

t

)
dxdt

− 2

∫
{|x|≥1}∩{t=T}

αt(x · ∇α) dx− 1√
2

∫
HT∩{t=z}

z(|∇α|2 − α2
t )

=

∫
HT

(
(n− 2)|∇α|2 − nα2

t

)
dxdt

− 2

∫
{|x|≥1}∩{t=T}

αt(x · ∇α) dx− 1√
2

∫
HT∩{t=z}

z|∇yα(y, z, z)|2dydz,

where we used that |(y, z)| = 1 on Σ+ and α2
t = α2

z on HT ∩ {t = z}.
Integrating inequality (B.12) in time from −T to T , and using the resultanting estimate into

(B.13), we deduce∫
Σ+

(α2
r + α2

t ) dS . |
∫

Σ+

(
|∇α(x)|2 − α2

r

)
dS|+

∫ T

−T

∫
HT∩{t=τ}

(
α2
t + |∇α|2

)
dxdτ

+

∫
HT∩{t=T}

(
α2
t + |∇α|2

)
dx+

∫
HT∩{t=z}

|∇yα(y, z, z)|2dydz

≤
∑
j<k

∫
Σ+

|Ωjkα(x)|2 dS + (1 + (2T + 1)ε−1)

∫
Σ+

α2
t dS

+ (2T + 1)ε

∫
Σ+

α2
r dS + (

√
2(T + 1) + 1)

∫
HT∩{t=z}

|∇yα(y, z, z)|2dydz.
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Here we have also used (B.12) with τ = T to bound the integral on HT ∩ {t = T}. Choosing ε
small enough, we obtain

(B.14)

∫
Σ+

α2
r dS . ‖α‖2H1(Σ+) +

∫
HT∩{t=z}

|∇yα(y, z, z)|2dydz.

The last term on the right can be bounded using (2.21). Indeed∫
HT∩{t=z}

|∇yα(y, z, z)|2dydz .
∫
|y|≤1

∫
√

1−|y|2≤z≤T
|∇yα(y, z, z))|2dzdy

=

∫
|y|≤1

∫
√

1−|y|2≤z≤T
|∇yβ(y)|2dzdy

≤ Tε−1

∫
|y|≤1

1√
1− |y|2

|
√

1− |y|2∇yβ(y)|2dy,

where we used that β vanishes on |y| ≥ 1− ε. Since β is independent of z, and the tangential part
of the gradient to the unit sphere is z∇y − y∂z, we have∫

HT∩{t=z}
|∇yα(y, z, z)|2dydz . ε−1

∫
|y|≤1

|(z∇y − y∇z)α(y, z, z)|2dS ≤ ε−1‖α‖2H1(Σ+∩{t=z}).

This estimate and (B.14) implies∫
Σ+

α2
r dS . ε

−1
(
‖α‖2H1(Σ+) + ‖α‖2H1(Σ+∩Γ)

)
.

Let χ ∈ C1(Q). The chain rule shows that it also holds for χα in place of α, where the implicit
constant is proportional to ‖χ‖C1(Q). This finishes the proof. �

Proof of Lemma 2.7. Following the proof of [RS20a, Lemma 3.4], we shall prove the estimate∫
B

(|∇x,tα|2 + |α|2)(x, τ)dx . ‖α‖2H1(Γ) + ‖(�+ 2W · ∇+ V )α‖2L2(Q+) + ‖α‖2H1(Σ+) + ‖∂να‖2L2(Σ+)

for every τ ∈ (−1, T ]. Although the desired estimate is just the case τ = T , our proof involves
Gronwall’s inequality, so we need to consider the left-hand side information when τ is also far way
from T . Due to this, we split the energy level into two cases depending on whether or not the
intersection of t = τ with t = z is inside Q+. When τ ∈ (−1, 1], define

E(τ) :=

∫
B∩{z≤τ}

(α2 + α2
t + |∇α|2)(y, z, τ)dzdy,

J(τ) :=

∫
B∩{z≤τ}

(α2 + (Zα)2 + |∇yα|2)(y, z, z)dzdy,

and when τ ∈ (1, T ], define

E(τ) :=

∫
B

(α2 + α2
t + |∇α|2)(y, z, τ)dzdy,

J := J(1).

A straightforward computation shows

2αt(�α+ α) = divx,t(−2αt∇α, α2
t + |∇α|2 + α2).
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For any τ ∈ (−1, T ], integrating this identity over the region Q+ ∩ {t ≤ τ}, and using Stoke’s
theorem, we obtain

2

∫
Q+∩{t≤τ}

αt(�α+ α) =

∫
∂(Q+∩{t≤τ})

ν(y, z, t) ·
(
−2αt∇α, α2

t + |∇α|2 + α2
)
dS

= −
∫
Q+∩{t=τ}

(
α2
t + |∇α|2 + α2

)
dx− 2

∫
Σ+∩{t≤τ}

αrαt dS

+
1√
2

∫
Q+∩{t=z}

(
α2
t + |∇α|2 + 2αtαz + α2

)
dydz.

Now using Young’s inequality with ε = 1, we get for all τ ∈ (−1, T ]

E(τ) . J +

∫
Σ+

(α2
t + α2

r)dS +

∫
Q+∩{t≤τ}

2|αt ((�+ 2W · ∇+ V )α+ (1− V − 2W · ∇)α) |

. J +

∫
Σ+

(α2
t + α2

r)dS +

∫
Q+

|(�+ 2W · ∇+ V )α|2 +

∫
Q+

α2 + α2
t + |∇α|2

≤ J +

∫
Σ+

(α2 + |∇α|2 + α2
t + α2

r)dS +

∫
Q+

|(�+ 2W · ∇+ V )α|2 +

∫ τ

0

E(t)dt.

Note that the implicit constant depends on ‖V ‖L∞ and ‖W‖L∞ . It follows from the first line in
above estimate. Applying Gronwall’s inequality, we have for all τ ∈ (−1, T ]

E(τ) . J +

∫
Q+

|(�+ 2W · ∇+ V )α|2 +

∫
Σ+

(α2 + |∇α|2 + α2
t + α2

r)dS.

The proof is now complete by taking τ = T . �

Proof of Lemma 2.8. As in the proof of [RS20a, Lemma 3.5], we first set v = eσψα. For any
τ ∈ [1, T ], define the energy corresponding to t = τ and t = z as follows

E(τ) :=

∫
B

(σ2v2 + v2
t + |∇v|2)(y, z, τ)dzdy,

J :=

∫
B

(σ2v2 + (Zv)2 + |∇yv|2)(y, z, z)dzdy.

For any τ ∈ [1, T ], integrating the identity

2vt(� v + σ2v) = divx,t(−2vt∇v, v2
t + |∇v|2 + σ2v2).

over the region Q+ ∩ {t ≤ τ}, and using Stoke’s theorem, we obtain

2

∫
Q+∩{t≤τ}

vt(� v + σ2v) =

∫
∂(Q+∩{t≤τ})

ν(y, z, t) ·
(
−2vt∇v, v2

t + |∇v|2 + σ2v2
)
dS

= −
∫
Q+∩{t=τ}

(
v2
t + |∇v|2 + σ2v2

)
dx− 2

∫
Σ+∩{t≤τ}

vrvt dS

+
1√
2

∫
Q+∩{t=z}

(
v2
t + |∇v|2 + 2vtvz + σ2v2

)
dydz.

Using Young’s inequality with 2σvt(σv) ≤ σ(σ2v2 + v2
t ), we get

J . E(τ) + 2

∫
Σ+∩{t≤τ}

|vtvr|dS +

∫
Q+∩{t≤τ}

2|vt
(
(�+ 2W · ∇+ V )v + (σ2 − 2W · ∇ − V )v

)
|

. E(τ) + 2

∫
Σ+

|vtvr|dS +

∫
Q+

2|vt(�+ 2W · ∇+ V )v|+ σ

∫
Q+

v2
t + |∇v|2 + σ2v2,
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whenever σ2 ≥ 1 + ‖V ‖L∞ + 2‖W‖L∞ . Since J is independent of τ , integrating this estimate in τ
from 1 to T , we have

J .
∫

Σ+

|vtvr|dS +

∫
Q+

|vt(�+ 2W · ∇+ V )v|+ σ

∫
Q+

v2
t + |∇v|2 + σ2v2.

The right-hand side can be bounded by integral terms involving weighted versions of α, namely,
terms given by the right-hand side of (2.19). This can be seen by using the following inequalities:

|v| ≤ eσψ|α|, |vt|+ |∇v| ≤ eσψ(|αt|+ |∇α|+ σ|α|),

|(�+ 2W · ∇+ V )v| . eσψ(|(�+ 2W · ∇+ V )α|+ σ(|αt|+ |∇α|) + σ2|α|),
2σ|αt||α| ≤ α2

t + σ2α2, 2σ|∇α||α| ≤ |∇α|2 + σ2α2.

Finally, we complete the proof by using the estimate below∫
B

e2σψ(σ2α2 + (Zα)2 + |∇yα|2)(y, z, z) dzdy . J.

�
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