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Abstract. In this paper we introduce a new salient object segmenta-
tion method, which is based on combining a saliency measure with a
conditional random field (CRF) model. The proposed saliency measure
is formulated using a statistical framework and local feature contrast in
illumination, color, and motion information. The resulting saliency map
is then used in a CRF model to define an energy minimization based seg-
mentation approach, which aims to recover well-defined salient objects.
The method is efficiently implemented by using the integral histogram
approach and graph cut solvers. Compared to previous approaches the
introduced method is among the few which are applicable to both still
images and videos including motion cues. The experiments show that
our approach outperforms the current state-of-the-art methods in both
qualitative and quantitative terms.
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1 Introduction

Biological vision systems are remarkably effective in finding relevant targets from
a scene [1]. Identifying these prominent, or salient, areas in the visual field enables
one to allocate the limited perceptual resources in an efficient way. Compared
to biological systems, computer vision methods are far behind in the ability of
saliency detection. However, reliable saliency detection methods would be useful
in many applications like adaptive compression and scaling [2, 3], unsupervised
image segmentation [4, 5], and object recognition [6, 7].

Perhaps the most common approach to reduce scene clutter is to detect
moving objects against a static background [8–10]. These methods have been
very successful in many applications, but they have severe limitations in the
case of dynamic scenes or moving cameras. These circumstances have been ad-
dressed by introducing adaptive background models and methods to eliminate
camera movements [11, 12], but both of these are difficult problems and tech-
nically demanding. Moreover, the methods in this class are applicable only to
video sequences, but not to still images where motion cues are not available.

A different approach is provided by supervised object detection techniques,
which are aimed at finding particular categories like persons, tables, cars, etc.
[13–15]. These methods have resulted in high performance, but the limitation is
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Fig. 1. Example result achieved using the proposed approach. From left to right: origi-
nal image, saliency map, segmentation by thresholding, and segmentation by using the
CRF model.

that the objects of interest must reside in the predefined categories from which
the training samples must be available. Furthermore, the training process is
rather extensive and the performance is dictated by the training data.

An alternative method is offered by general purpose saliency detectors. These
methods are inspired by the ability of human visual system to quickly focus on
general salient targets without preceding training. Such techniques are suitable
in situations where possible targets and imaging conditions are not known in
advance. Perhaps the first biologically plausible saliency detector was presented
in [16], where the key idea was based on contrast measurements using difference
of Gaussians filtering.

Since [16] several saliency detectors have been introduced. They are similarly
focusing on estimating local feature contrast between image regions and their
surroundings. Most methods implement this by local filtering or sliding win-
dow techniques [18–22]. Other methods apply Fourier transform [23, 24], mutual
information formulation [25], or band-pass filtering [26].

The main limitation with many general saliency detection methods is their
low resolution, e.g. 64× 64 with the approaches in [23, 24] and small fraction of
the image dimension with [16, 17]. An exception to this is provided by sliding
window based methods [20–22] and the band-pass filtering approach [26], where
the output map has the same resolution as the input image. Another drawback
is that only few methods [22, 24] are capable of incorporating motion cues in the
saliency map. Finally, large computational demands and variable parameters are
limiting the usage of several methods [16, 18, 19, 22].

In the previous experiments the sliding window and band-pass filtering ap-
proaches have resulted in the best performance [26]. Based on this observation
we present a new saliency segmentation method, which is a composition of a
sliding window based saliency measure and a conditional random field (CRF)
segmentation model. The introduced saliency measure is based on a rigorous
statistical formulation enabling feature level information fusion and analysis of
the robustness properties.

In contrast to previous methods our approach is directly applicable to both
still images and videos including also motion cues in the saliency measure and the
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CRF model. The method which is the most similar to our saliency measure is the
approach in [21], but it differs in the formulation of saliency measure, informa-
tion fusion approach, and application of motion cues in estimation. Experiments
with the saliency segmentation test framework [26] show considerable improve-
ments in terms of both precision and recall. Current state-of-the-art methods are
outperformed slightly even by using a simple thresholding of the saliency map,
and with a clear margin when the proposed CRF model is used.
Contributions We present a salient object segmentation method for images
and video sequences. The contributions of our paper include:

1. A rigorous statistical formulation of a saliency measure, which is based on
local feature contrast, and analysis of its properties under noisy data.

2. Feature level information fusion in the construction of saliency maps and
inclusion of motion cues by using optical flow.

3. CRF model for segmenting objects in images and videos based on informa-
tion in saliency maps.

2 Saliency Measure

In this section we describe the proposed saliency measure. The measure is based
on applying a sliding window to the image, and on comparing in each window
the contrast between the distribution of certain features in an inner window to
the distribution in the collar of the window. The basic setup for this saliency
measure was introduced in [21], but here we will modify it by taking into account
the properties 1 and 2 listed in the contributions above.

2.1 Definition of saliency measure

Consider an image in R2 and a map F which maps every point x to a certain
feature F (x) (which could be the intensity, the value in different color channels,
or information obtained from motion). The feature space is divided into disjoint
bins, with QF (x) denoting the bin which contains F (x).

We consider a rectangular window W divided into two disjoint parts, a rect-
angular inner window K (the kernel) and the border B (see Figure 2), and apply
the hypothesis that points in K are salient and points in B are part of the back-
ground. A similar hypothesis has also been used in [21, 22]. Let Z be a random
variable with values in W , describing the distribution of pixels in W . Under the
stated hypothesis, the saliency measure of a point x ∈ K is defined to be the
conditional probability

S0(x) = P (Z ∈ K|F (Z) ∈ QF (x)). (1)

The saliency measure of x is always a number between 0 and 1. It follows from
the definition that a pixel x is salient (that is, S0(x) is close to 1) if the feature
at x is similar to the features at points of the inner window (and different from
points in the border).
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Fig. 2. Illustration of saliency map computation.

The computation of S0(x) can be achieved through the Bayes formula P (A|B) =
P (B|A)P (A)/P (B). Using the abbreviations H0, H1, and F (x) for the events
Z ∈ K, Z ∈ B, and F (Z) ∈ QF (x), respectively, gives that

S0(x) =
P (F (x)|H0)P (H0)

P (F (x)|H0)P (H0) + P (F (x)|H1)P (H1)
. (2)

The computation of this measure is greatly simplified if we assume that Z has a
probability density function p which is constant on K and on B. In fact, given
p0 with 0 < p0 < 1, we take p(x) = p0/|K| for x ∈ K and p(x) = (1 − p0)/|B|
for x ∈ B. With this choice, the conditional probabilities in the last expression
for S0(x) become normalized histograms. For instance, for the set K we write

hK(x) = P (F (x)|H0) =
1

P (H0)

∫

K∩F−1(QF (x))
p(w) dw. (3)

Since p is constant on K, the discretized version of the last quantity is obtained
by just counting the number of points z in K for which F (z) is in QF (x), and by
dividing by the number of points in K. Defining similarly hB(x) = P (F (x)|H1),
the saliency measure may be written as

S0(x) =
hK(x)p0

hK(x)p0 + hB(x)(1 − p0)
. (4)

Clearly S0(x) is always a number between 0 and 1.

2.2 Regularized saliency measure

Note that a small change in the function F may change the bin of F (x), pos-
sibly resulting in a large change in the value of hK(x). Therefore the measure
S0(x) is not stable with respect to noise. To increase robustness we introduce a
regularized saliency measure. For computational purposes it is most convenient
to regularize the normalized histograms directly.
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Assume that the bins in feature space are indexed by integers j, and let
j(x) be such that F (x) lies in the bin Qj(x). Let also hA(j) = hA(x) for

j = j(x). If α > 0 let gα(x) = cαe−
x
2

2α be the Gaussian function with vari-
ance α, normalized so that

∑∞
j=−∞ gα(j) = 1. Define the regularized histogram

hK,α(j) =
∑∞

j=−∞ gα(j − k)hK(k). With a similar definition for hB,α, the regu-
larized saliency measure is defined by

Sα(x) =
hK,α(j(x))p0

hK,α(j(x))p0 + hB,α(j(x))(1 − p0)
. (5)

It can be shown that for α > 0 and under certain assumptions, the continu-
ous analog of the measure Sα(x) is stable with respect to small changes in the
function F (more details in the on-line Appendix1). This indicates that the reg-
ularized measure is indeed quite robust. Another benefit of the regularization
is that by suitable choices for α it is possible to emphasize and de-emphasize
different features that are used for the function F . Having a larger α for a certain
feature will decrease the weight of that feature in the resulting saliency map.

2.3 Implementation

For the feature function F we will use the CIELab color values of an image,
and also motion information in the case of video sequences. For still images, if
L(x), a(x), and b(x) are the CIELab values at a point x, the feature map is
F (x) = (L(x), a(x), b(x)). In the case of frames in a video sequence we combine
the CIELab information for each frame with the magnitude of the optical flow
Y (x). The feature map is then F (x) = (L(x), a(x), b(x), Y (x)). All the values
are quantized, and the bins are the elements in the finite feature space.

To simplify the computations, we make the assumption that the random
variables L(Z), a(Z), b(Z), Y (Z) are independent in any subwindow. This is
reasonable since the CIELab color space is constructed so that the intensity value
L is independent of the a and b coordinates, and also since in our experiments
using a joint distribution for a and b did not yield improved results compared
to the case where independence was assumed. It is also fair to assume that the
optical flow Y (Z) is independent of L(Z), a(Z), b(Z).

Using the independence, we have P (F (x)|H0) = hK(x) where hK(x) is the
product of normalized histograms ht

K(t(x)) (here t is one of L, a, b, Y ) and
ht

K(t0) is equal to the number of points z in K such that t(z) = t0 divided by
the number of points in K, etc. We define regularized histograms

ht
K,α(j) = N (

∑

k

gα(j − k)ht
K(k)), t is one of L, a, b, Y. (6)

Here N (f(j)) = 1
∑

k
f(k)f(j) is the normalization operator. The final saliency

measure is given by

Sα(x) =
hK,α(x)p0

hK,α(x)p0 + hB,α(x)(1 − p0)
. (7)

1 http://www.ee.oulu.fi/mvg/page/saliency
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Here hK,α(x) is equal to hL
K,α(L(x))ha

K,α(a(x))hb
K,α(b(x)) for still images and to

hL
K,α(L(x))ha

K,α(a(x))hb
K,α(b(x))hY

K,α(Y (x)) for frames in a video sequence, and
hB,α(x) is defined in a similar manner.

The saliency map for the entire image is achieved by sliding the window
W with different scales over the image, constructing the proposed feature his-
tograms for each window, smoothing the histograms, and then computing the
measure for each pixel in K at each window position and scale. The final saliency
value is then taken as the maximum over all windows containing a particular
pixel. Figure 2 shows an illustration of the process.

In practice it is enough to evaluate the measure only in a small subset of all
possible window positions and scales. In our experiments we used a regular grid
with step size equal to 1 percent of the largest image dimension. We applied four
scales with row and column sizes equal to {25, 10; 30, 30; 50, 50; 70, 40}percents of
the largest image dimension, respectively. An illustrative Matlab implementation
of our measure is available on-line2.

3 Salient Object Segmentation

In this section, we propose a bilayer segmentation method that estimates the
salient and non-salient pixels of an image or a video by minimizing an energy
function, which is derived from a conditional random field model that incorpo-
rates the pixelwise saliency measure of the previous section. The motivation for
using a CRF model is the fact that usually the goal of saliency detection is to
achieve an object-level segmentation rather than pixel-level segmentation. That
is, the user is more interested in objects which contain salient pixels than the
salient pixels themselves. Therefore, instead of considering pixels independently
and segmenting the saliency maps by simple thresholding, it is reasonable to
formulate the binary labeling problem in terms of a CRF based energy function,
whose exact global minimum can be computed via graph cuts [27, 28]. In the
following, we describe the energy functions used in our experiments. The formu-
lations are inspired by several previous works which apply graph cuts for binary
segmentation problems, e.g. [29, 30].

3.1 Segmentation Energy for Still Images

First, given an image with N pixels, we use the saliency measure Sα to compute
a saliency map s=(s1, . . . , sN ), which is an array of saliency values. Further, we
represent the image as an array c = (c1, . . . , cN ), where each cn = (Ln, an, bn)
is a Lab color vector for a single pixel. Our task is to find a binary labeling
σ = (σ1, . . . , σN ) so that σn ∈ {0, 1} indicates whether the pixel n belongs to a
salient object or not.

2 http://www.ee.oulu.fi/mvg/page/saliency
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The optimal labeling is computed by minimizing the energy function

EI(σ, c, s) =
N

∑

n=1

(

wSUS(σn, sn) + wCUC(σn, cn)
)

+
∑

(n,m)∈E

V (σn, σm, cn, cm),

(8)
which consists of two unary terms, US and UC , and a pairwise term V , which
depends on the labels of neighboring pixels.3 The weight factors wS and wC are
scalar parameters. The purpose of US is to penalize labelings which assign pixels
with low sn to the salient layer, whereas UC encourages such labelings where the
salient layer includes pixels which have similar colors as pixels for which sn is
high. The pairwise term V favors spatial continuity of labels. Overall, the energy
function (8) has the standard form [28], which is used in many segmentation
approaches [29] and can be statistically justified by using the well-known CRF
formulation [30]. The precise definitions for US , UC , and V are described below.

The unary saliency term US is defined by

US(σn, sn) = δσn,1(1 − f(sn)) + δσn,0f(sn), (9)

where δ·,· is the Kronecker delta and f is defined by either

f(sn) = max(0, sign(sn − τ)) or f(sn) = (sn)κ . (10)

In probabilistic terms, one may think that US is an approximation to

− logP (Sn =sn|σn) = −δσn,1 log p1(sn) − δσn,0 log p0(sn), (11)

where p1 and p0 are the conditional density functions of sn given that pixel n
is salient or non-salient, respectively. Hence, loosely speaking, the ratio f(sn) :
(1−f(sn)) can be seen as a one-parameter model for the ratio of negative log-
likelihoods, (− log p0(sn)) : (− log p1(sn)).

The unary color term UC is defined by

UC(σn, cn) = − logP (Cn =cn|σn) = −δσn,1 log pc
1(cn) − δσn,0 log pc

0(cn), (12)

where the conditional density functions pc
1 and pc

0 are the color distributions
of salient and non-salient pixels, respectively. Given image c, we compute pc

1

and pc
0 as a product of two histograms, that is, pc

1(cn) = hL
1 (Ln)hab

1 (an, bn)
and pc

0(cn) = hL
0 (Ln)hab

0 (an, bn). The histograms hL
1 and hL

0 are computed as
weighted histograms of pixels’ intensity values, where the weights for pixel n
are f(sn) and (1 − f(sn)), respectively. The color histograms hab

1 and hab
0 are

computed in a similar manner using f(sn) and (1 − f(sn)) as weights.
The pairwise prior V is

V (σn, σm, cn, cm) = γδσn,σm
e−||cn−cm||2

Λ + ηδσn,σm
, (13)

where γ and η are scalar parameters and || · ||Λ is a Mahalanobis distance with
diagonal matrix Λ. Both terms in (13) penalize neighboring pairs of pixels that

3 Set E contains pairs (n, m) for which n<m and pixels n and m are 4-connected.
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have different labels. However, the first term adds lower cost for such segmenta-
tion boundaries that co-occur with contours of high image contrast [30].

Given image c and saliency map s, we estimate σ by minimizing (8) via
graph cuts. The pixels labeled by 1 belong to salient objects and the rest is
background. Further, given test images with ground truth saliency maps where
the pixels of salient objects are manually labeled, we compare the two choices
for f in (10) by computing the corresponding ROC curves. That is, by changing
the value of parameter τ (or κ) from 0 to ∞ the labeling gradually changes from
one map to zero map, and we may draw a ROC curve by counting the number
of correctly and incorrectly labeled pixels at each parameter setting. Section 4
reports the results obtained with a publicly available dataset of 1000 images. For
the experiments, we determined the values of wS , wC , γ, and η by the approach
in [31]. All other parameters except τ and κ were set to manually predefined
values and kept constant during the experiments.

3.2 Segmentation Energy for Videos

Our CRF segmentation model for videos incorporates motion information indi-
rectly via the saliency measure Sα, as described in Section 2, but also directly
via an additional unary term, which is introduced below. In detail, the energy
function for videos is an augmented version of (8), i.e.

EV (σt, σt−1, σt−2, ct, ct−1, s) = EI(σ
t, ct, s) +

N
∑

n=1

UT (σt
n, σt−1

n , σt−2
n , ct

n, ct−1
n )

(14)
where σt is the segmentation of the current frame, σt−1 and σt−2 are the segmen-
tations of the two previous frames, ct is the current frame, ct−1 is the previous
frame, and UT is an additional unary term which improves temporal coherence.

The term UT has the following form,

UT (σt
n, σt−1

n , σt−2
n , ct

n, ct−1
n ) = µ δσt

n,σt−1
n

e−||ct

n−ct−1
n ||2Γ − ν log pT (σt

n|σ
t−1
n , σt−2

n ),

(15)
where µ and ν are scalar parameters, || · ||Γ is a Mahalanobis distance with diag-
onal matrix Γ , and pT is the prior probability density function of σt

n conditioned
on σt−1

n and σt−2
n . Thus, since pT (σt

n =0|σt−1
n , σt−2

n )=1−pT (σt
n =1|σt−1

n , σt−2
n ),

pT is defined by four parameters which determine pT (σt
n = 1|σt−1

n , σt−2
n ) corre-

sponding to the following four cases: (σt−1
n , σt−2

n ) = {(0, 0), (0, 1), (1, 0), (1, 1)}.
The first term in (15) is an additional data-dependent cost for pixels which
change their label between frames (t−1) and t. This extra cost is smaller for
those pixels whose color changes a lot between the frames.

Given a video sequence, we compute the segmentation σt for frames t > 2
by minimizing (14) via graph cuts. For grayscale videos we use the grayscale
version of (14). In the experiments, the values of the common parameters were
the same for the grayscale and color versions. Further, we used the first choice
for f in (10) and all parameter values were kept constant in the experiments.
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4 Experiments

In this section, we assess the proposed approach in saliency segmentation exper-
iments. The performance is compared with the state-of-the-art methods using
the programs given by the authors [10, 23, 21, 20, 26] or our own implementation
with default parameters [24]. The experiments are divided into two parts, where
the first one considers still images and the second one video sequences.

4.1 Segmenting salient objects from images

First, we run the publicly available saliency segmentation test, introduced in
[26]. The proposed method is compared to the band-pass approach in [26], which
was reported to achieve clearly the best performance among the several tested
methods [26] (note the erratum4). In addition we also include the approaches
from [21] and [24], since they were not evaluated in [26].

The experiment contains 1000 color images with pixel-wise ground truth seg-
mentations provided by human observers. First a saliency map is computed for
each test image and then a segmentation is generated by simply thresholding
the map by assigning the pixels above the given threshold as salient (white fore-
ground) and below the threshold as non-salient (black background). A precision
and recall rate is then computed using definitions:

precision = |SF ∩ GF |/|SF |, recall = |SF ∩ GF |/|GF |, (16)

where SF denotes the segmented foreground pixels, GF denotes the ground truth
foreground pixels, and | · | refers to number of elements in a set. By sliding the
threshold from minimum to maximum saliency value, we achieved the precision-
recall curves illustrated in Figure 3 (magenta, cyan, orange, and green).

The results show that the proposed saliency measure achieves the highest
performance up to a recall rate 0.9. Furthermore also the method from [21]
seems to outperform the state-of-the-art results in [26]. Notice that the precision-
recall curves of the proposed method and the method in [21] do not have values
for small recalls because several pixels reach the maximum saliency value and
they change labels simultaneously when the threshold is lowered below one. At
maximum recall all methods converge to 0.2 precision, which corresponds to a
situation where all pixels are labeled as foreground.

We continue the experiment by adding the CRF segmentation model from
Section 3 on top of our saliency measure. First, we perform the same experiment
as above, but refine the thresholded saliency maps using the CRF model (i.e. the
first choice is used for f in (10)). The resulting precision-recall-curve in Figure
3 (blue) illustrates a clear gain compared to thresholded saliency map in both
precision and recall. Finally, we replace the thresholded saliency maps in the
CRF by the soft assignment approach of Section 3 (i.e. the second choice for
f in (10)). Now, instead of sliding threshold τ we change the exponent κ, and

4 http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/index.html
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Fig. 3. Left: Mean precision-recall curves using comparison methods and the proposed
approach. Right: Mean precision, recall, and F-measure values for comparison method
[26] (1), our method with thresholding (2), and our method with soft assignments (3).
Notice that β = 0.3 (used according to [26]) strongly emphasizes precision.

achieve the corresponding precision-recall-curve in Figure 3 (black), which shows
further improvement in performance.

In [26] the best results were achieved by combining the band-pass saliency
map with adaptive thresholding and the mean-shift segmentation algorithm.
The achieved precision, recall, and F-measure values were 0.82, 0.75, and 0.78,
respectively. The F-measure was computed from precision and recall by Fβ =
(1 + β2) (precision · recall) /

(

β2 · precision+recall
)

, where β = 0.3 was used
[26]. This corresponds to a point marked using by a cyan star in Figure 3.
This result remains lower than our results with both näıve thresholding and
soft mapping with CRF, which provide the same precision with recalls 0.79 and
0.87, respectively. These points are also marked in Figure 3 with correspondingly
colored stars. The maximum F-measure value we achieve is 0.85, which represents
9 percent improvement over [26]. The comparison of F-measures is shown in
Figure 3. A few results of the proposed saliency segmentation method are shown
in Figure 4 for subjective evaluation.

4.2 Segmenting salient objects from video sequences

Another set of experiments was performed using videos. The saliency maps were
computed as described in Section 2 by using both the CIELab color values (only
L in the case of gray-scale videos) and the magnitude of optical flow as features.
The optical flow was computed using a publicly available5 implementation [32],
which can provide real-time performance. The final salient segments were com-
puted using either direct thresholding or the CRF method of Section 3.

5 http://gpu4vision.org/
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Fig. 4. Examples of saliency maps and segmentations. Top row shows the original
image, second row shows the saliency maps, third row shows the segmentations using
threshold 0.7, and bottom row shows the segmentations using the CRF model.

The results are compared with methods in [24, 21, 20, 10] from which the
last mentioned is a general background subtraction method. All comparison
methods used default parameters given by the authors. Further, in order to
achieve best possible performance with comparison methods, we also included
all the postprocessing techniques presented in the original papers. As test videos,
we used the publicly available image sequences originally used in [21] and [22].
The two sequences from [21] illustrate moving and stationary objects in the
case of a fixed and a mobile camera. Sequences from [22] show highly dynamic
backgrounds with targets of various size. The original results of [22] are available
on-line and are directly comparable to our results. Their experiments also include
several traditional background subtraction approaches.

Figure 5 illustrates characteristic frames from tested sequences. The results
include original frames, saliency maps, and final segmentations. Full videos are
also available on-line6. The results illustrate the problems of traditional back-
ground subtraction methods, which work well with stationary cameras and con-
stantly moving objects. However serious problems appear if the camera is moving
and targets may stop every once in a while. The poor resolution of [24] is visi-
ble in the inaccurate segmentations and several missed objects. The method in
[21] works better, but the result is rather noisy and the segmentations are not
accurate. The missing motion information is also visible in the results with [21].

The proposed approach achieves the most stable results, where also the effect
of motion cues is clearly visible. The returned segments mostly correspond to
natural objects. Sometimes the method may return salient segments which a
human observer would classify as part of the background (e.g. grass between the
roads). However, like with all saliency detection methods this is difficult to avoid
if these objects are distinct from the background in terms of visual contrast.

6 http://www.ee.oulu.fi/mvg/page/saliency



12 Lecture Notes in Computer Science: Salient Object Segmentation

5 Conclusions

In this paper, we presented a new combination of a saliency measure and a
CRF based segmentation model. The measure was formulated using a proba-
bilistic framework, where different features were fused together in joint distribu-
tions. The sensitivity of the proposed measure was shown to be controlled by a
smoothing parameter, which can also be used to set the relative weights of the
features.

The resulting saliency map was turned into a segmentation of natural and
well-defined objects using the CRF model. The segmentations were constantly
improved and stabilized especially in the case of video sequences, where the
smoothness over frames was emphasized by the applied model. In addition we
proposed a technique to include optical flow motion cues into the saliency esti-
mation, which greatly improved the recall rate with videos.

The experiments with a publicly available dataset showed that our approach
yields clearly higher performance than the state-of-the-art in terms of both recall
and precision. The new method produces both more dicriminative saliency maps
and more accurate segmentations. The precision was improved especially at high
recalls, where previous results were rather poor. The experiments with video
sequences showed also consistent improvement over the tested methods.

The features used in our approach included Lab color values and optical flow,
which are both obtainable in real-time. The saliency measure itself was evaluated
using sliding windows and integral histograms. The processing takes about 8
seconds per image with our current Matlab implementation, but we believe that
this can be reduced to close to real time. The CRF energy minimization by
graph cuts took 1/20 seconds per image. In future, we aim to achieve a real time
implementation by using total-variation techniques instead of graph cuts.
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Fig. 5. Results of saliency detection from videos. Each group of eight images corre-
spond to one test sequence and they are organized as follows: Left column from top
to bottom consists of the original frame, the proposed saliency map, segmentation by
thresholding proposed saliency map, and segmentation using the proposed CRF model.
Right column from top to bottom consists of segmentations using the saliency maps
and full post processing of comparison methods [10], [24], [20], and [21], respectively.


